Technical Note: A software framework for calculating compositionally dependent *in situ* ¹⁴C production rates

Alexandria J. Koester¹, Nathaniel A. Lifton^{1,2}

¹Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA

Correspondence to: Alexandria J. Koester (koestea@purdue.edu)

Abstract

Over the last 30 years, *in situ* cosmogenic nuclides (CNs) have revolutionized surficial process and Quaternary geologic studies. Commonly measured CNs extracted from the common mineral quartz have long half-lives (e.g., ¹⁰Be, ²⁶Al), and have been applied over timescales from a few hundred years to millions of years. However, their long half-lives also render them largely insensitive to complex histories of burial and exposure less than ca. 100 ky. On the other hand, *in situ* cosmogenic ¹⁴C (*in situ* ¹⁴C) is also produced in quartz, yet its 5.7 ky half-life renders it very sensitive to complex exposure histories during the last ~25 ka – a particularly unique and powerful tool when analyzed in concert with long-lived nuclides. *In situ* ¹⁴C measurements are currently limited to relatively coarse-grained (typically sand-sized or larger, crushed/sieved to sand) quartz-bearing rock types, but while such rocks are common, they are not ubiquitous. The ability to extract and interpret *in situ* ¹⁴C from quartz-poor and fine-grained rocks would thus open its unique applications to a broader array of landscape elements and environments.

As a first step toward this goal, a robust means of interpreting *in situ* ¹⁴C concentrations derived from rocks and minerals spanning wider compositional and textural ranges will be crucial. We have thus developed a MATLAB®-based software framework to quantify spallogenic production of *in situ* ¹⁴C from a broad range of silicate rock and mineral compositions, including rocks too fine-grained to achieve pure quartz separates. As expected from prior work, production from oxygen dominates the overall *in situ* ¹⁴C signal, accounting for >90% of production for common silicate minerals and six different rock types at sea-level and high latitudes (SLHL). This work confirms that Si, Al, and Mg are important targets, but also predicts greater production from Na than from those targetselements. The compositionally dependent production rates for rock and mineral compositions investigated here are typically lower than that of quartz, although that predicted for albite is comparable to quartz, reflecting the significance of production from Na. Predicted production rates drop as compositions become more mafic (particularly Fe-rich). This framework should thus be a useful tool in efforts to broaden the utility of *in situ* ¹⁴C to quartz-poor and fine-grained rock types, but future improvements in measured and modelled excitation functions would be beneficial.

1 Introduction

25

Rare nuclides produced *in situ* in minerals near the Earth's surface by cosmic-ray bombardment (*in situ* cosmogenic nuclides or CNs) have revolutionized studies of geomorphology and Quaternary geology. CNs build predictably over time in an exposed surface through nucleon spallation and muon reactions (e.g., Gosse and Phillips, 2001). As such, the time at which geomorphic surfaces formed by glacial, fluvial, or marine activity often can be constrained with CNs, an application known as surface exposure dating. In addition, CNs can be used to constrain rates of surficial processes with appropriate interpretive models.

These applications rely on measuring the concentrations (atoms g⁻¹) of CNs in a sample and calculating an exposure age or

²Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA

erosion rate based on the production rate (atoms g^{-1} yr⁻¹). The most-commonly measured CNs, 10 Be and 26 Al ($t_{1/2}$ 1.39 My - Korschinek et al. (2010); Chmeleff et al. (2010); and $t_{1/2}$ 0.705 My - Nishiizumi et al. (2004), respectively), are typically extracted from quartz, due to its simple composition and corresponding resistance to weathering under a wide range of environmental conditions. Their long half-lives make these nuclides useful in dating surfaces that have been exposed up to millions of years. However, their half-lives also render their concentrations insensitive to periods of burial and re-exposure of less than ca. 100 ky – this can lead to problems with exposure dating due to nuclide inventories remaining from prior periods of exposure.

In situ cosmogenic ¹⁴C (*in situ* ¹⁴C) is also produced in quartz, but its 5.7 ky half-life limits its utility for simple exposure dating because its concentration reaches secular equilibrium between production and decay after 25-30 ky of continuous exposure. However, its rapid decay also makes it sensitive to complex periods of burial and exposure since ca. 25-30 ka (e.g., Briner et al., 2014). In addition, its short half-life means measured concentrations are sensitive only to very rapid erosion rates (e.g., Gosse and Phillips, 2001; von Blanckenburg et al., 2005; Hippe et al., 2017; Hippe et al., 2021), making many eroding landscape elements good targets for *in situ* ¹⁴C studies. *In situ* ¹⁴C is thus emerging as a powerful addition to the CN toolkit.

Several techniques for extracting *in situ* ¹⁴C from sand-sized quartz grains have been established (Lifton et al., 2001; Lifton et al., 2015; Goehring et al., 2019; Hippe et al., 2013; Lupker et al., 2019; Fülöp et al., 2019), but while coarse-grained quartz is common, it is not ubiquitous. Landscapes dominated by mafic or intermediate lithologies generally lack quartz, and fine-grained lithologies can limit the efficacy of quartz purification techniques, thus applying *in situ* ¹⁴C to such rock types is currently problematic. However, the ability to extract and interpret *in situ* ¹⁴C concentrations reliably from quartz-poor and fine-grained lithologies would significantly broaden its applications to additional landscapes and enable pairing with additional nuclides such as ³⁶Cl. Indeed, early studies of *in situ* ¹⁴C in terrestrial rocks utilized whole-rock samples (e.g., Jull et al., 1992; 1994), until procedural difficulties shifted the focus to the simpler quartz production and extraction systematics (Lifton, 1997; Lifton et al., 2001).

As a first step in expanding the range of available sample targets, we have developed a software framework that estimates the production of *in situ* ¹⁴C from major elements found in typical rocks and potential mineral separates. We modified the MATLAB® code from Lifton et al. (2014) to calculate compositionally dependent, site-specific production rates using nuclide-specific scaling, major-element oxide compositions, and measured and modelled nucleon excitation functions, referenced to geologically calibrated *in situ* ¹⁴C spallogenic production rates in quartz. Anticipating that appropriate extraction and CO₂ purification procedures can be developed, this new framework thus provides a critical first step for potential future applications incorporating quartz-poor or fine-grained samples.

2 Constraining compositionally dependent in situ ¹⁴C production rates

2.1 Geologic and experimental production rate calibrations

In situ CN applications require accurate estimates of the rate at which a given nuclide of interest is produced in the target mineral or rock. This is typically achieved by calibrating the production rate with CN measurements in samples from one or more sites with 1) an independently well-constrained exposure history (e.g., Borchers et al., 2016; Phillips et al., 2016; Lifton et al., 2015a), or for radionuclides only, with 2) demonstrable surface stability such that measured CN concentrations can be inferred to have reached a secular equilibrium between production and decay, at which point the concentration is only a function

of time-integrated production rate and the decay constant (e.g., Jull et al., 1992; Borchers et al., 2016). Production rates can also be calibrated experimentally by exposing high-purity, low background targets to the secondary cosmic-ray flux at given sites for a known duration under well-constrained conditions (e.g., Nishiizumi et al., 1996; Brown et al., 2000; Vermeesch et al, 2009).

Since production rates cannot be calibrated at every place on Earth, these site-specific estimates are typically scaled to other sites of interest using an appropriate scaling framework that accounts for spatial and temporal variations in the secondary cosmic-ray flux, arising from fluctuations in the geomagnetic field (parameterized by effective vertical cutoff rigidity, R_C , in GV), atmospheric depth (X, in g cm⁻²), and solar modulation (described by the parameter Φ , in MeV) (e.g., Lifton et al., 2014). Such scaling frameworks are typically referenced to conditions corresponding to sea-level and high geomagnetic latitude (SLHL).

Geologic calibrations are generally preferable for minerals with specific compositions since samples from sites with independently well-constrained exposure histories should incorporate natural geologic variability relevant over geologic time spans. Such calibrations for *in situ* ¹⁴C have focused on quartz to date, given its simple chemistry and weathering resistance, as noted above (e.g., Borchers et al., 2016; Phillips et al., 2016; Lifton et al., 2015a; Schimmelpfennig et al., 2012; Young et al., 2014), yet variable compositions require more complicated consideration of the compositional dependence of CN production (e.g., ³⁶Cl; Marrero et al., 2016a). It is often useful in such cases to utilize theoretical production rate estimates based on integrals of the differential cosmic-ray flux and the relationship between reaction probability and incident particle energy.

2.2 Theoretical production rate estimates

95

105

The probability that a given nuclear reaction will occur at a given kinetic energy E of an incident particle is described by the reaction cross-section (σ), in units of barns (1 barn = 10^{-24} cm²). With the advent of accelerator mass spectrometry (AMS), cross-section measurements for reactions producing CNs have become relatively common, and knowledge of the variation of σ as a function of E for those reactions (known as an excitation function) are continuing to improve (e.g., Reedy, 2013). Proton-induced reactions are simpler to measure than those induced by neutrons because it is easier to accelerate protons into a monoenergetic beam. Mono-energetic (or quasi-mono-energetic) neutron reaction cross-sections are more difficult to obtain, however, and thus are often estimated from analogous proton cross-sections (Reedy, 2013).

Measured or modelled excitation functions can then be used to estimate theoretical production rates for a CN of interest using Eq. (1) below (e.g., Masarik and Beer, 2009),

$$P_j(X, R_C, \Phi) = \sum_i ND_i \sum_k \int_0^\infty \sigma_{ijk}(E_k) J_k(E_k, X, R_C, \Phi) dE_k$$
 (1)

where ND_i is the target number density, or number of atoms of the target element i per gram of sample material (atoms g^{-1}), $\sigma_{ijk}(E_k)$ is the cross-section for the production of nuclide j (cm²) by particles of type k with energy E_k (MeV), and J_k (E_k , X, R_C , Φ) is the differential flux of atmospheric cosmic-ray particles (cm⁻² yr⁻¹ MeV⁻¹) of type k with energy E_k at a location and time specified by X, R_C , and Φ .

The production of *in situ* ¹⁴C in silicates is dominantly from spallation of O, and theoretical simulations suggest minor spallogenic production from Mg, Al, and Si (Masarik and Reedy, 1995; Masarik, 2002). Production of *in situ* ¹⁴C from muons also occurs, either via slow negative muon capture or by fast muon interactions (Heisinger et al., 2002a,b). The muogenic component of *in situ* ¹⁴C production in surficial quartz at SLHL is significant – on the order of 20% of total production (e.g., Lupker et al., 2015; Balco, 2017). However, muogenic production of *in situ* ¹⁴C has only been estimated experimentally from

¹⁶O (Heisinger et al., 2002a; 2002b). Further work is needed in this area to better understand production from other muogenic reactions. We therefore focus on the dominant spallogenic pathways for the purposes of this initial study.

110 3 Methods

115

120

125

130

135

3.1 Software framework

Our MATLAB®-based compositionally dependent *in situ* 14 C production rate software framework builds on the LSDn nuclide-dependent scaling formulation of Lifton et al. (2014), which uses the PARMA analytical approximations to Monte Carlo calculations of atmospheric differential flux spectra of neutrons, protons, and muons as a function of X, R_C , and Φ (Sato et al., 2006; 2008). We also incorporate the time-dependent gridded R_C (global grids of cutoff rigidity) and dipolar R_{CD} (geocentric dipolar cutoff rigidity) models of Lifton et al. (2016), based on the SHA.DIF.14k paleomagnetic model (Pavón-Carrasco et al., 2014). This work accounts for effects of variable sample compositions on *in situ* 14 C production by incorporating relevant reaction excitation functions and number densities for elements in the standard suite of major-element oxide compositions. Output from this new framework should complement current web-based cosmogenic nuclide calculators incorporating the LSDn scaling framework and *in situ* 14 C, including version 3 of the University of Washington cosmogenic-nuclide calculators (herein UWv3: hess.ess.washington.edu) (Balco et al., 2008) and the Cosmic-Ray-prOduced NUclide Systematics on Earth project (CRONUS-Earth) calculator (CRONUSCalc; http://cronus.cosmogenicnuclides.rocks/; Marrero et al., 2016b).

Reaction excitation functions for neutrons and protons were compiled from Reedy (2007; 2013), and the JENDL/HE-2007 database (Fukahori et al., 2002; Watanabe et al., 2011) found in the online Evaluated Nuclear Data File (ENDF, https://wwwnds.iaea.org/exfor/endf.htm, accessed April 2020; Brown et al., 2018) for each of the major elements included in typical elemental oxide analyses. We consider empirical excitation functions to be generally more reliable than those derived from nuclear reaction models, and thus use measured functions if available. Five neutron and proton excitation functions are based on measurements from Reedy (2007, 2013) of elements at natural isotopic abundances (O, Mg, Al, Si, Fe), while we used modelled neutron and proton reaction excitation functions from JENDL/HE-2007 for the most abundant isotopes of the remaining elements considered (23Na, 31P, 39K, 40Ca, 48Ti, 55Mn). However, we not Apart from the measured excitation function for in situ ¹⁴C production by neutron spallation from oxygen (Reedy, 2013), e that it is important to note that most of the Reedy (2007, 2013) neutron excitation functions are not directly measured but instead are presented by Reedy (2013) are derived from the measured proton excitation functions. We utilized the JENDL/HE-2007 database because the relevant excitation functions extended to a maximum energy of 3 GeV, close to the maximum 10 GeV energy considered by Sato et al. (2006, 2008); a version of that nuclear data library was also utilized by those studies. The exceptions were the excitation functions for ³¹P, extending only to 0.2 GeV. Each excitation function was interpolated into logarithmic energy bins from 1 MeV to 200 GeV for both neutron (XX(n,x) 14 C) and proton (XX(p,x) 14 C) reactions, where XX is the target nuclide (Fig. 1). The cross-section at the highest measured or modelled energy reported for each excitation function is assumed to be constant beyond that energy up to 200 GeV, the maximum energy we consider.

We incorporate sample compositions using common major elemental oxide analyses (e.g., from X-Ray Fluorescence (XRF) measurements) to calculate ND for each element considered in Eq. 1. The ND value for each target element in a sample is then calculated per Eq. (2), for input to Eq. 1:

$$ND = \frac{E_{Fr} * E_{Ox} * N_A}{100 * A_m} \,, \tag{2}$$

where E_{Fr} is the elemental fraction in each oxide (formula mass of each element in its oxide divided by the total formula mass of the oxide (e.g., Mg/MgO or 2Al/Al₂O₃)), E_{Ox} is the measured major elemental oxide weight percent input by the user, N_A is Avogadro's number (6.02214076 x 10^{23} atoms mol⁻¹) and A_m is the molar mass of the element in g. This approach is applicable toworks for any silicate major elemental oxide composition input by the user.

3.2 Predicted compositionally dependent production rates

165

170

Theoretical compositionally dependent site-specific in situ ¹⁴C production rates are reported relative to the SLHL in situ ¹⁴C 150 global production rate in quartz, geologically calibrated as part of the CRONUS-Earth project (e.g., Borchers et al, 2016; Phillips et al., 2016; Borchers et al., 2016) and supplemented with two subsequent production rate calibration datasets (Schimmelpfennig et al., 2012; Young et al., 2014), using the LSDn scaling framework (Lifton et al., 2014, Lifton 2016) (Supplemental Information Table S1). All in situ ¹⁴C measurements in these studies were recalculated following Hippe and Lifton (2014). SLHL estimates are referenced to the year 2010 (Lifton et al., 2014; Lifton, 2016) assuming an atmospheric pressure of 1013.25 hPa (converted to atmospheric depth, g cm⁻²), an R_c value of 0 GV, a Φ_{2010} value of 624.5718 MV, and a fractional water content value, 'w', of 0.066 (Sato et al., 2006; Phillips et al. 2016). We recalibrated the in situ ¹⁴C spallogenic production rate at SLHL in quartz from the studies above by first calculating the unweighted mean and standard deviation of replicate analyses of samples at each site (to avoid biasing the results toward sites with more analyses). Best-fitting SLHL production rate estimates for each site were determined using a χ^2 minimization procedure. The unweighted mean and standard deviation of all sites were then calculated from the site-specific SLHL production rate estimates, yielding global SLHL values for quartz of 13.5 ± 0.9 atoms g^{-1} yr⁻¹ and 13.7 ± 1.2 atoms g⁻¹ yr⁻¹ for the gridded R_C and geocentric dipolar R_{CD} records of Lifton (2016), respectively, as noted above. The latter is comparable to the calibrated value generated by the UWv3 calculator from the same dataset (Table S1). In the following discussion we focus on the gridded R_C value (referenced below as P_{Qcal}), as it provides a somewhat better fit to the global calibration dataset. Corresponding geocentric dipolar values are included in the Supplement Table S2.

For comparison, the purely theoretical *in situ* ¹⁴C production rate by nucleon spallation predicted at SLHL in quartz using Eq. 1 is 15.8 atoms g^{-1} yr⁻¹ (P_{Qref}). This discrepancy with the calibrated value likely reflects uncertainties in both the excitation functions and the nucleon fluxes considered (Reedy, 2013; Sato et al., 2006; Sato et al., 2008). Giving more credence to the geologically calibrated quartz values, we account for this discrepancy similarly to Lifton et al. (2014), deriving a compositionally dependent site-specific production rate (P_{CD}) by normalizing the predicted compositionally dependent production rate at the site of interest (P_{CDpred}) by the ratio of P_{Qref} , per Eq. 3. Another way to think of this is that the ratio of P_{CDpred} to P_{Qref} is the compositionally dependent scaling factor, multiplied by the geologically calibrated production rate in quartz, P_{Qcal} .

$$P_{CD} = P_{Qcal} \frac{P_{CDpred}}{P_{Qref}} \text{ atoms } g^{-1} \text{ yr}^{-1}$$
 (3)

We compare P_{CD} values at SLHL to P_{Qcal} for compositions reflecting both individual minerals (Barthelmy, 2014) (i.e., mineral separates) and a broad range of silicate rock types (Parker, 1967; Fabryka-Martin, 1988) (i.e., whole-rock analyses) (Table 1). A pure calcite composition (CaCO₃) is assumed for limestone and MgCa(CO₃)₂ is assumed for dolomite. Spallation production is only possible from Ca and O, although we included the O number density contribution from CO₂ in the software framework. Thermal neutron production of *in situ* 14 C from 12 C or 13 C is expected to be negligible and is not considered here (e.g., Wright e al., 2019).

4 Results and Discussion

180

195

200

205

210

215

4.1 Predicted modern production rates for silicate minerals and rock types

Predicted SLHL modern (i.e., 2010) spallogenic production rates for *in situ* ¹⁴C in the silicates considered here are generally lower than that from pure quartz (Fig3; Table 2), but spallation production from O dominates throughout the compositional range we explored (Table 3). As expected from reaction systematics, ¹⁴C production rates tend to decline rapidly with progressively increasing atomic mass of the target nuclide (Fig 3). Interestingly, the production rate predicted for albite using the excitation functions from JENDL/HE-2007 for spallation reactions on ²³Na is comparable to that of quartz. We note that the JENDL/HE-2007 model ²³Na(n,x)¹⁴C excitation function exhibits a broad peak between ca. 30-350 MeV with cross-sections comparable to that of the empirical O(n,x)¹⁴C excitation function of Reedy (2013) (Fig. 1), suggesting similar production magnitudes for the two reactions. To our knowledge, no comparable empirical excitation functions for the ²³Na(n,x)¹⁴C or ²³Na(p,x)¹⁴C reactions have been published to date, making the model reactions difficult to validate. Predicted production rates for Mg-rich silicates such as forsterite and enstatite are ca. 7-10% lower than in quartz, while Al-rich minerals such as Ca- and K-feldspars yield production rates 12-13% below quartz. Ca-rich wollastonite exhibits less than 1% of its total ¹⁴C production from Ca, yielding a production rate more than 20% below that of quartz, while Fe-rich minerals such as ferrosilite and fayalite suggest SLHL production rates ca. 32% and 41% less than quartz, respectively. Predicted production rates for two carbonate minerals considered, calcite and dolomite, are 12% and 3% less than quartz, respectively.

The P_{CD} values for selected rock types (ultramafic, basalt, high-Ca granite, low-Ca granite, and granodiorite; Fabryka-Martin, 1988) follow a similar pattern to the individual minerals, with total production rates less than that of quartz but with less overall variation (Fig. 3; Table 2). Predicted whole-rock production rates tend to increase with decreasing Fe and Mg content, with P_{CD} values ranging from nearly 15% less than quartz for ultramafic compositions to ca. 5-7% below that of quartz for more felsic compositions. As with the idealized mineral compositions, spallation from O dominates *in situ* ¹⁴C production (>90% for all compositions considered), with lesser production from Si, Al, Na, and Mg. Only minor production contributions from Ca and Fe are predicted (typically <1%).

4.2 Assessing uncertainty in predicted compositionally dependent production rates

There are three main sources of uncertainty in our predicted production rates, associated with the particle spectra, the geologic production rate calibration for *in situ* 14 C in quartz, and the excitation functions. We note that these are not entirely independent, as the LSDn-based production rate calibration utilizes both the particle spectra of Sato et al. (2008) and excitation functions of Reedy (2013). Sato et al. (2008) quote statistical uncertainties in their modelled particle fluxes on the order of 5-20% between ca. 10 km altitudes and sea level, respectively, although Lifton et al. (2014) note that predictions within this altitude range show good agreement with measured differential fluxes and no evidence of systematic errors. The conservative uncertainty in the recalibrated *in situ* 14 C global production rate in quartz is on the order of 6-7% using the gridded R_C geomagnetic framework and LSDn scaling. Reedy (2013) suggests uncertainties on the order of 10% for the empirical excitation functions presented. However, Reedy (2013) also suggests that modelled cross-sections may differ from measured ones for a given nuclide by a factor of \approx 2. However Thus, assessing the uncertainty in the modelled functions of JENDL/HE-2007 is more difficult.

We attempted to assess this latter uncertainty by comparing results using JENDL/HE-2007 to predictions incorporating the more recent TENDL-2019 database (Koning et al., 2019). We focused on the proton and neutron excitation functions for ¹⁴C

production from 23 Na, since our predictions using the JENDL/HE-2007 23 Na excitation functions suggest comparable production to that from O (Fig. 1; Table 2). However, TENDL-2019 excitation functions only extend to an energy of 200 MeV, although at higher resolution than JENDL/HE-2007. We thus compared albite production rates predicted using the JENDL/HE-2007 excitation function alone (Na_J) with those incorporating spliced neutron and proton excitation functions using TENDL-2019 for $E \le 200$ MeV and JENDL/HE-2007 for E > 200 MeV (Na_{TJ}) (Fig. 2).

Neutron and proton excitation functions for ²³Na have similar thresholds of ca. 30-35 MeV in both JENDL/HE-2007 and TENDL-2019 (Fig. 2). Of note, the low-energy peaks in the TENDL-2019 excitation functions are narrower, ca. 30% lower, and occur at a slightly higher energy than those of JENDL/HE-2007 (ca. 150 MeV vs. ca. 90 MeV, respectively). However, the predicted production rate for albite using the spliced Na_{TJ} excitation functions is only ca. 3% less than that using the Na_J excitation functions alone (Table 2); also reflected in the lower production proportion from Na of ca. 8% in the spliced version, vs. ca. 13% in Na_J version (Table 3).

Apart from the modelled ²³Na excitation functions, the remaining modelled excitation functions have only a minor impact on the overall production rates we predict. The percentages of total production of *in situ* ¹⁴C from ⁵⁵Mn, ⁴⁸Ti, ⁴⁰Ca, ³⁹K and ³¹P range from <0.001% to 0.2% for the compositions considered (Table 3). Even if the modelled reaction cross sections are off by a factor of 2, as suggested from Reedy (2013), the impact to overall production is small. For instance, doubling the percentage of ¹⁴C production from Ca for wollastonite would only increase predicted production to 0.4 In addition, we argue that calculating production using modelled excitation functions for only the most abundant isotope of each of these elements, instead of excitation functions reflecting their natural isotopic abundances, introduces negligible additional uncertainty. For example, we assume 100% of production of *in situ* ¹⁴C from ⁴⁸Ti, even though ⁴⁸Ti comprises only 73% of Ti isotopes. However, ⁴⁸Ti contributes <0.001% of total production for the compositions we considered; it is unlikely that including excitation functions for other common Ti isotopes would change that prediction significantly. Similar arguments can be made for the other isotopes referenced above. We therefore argue that the overall additional uncertainty in our predictions that might be introduced by using more conservative estimates of potential errors in the modelled reaction cross sections would be insignificant relative to other uncertainties in the calculations, for the compositions considered. That said, future additional empirical excitation functions for neutron and proton reactions using elements in their natural abundances would likely improve our predictions.

Based on these results, we suggest assuming a 10% uncertainty as well-for the JENDL/HE-2007 excitation functions overall, pending empirical validation. Thus, considering the three sources of uncertainty above, we suggest a reasonable estimate of <u>current</u> uncertainty on our theoretical production rates might be on the order of 10-15%, also pending validation with geologic <u>calibrations</u>, assuming extraction and <u>CO₂</u> purification hurdles can ultimately be overcome.

4.3 Comparisons with previous studies

220

225

230

235

240

We compare output of our software framework to two earlier studies that also calculated theoretical *in situ* ¹⁴C production rates from targets of varying composition (Fabryka-Martin, 1988; Masarik, 2002), without adjusting our predictions to the geologically calibrated production rate in quartz. First, Fabryka-Martin (1988) estimated SLHL secular equilibrium *in situ* ¹⁴C concentrations at depths of ~20 cm for ultramafic rock, basalt, high-Ca granite, low-Ca granite, and limestone compositions, following Parker (1967) (Table 4). The equilibrium concentrations were calculated assuming neutron spallation production only from oxygen and a SLHL production rate of 26 atoms g⁻¹ yr⁻¹ from oxygen (Yokoyama et al., 1977) based on excitation functions from Reedy and Arnold (1972). We derived secular equilibrium SLHL production rates from Fabryka-Martin (1988)

by multiplying the concentrations by the 14 C decay constant of 1.216 x 10^{-4} y⁻¹ (Table $4 - P_{160-FM}$). Considering only theoretical production from 16 O in our results (Total P_{CDpred} in Table 2 multiplied by the corresponding O production proportion in Table 3), our P_{160} values in Table 4 are ca. 40-45% below those derived from Fabryka-Martin (1988). However, it should be pointed out that Yokoyama et al. (1977) suggest $\pm 35\%$ uncertainty (1σ) on their *in situ* 14 C production rate estimate used by Fabryka-Martin (1988), so our theoretical P_{160} values using more accurate particle fluxes and excitation functions lie well within that range.

255

260

265

275

280

285

The second study we considered (Masarik, 2002) is a conference abstract that presents formulas for estimating compositional dependence of *in situ* cosmogenic nuclide SLHL production rates by neutron spallation, including 14 C, derived from numerical simulations. For *in situ* 14 C production, Masarik (2002) considers the target elements O, Mg, Al, Si, and Fe, parameterized in terms of weight fractions of each (Table 5). Total production rates from Masarik (2002) (P_{M02}) in Table 5 are typically ca. 10-20% higher than neutron-only theoretical production rates for rock and mineral compositions considered in this study (Neutron P_{CDpred} , Table 2). Being an abstract, details underlying the simulations and calculations in Masarik (2002) are sparse, but we suggest a combination of differences in the differential neutron flux spectra (Masarik and Beer, 1999, vs. Sato et al., 2008) and excitation functions (e.g., Reedy and Masarik, 1995, vs. Reedy, 2013) used in the two studies, as well as unstated uncertainties in the Masarik (2002) coefficients, may be the sources of the discrepancies in the predictions of the respective studies.

We derived a similar elemental parameterization to that of Masarik (2002) for SLHL *in situ* ¹⁴C production as part of this study, but including production from both neutrons and protons for all of the elements we consider, given by

$$\underline{P_{CDpred}} = 29.01[O] + 15.59[Na] + 2.19[Mg] + 1.67[Al] + 0.84[Si] + 0.22[P]
+ 0.10[Fe] + 0.08[K] + 0.06[Ca] + 0.05[Ti] + 0.03[Mn]$$
(4)

where the bracketed values are the respective elemental fractions derived from the measured major elemental analysis. *In situ*14C production rates predicted using this equation for the compositions considered Table 1 are identical to the *P_{CDpred}* values in Table 2, since both are derived using the same software framework.

In addition to the theoretical studies, Handwerger et al. (1999) measured *in situ* 14 C concentrations in carbonate deposits (limestone bedrock and tufa) from well-preserved Provo-level shoreline features associated with Pleistocene Lake Bonneville, Utah, to calibrate *in situ* 14 C spallogenic production rates in calcite. The late Pleistocene lake-level history of Lake Bonneville is well-constrained by traditional radiocarbon dates and has been used for geological calibration of a number of cosmogenic nuclides (Lifton et al., 2015a). *In situ* 14 C measurements in Handwerger et al. (1999) were reduced according to standard methods for radiocarbon in organic materials, but Hippe and Lifton (2014) subsequently developed comprehensive data reduction procedures specifically for *in situ* 14 C. Unfortunately, Handwerger et al. (1999) do not present full details of their analytical results and calculations – we thus cannot correct their data to current standards using the Hippe and Lifton (2014) protocols. If we assume such corrections would be small relative to the resulting *in situ* 14 C concentrations in their calibration samples, neglecting three anomalous results, and using the age of initial Provo shoreline formation from Lifton et al. (2015a) of 18.3 ± 0.3 cal ka BP, their mean *in situ* 14 C concentration is $(3.75 \pm 0.26) \times 10^5$ atoms g^{-1} CaCO₃. This corresponds to a local production rate of ca. 51 atoms g^{-1} yr⁻¹. In contrast, the theoretical local production rate calculated with our software framework is ca. 43.9 atoms g^{-1} yr⁻¹, ~15% lower than the derived local production rate. In addition, the predicted value normalized to P_{Qcal} yields 37.5 atoms g^{-1} yr⁻¹, 27% lower than Handwerger et al. (1999). Given the uncertainties in the uncorrected Handwerger et

al. (1999) dataset, and the suggested uncertainties in our method, we find reasonable agreement between our production rate estimates and that of Handwerger et al. (1999).

5 Conclusions

295

305

As a first step in exploring potential applications of *in situ* ¹⁴C to quartz-poor or fine-grained rock types, we have extended the functionality of the MATLAB®-based LSDn nuclide-specific scaling framework (Lifton et al., 2014; Lifton, 2016) to estimate spallogenic production of *in situ* ¹⁴C in rock and mineral compositions other than pure quartz at sites of interest. We account for compositionally dependent production by using measured and modelled nucleon excitation functions for target elements in major element oxide analyses (e.g., XRF), in concert with secondary cosmic-ray differential fluxes per Lifton et al. (2014). The ratio of resulting theoretical compositionally dependent *in situ* ¹⁴C production rates to the corresponding theoretical quartz production rate are then multiplied by the geologically calibrated production rate in quartz, placing the theoretical production rates in a calibrated context. Exploring a broad range of mineral and rock compositions indicates production is dominated by oxygen spallation as expected (>90% at SLHL), but with a general decrease in total production rate with more mafic (particularly Fe-rich) compositions. Although this study confirms previous work identifying Si, Mg, and Al as important targets, we also find for the first time that Na appears to contribute significantly. Future nucleon excitation function measurements, particularly for Na reactions, should improve the robustness of this software tool further. This framework is thus an important initial step forward in applying *in situ* ¹⁴C to a broader array of landscapes.

Code availability

The MATLAB® scripts referenced in this manuscript are available at https://github.com/nlifton/CD14C. A permanent DOI will be provided upon acceptance of this manuscript.

Author contributions

The study was conceived by NL and AK. AK and NL developed the MATLAB® scripts. Manuscript was written by AK and NL.

Competing interests

The authors declare no competing interests.

Acknowledgements

NL received support from the U.S. National Science Foundation (NSF) award EAR-1560658. AK acknowledges support from a Purdue Research Foundation Ross Fellowship/Assistantship.

References

Balco, G., Stone, J. O., Lifton, N. A. and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements, Quat. Geochron., 3(3), 174–195, doi:10.1016/j.quageo.2007.12.001, 2008.

320 Barthelmy, D., Mineralogy Database, http://www.webmineral.com, 2014, accessed July 8, 2020

325

- Bevington P. R. and Robinson D. K., Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York, N.Y., 1992
- Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J. and Stone, J.: Geological calibration of spallation production rates in the CRONUS-Earth project, Quat. Geochron., 31, 188–198, doi:10.1016/j.quageo.2015.01.009, 2016.
- Brown, D. A., Chadwick, M. B., Capote, R., Kahler, A. C., Trkov, A., Herman, M. W., Sonzogni, A. A., Danon, Y., Carlson, A. D., Dunn, M., Smith, D. L., Hale, G. M., Arbanas, G., Arcilla, R., Bates, C. R., Beck, B., Becker, B., Brown, F., Casperson, R. J., Conlin, J., Cullen, D. E., Descalle, M. A., Firestone, R., Gaines, T., Guber, K. H., Hawari, A. I., Holmes, J., Johnson, T. D., Kawano, T., Kiedrowski, B. C., Koning, A. J., Kopecky, S., Leal, L., Lestone, J. P., Lubitz, C., Márquez Damián, J.
- I., Mattoon, C. M., McCutchan, E. A., Mughabghab, S., Navratil, P., Neudecker, D., Nobre, G. P. A., Noguere, G., Paris, M., Pigni, M. T., Plompen, A. J., Pritychenko, B., Pronyaev, V. G., Roubtsov, D., Rochman, D., Romano, P., Schillebeeckx, P., Simakov, S., Sin, M., Sirakov, I., Sleaford, B., Sobes, V., Soukhovitskii, E. S., Stetcu, I., Talou, P., Thompson, I., van der Marck, S., Welser-Sherrill, L., Wiarda, D., White, M., Wormald, J. L., Wright, R. Q., Zerkle, M., Žerovnik, G. and Zhu, Y.: ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross-sections, New Standards and Thermal Scattering Data, Nucl. Data Sheets, 148, 1–142, doi:10.1016/j.nds.2018.02.001, 2018.
 - Brown, E. T., Trull, T. W., Jean-baptiste, P., Raisbeck, G., Bourles, D., Yiou, F. and Marty, B.: Determination of cosmogenic production rates of ¹⁰Be, ³He and ³H in water, Nucl. Instruments Methods Phys. Res. B, 172, 873–883, 2000.
 - Chmeleff, J., von Blanckenburg, F., Kossert, K. and Jakob, D.: Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting, Nucl. Inst. Methods Phys. Res. B, 268(2), 192–199, doi:10.1016/j.nimb.2009.09.012, 2010.
 - Cooke, D. J., Humble, J. E., Shea, M. A., Smart, D. F., Lund, N., Rasmussen, I. L., Byrnak, B., Goret, P. and Petrou, N.: On cosmic-ray cut-off terminology, Nuovo Cim. C, 14(3), 213–234, doi:10.1007/BF02509357, 1991.
 - Fabryka-Martin, J. T.: Production of radionuclides in the earth and their hydrogeologic significance, with emphasis on chlorine-36 and iodine-129. Ph.D. thesis, The University of Arizona., 1988.
- Fukahori, T., Watanabe, Y., Yoshizawa, N., Maekawa, F., Meigo, S. I., Konno, C., Yamano, N., Konobeyev, A. Y. and Chiba, S.: JENDL high energy file, J. Nucl. Sci. Technol., 39, 25–30, doi:10.1080/00223131.2002.10875031, 2002.
 - Fülöp, R. H., Fink, D., Yang, B., Codilean, A. T., Smith, A., Wacker, L., Levchenko, V. and Dunai, T. J.: The ANSTO University of Wollongong in-situ ¹⁴C extraction laboratory, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms, 438(January 2018), 207–213, doi:10.1016/j.nimb.2018.04.018, 2019.
- Goehring, B. M., Wilson, J. and Nichols, K.: A fully automated system for the extraction of *in situ* cosmogenic carbon-14 in the Tulane University cosmogenic nuclide laboratory, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms, (December 2017), 1–9, doi:10.1016/j.nimb.2019.02.006, 2019.
 - Gosse, J. C. and Phillips, F. M.: Terrestrial *in situ* cosmogenic nuclides: theory and application, Quat. Sci. Rev., 20, 1475–1560, doi:10.1016/S0277-3791(00)00171-2, 2001.
- 355 Grieder, P., Cosmic Rays at Earth: Researcher's Reference Manual and Data Book, 1st ed. Elsevier, Amsterdam, 2001.
 - Handwerger, D. A., Cerling, T. E. and Bruhn, R. L.: Cosmogenic ¹⁴C in carbonate rocks, Geomorphology, 27(March 1998), 1999.
- Heisinger, B., Lal, D., Jull, a. J. T., Kubik, P., Ivy-Ochs, S., Neumaier, S. and Knie, K., Lazarev, V. and Nolte, E.: Production of selected cosmogenic radionuclides by muons 1. Fast muons, Earth Planet. Sci. Lett., 200(3–4), 345–355, doi:10.1016/S0012-821X(02)00640-4, 2002a.
 - Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Knie, K. and Nolte, E.: Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons, Earth Planet. Sci. Lett., 200(3–4), 357–369, doi:10.1016/S0012-821X(02)00641-6, 2002b.
- Hippe, K., Jansen, J. D., Skov, D. S., Lupker, M., Ivy-Ochs, S., Kober, F., Zeilinger, G., Capriles, J. M., Christl, M., Maden, C., Vockenhuber, C. and Egholm, D. L.: Cosmogenic *in situ* ¹⁴C-¹⁰Be reveals abrupt Late Holocene soil loss in the Andean Altiplano, Nat. Commun., 12, 1–9, doi:10.1038/s41467-021-22825-6, 2021.
 - Hippe, K.: Constraining processes of landscape change with combined *in situ* cosmogenic ¹⁴C-¹⁰Be analysis, Quat. Sci. Rev., 173, 1–19, doi:10.1016/j.quascirev.2017.07.020, 2017.

- Hippe, K., Kober, F., Wacker, L., Fahrni, S. M., Ivy-Ochs, S., Akçar, N., Schlüchter, C. and Wieler, R.: An update on *in situ* cosmogenic¹⁴C analysis at ETH Zürich, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms, 294, 81–86, doi:10.1016/j.nimb.2012.06.020, 2013.
 - Hippe, K. and Lifton, N. A. Calculating isotope ratios and nuclide concentrations for *in situ* cosmogenic ¹⁴C analyses. Radiocarb., 56(3), 1167–1174. https://doi.org/10.2458/56.17917, 2014.
- Imamura, M., Nagai, H., Takabatake, M., Shibata, S., Kobayashi, K., Yoshida, K., Ohashi, H., Uwamino, Y. and Nakamura, T.:

 Measurements of production cross sections of C and 26Al with high-energy neutrons up to En = 38 MeV by accelerator mass spectrometry, Nucl. Inst. Methods Phys. Res. B, 52(3–4), 595–600, doi:10.1016/0168-583X(90)90482-A, 1990.
 - Jull, A. J. T., Cloudt, S., Donahue, D. J., Sisterson, J. M., Reedy, R. C. and Masarik, J.: ¹⁴C depth profiles in Apollo 15 and 17 cores and lunar rock 68815, Geochim. Cosmochim. Acta, 62(17), 3025–3036, doi:10.1016/S0016-7037(98)00193-8, 1998.
- Jull, A. J. T., Lifton, N., Phillips, W., & Quade, J., Studies of the production rate of cosmic-ray produced ¹⁴C in rock surfaces.

 Nucl. Inst. Methods Phys. Res. B 92, 308–310, 1994.
 - Jull, A.T.J., Wilson, A.E., Donahue, D.J., Toolin, L.J., Burr, G.S., Measurements of cosmogenic ¹⁴C produced by spallation in high- altitude rocks. Radiocarbon 34, 737-744, 1992.
 - Jull, A. J. T., Donahue, D. J. and Linick, T. W.: Carbon-14 activities in recently fallen meteorites and Antarctic meteorites, Geochim. Cosmochim. Acta, 53(8), 2095–2100, doi:10.1016/0016-7037(89)90327-X, 1989.
- Koning, A. J., Rochman, D., Sublet, J., Dzysiuk, N., Fleming, M. and Marck, S. Van Der: TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology, Nucl. Data Sheets, 155, 1–55, doi:10.1016/j.nds.2019.01.002, 2019.
- Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse von Gostomski, C., Kossert, K., Maiti, M., Poutivtsev, M. and Remmert, A.: A new value for the half-life of ¹⁰Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting, Nucl. Inst. Methods Phys. Res. B, 268(2), 187–191, doi:10.1016/j.nimb.2009.09.020, 2010.
 - Lifton, N., Caffee, M., Finkel, R., Marrero, S., Nishiizumi, K., Phillips, F.M., Goehring, B., Gosse, J., Stone, J., Schaefer, J., Theriault, B., Jull, A.J.T., Fifield, K., In situ/In situ cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake Bonneville, Utah, shoreline features. Quat. Geochron. 26, 55-69. Doi:10.1016/j.quageo.2014.11.002, 2015a.
 - Lifton, N., Goehring, B., Wilson, J., Kubley, T. and Caffee, M.: Progress in automated extraction and purification of *in situ* ¹⁴C from quartz: Results from the Purdue *in situ* ¹⁴C laboratory, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms, 361, 381–386, doi:10.1016/j.nimb.2015.03.028, 2015b.
- Lifton, N., Sato, T. and Dunai, T. J.: Scaling *in situ* cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sci. Lett., 386, 149–160, doi:10.1016/j.epsl.2013.10.052, 2014.

- Lifton, N. A., Smart, D. F. and Shea, M. A.: Scaling time-integrated *in situ* cosmogenic nuclide production rates using a continuous geomagnetic model, Earth Planet. Sci. Lett., 268, 190–201, doi:10.1016/j.epsl.2008.01.021, 2008.
- Lifton, N., Jull, A. J. T. and Quade, J.: A new extraction technique and production rate estimate for *in situ* cosmogenic ¹⁴C in quartz, Geochim. Cosmochim. Acta, 65(12), 1953–1969, doi:10.1016/S0016-7037(01)00566-X, 2001.
- Lifton N. A. (1997) A new extraction technique and production rate estimate for in situin situ cosmogenic ¹⁴C in quartz. Ph.D. Dissertation, University of Arizona.
 - Lupker, M., Hippe, K., Wacker, L., Steinemann, O., Tikhomirov, D., Maden, C., Haghipour, N. and Synal, H. A.: In-situ cosmogenic ¹⁴C analysis at ETH Zürich: Characterization and performance of a new extraction system, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms, 457(March), 30–36, doi:10.1016/j.nimb.2019.07.028, 2019.
- Lupker, M., Hippe, K., Wacker, L., Kober, F., Maden, C., Braucher, R., Bourlès, D., Romani, J. R. V. and Wieler, R.: Depth-dependence of the production rate of *in situ* ¹⁴C in quartz from the Leymon High core, Spain, Quat. Geochron., 28, 80–87, doi:10.1016/j.quageo.2015.04.004, 2015.
 - Marrero, S.M., Phillips, F.M., Caffee, M.W., and Gosse, J.C., CRONUS-Earth cosmogenic ³⁶Cl calibration: Quat. Geochron. 31, 199–219, doi:10.1016/j.quageo.2015.10.002, 2016a.
- 415 Marrero, S. M., Phillips, F. M., Borchers, B., Lifton, N., Aumer, R. and Balco, G.: Cosmogenic nuclide systematics and the CRONUScalc program, Quat. Geochron., 31, 160–187, doi:10.1016/j.quageo.2015.09.005, 2016b.

- Masarik, J. and Beer, J.: An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere, J. Geophys. Res., 114, 1–9, doi:10.1029/2008JD010557, 2009.
- Masarik, J., Numerical simulation of in-situ production of cosmogenic nuclides, Geochim. Cosmochim. Acta 66, Suppl. 1, 420 A491, 2002.
 - Masarik, J. and Reedy, R. C.: Monte Carlo simulations of in-situ-produced cosmogenic nuclides, in Santa Fe Workshop on Secular Variations, 163–164., 1995.
- Martin, L. C. P., Blard, P. H., Balco, G., Lavé, J., Delunel, R., Lifton, N. and Laurent, V.: The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages, Quat. Geochron., 38, 25–49, doi:10.1016/j.quageo.2016.11.006, 2017.
 - Michel, R., Gloris, M., Lange, H.-J., Leya, I., Lupke, M., Herpers, U., Dittrich-Hannen, B., Rosel, R., Schiekel, T., Filges, D., Dragovitsch, P., Sutter, M., Hofmann, H.-J., Wolfi, W., Kubik, P. W., Baur, H. and Wieler, R.: Nuclide production by proton-induced reactions on elements (6 <Z <29) in the energy range from 800 to 2600 MeV, Nucl. Inst. Methods Phys. Res. B, 103, 183–222, 1995.
- 430 Nishiizumi, K., Preparation of ²⁶Al AMS standards. Nuclear. Instr. Meth. Phys. Res. B, 223, 388–392, doi:10.1016/j.nimb.2004.04.075, 2004.
 - Nishiizumi, K., Finkel, R.C., Klein, J., Kohl, C.P., Cosmogenic production of ⁷Be and ¹⁰Be in water targets. Journal of Geophysical Research101, 22,225-22,232, 1996.
 - Parker, R. L., Data of Geochemistry, U. S. Geol. Surv. Prof. Paper 440-D, ed. M. Fleischer, 19 p., 1967.
- Pavón-Carrasco, F.J., Osete, M.L., Torta, J.M., De Santis, A., A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet. Sci. Lett. 388, 98–109, 2014.
 - Reedy, R. C.: Cosmogenic-nuclide production rates: Reaction cross section update, Nucl. Instr. Meth. Phys. Res. B, 294, 470–474, doi:10.1016/j.nimb.2011.08.034, 2013.
 - Reedy, R. C.: Proton cross-sections for producing cosmogenic radionuclides, Lunar Planet. Sci 38, 1329–1330, 2007.
- Reedy, R.C., A model for GCR-particle fluxes in stony meteorites and production rates of cosmogenic nuclides: Journal of Geophys. Res. 90, Suppl., C722–C728, doi:10.1029/jb090is02p0c722, 1985.
 - Sato, T. and Niita, K.: Analytical functions to predict cosmic-ray neutron spectra in the atmosphere, Radiat. Res., 166(3), 544–555, doi:10.1667/RR0610.1, 2006.
- Sato, T., Yasuda, H., Niita, K., Endo, A., Sihver, L., Sato, T., Yasuda, H., Niita, K., Endo, A. and Sihver, L.: Development of PARMA: PHITS-Based Analytical Radiation Model in the Atmosphere, Radiat. Res., 170(2), 244–259, 2008.
 - Schimmelpfennig, I., Schaefer, J. M., Goehring, B. M., Lifton, N., Putnam, A. E. and Barrell, D. J. A.: Calibration of the *in situ* cosmogenic ¹⁴C production rate in New Zealand's Southern Alps, J. Quat. Sci., 27, 671–674, doi:10.1002/jqs.2566, 2012.
- Sisterson, J. M., Schneider, R. J. I., Jull, A. J. T., Donahue, D. J., Cloudt, S., Kim, K., Beverding, A., Englert, P. A. J.,
 Castaneda, C., Vincent, J. and Reedy, R. C.: Revised solar cosmic ray fluxes estimated using measured depth profiles of ¹⁴C in Lunar rocks; The importance of good ¹⁴C cross section determinations, Lunar Planet. Sci. 22, 1996.
 - Sisterson, J., Jull, A. J. T., Beverding, A., Koehler, A. M., Castaneda, C., Vincent, J., Donahue, D. J., Englert, P. A. J., Gans, C., Young, J. and Reedy, R. C.: Proton production cross-sections for ¹⁴C from silicon and oxygen: implications for cosmic-ray studies, Nucl. Instruments Methods Phys. Res. B, 92, 510–512, 1994.
 - Thomas, J. H., Rau, R. L., Skelton, R. T. and Kavanagh, R. W.: Half-life of ²⁶Al, Phys. Rev. C, 30(1), 385–387, 1984.
- Vermeesch, P., Baur, H., Heber, V. S., Kober, F., Oberholzer, P., Schaefer, J. M., Schlüchter, C., Strasky, S. and Wieler, R.: Cosmogenic ³He and ²¹Ne measured in targets after one year of exposure in the Swiss Alps, Earth Planet. Sci. Lett., 284(3–4), 417–425, doi:10.1016/j.epsl.2009.05.007, 2009.
 - Von Blanckenburg, F.: The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sci. Lett., 237(3–4), 462–479, doi:10.1016/j.epsl.2005.06.030, 2005.
- Watanabe, Y., Kosako, K., Kunieda, S., Chiba, S., Fujimoto, R., Harada, H., Kawai, M., Maekawa, F., Murata, T., Nakashima, H., Niita, K., Shigyo, N., Shimakawa, S., Yamano, N. and Fukahori, T.: Status of JENDL high energy file, J. Korean Phys. Soc., 59(23), 1040–1045, doi:10.3938/jkps.59.1040, 2011.

- Wright, T., Bennett, S., Heinitz, S., Köster, U., Mills, R., Soldner, T., Steier, P., Wallner, A., and Wieninger, T., Measurement of the ¹³C(n,γ) thermal cross section via neutron irradiation and AMS, Eur. Phys. J. A, 55, 200, doi:10.1140/epja/i2019-12893-0, 2019.
 - Yokoyama, Y., Reyss, J. L. and Guichard, F.: Production of radionuclides by cosmic rays at mountain altitudes, Earth Planet. Sci. Lett., 36(1), 44–50, doi:10.1016/0012-821X(77)90186-8, 1977.

Young, N. E., Schaefer, J. M., Goehring, B., Lifton, N., Schimmelpfennig, I. and Briner, J. P.: West Greenland and global *in situ* ¹⁴C production-rate calibrations, J. Quat. Sci., 29(5), 401–406, doi:10.1002/jqs.2717, 2014.

Figures

- Figure 1: Measured (Reedy, 2013) (top panels) and modelled (bottom panels) neutron and proton reaction excitation functions for *in situ* ¹⁴C production from various targets. The lines represents the are linearly interpretation interpolated between points.
 Note that modelled predictions for ²³Na (JENDL/HE-2007; Fukahorit et al., 2002; Watanabe et al., 2011) suggest the highest production of all nuclides considered.
- **Figure 2**: Modelled neutron (top) and proton (bottom) cross-sections for ²³Na from JENDL/HE-2007 (Na_J, solid line) compared to the spliced TENDL-2019 at energies ≤ 0.2 GeV and JENDL/HE-2007 > 0.2 GeV (²³Na_{TJ}, dashed line). Differential neutron and proton fluxes at SLHL (Sato et al., 2008) are plotted in their respective panes to illustrate the combined effect of excitation function and flux on *in situ* ¹⁴C production.
- **Figure 3:** Predicted SLHL production of <u>in situ ¹⁴C in</u> minerals (left) and rocks (right) eompared relative to <u>that in pure quartz</u> (dashed grey line). The <u>color of each minerals and rocks are colored symbol reflects for whatthe</u> element <u>that contributes</u> the highest proportion of production after oxygen and silica.

Tables

- **Table 1:** Elemental oxide compositions (weight %) for selected silicate minerals (Barthelmy, 2014) and rock types (Parker, 490 1967), used to calculate number densities (Eq. 2).
 - **Table 2**: Predicted modern *in situ* 14 C spallogenic production rates (atoms g⁻¹ y⁻¹) at SLHL from neutrons and protons in minerals and rock types considered, both theoretical (P_{CDpred}) and normalized to calibrated production in quartz (P_{CD}) using the gridded R_C record of Lifton (2016).
 - **Table 3:** Percentage of total <u>predicted</u> modern *in situ* ¹⁴C production at SLHL by element for each mineral and rock type considered
- **Table 4**: Predicted modern <u>in situ ¹⁴C</u> production rates at SLHL for neutron spallation from ¹⁶O derived from secular equilibrium concentrations (N_{SE}) at ca. 20-cm depth for different rock types (Fabryka-Martin, 1988) compared to our software framework. Note that these estimates are not normalized relative to P_{Qcal} , for straightforward comparison to Fabryka-Martin's (1988) predictions.
- **Table 5:** Neutron-only SLHL <u>in situ ¹⁴C</u> production based on Masarik (2002; P_{M02}) theoretical predictions for compositions considered in this work, compared to modern SLHL neutron-only production predicted here (also see Table 2). Note that these estimates are not normalized relative to P_{Qcal} , to enable direct comparison to Masarik's (2002) predictions.

510 Tables

Table 1:

Mineral	Composition	SiO_2	TiO ₂	Al_2O_3	FeO	Fe_2O_3	MnO	MgO	CaO	Na ₂ O	<u>K</u> ₂ <u>O</u>	<u>P</u> ₂ <u>O</u> ₅	$\underline{\mathbf{LOI}^2}$
Quartz	SiO_2	100	-	-	-	-	-	-	-	=	Ξ.	=	=
Albite	$NaAlSi_3O_8$	68.745 2.37	-	19.442 9.62	-	-	-	-	-	<u>11.8218.01</u>	Ξ	Ξ	Ξ
Anorthite	$CaAl_2Si_2O_8$	43.19	-	36.64	-	-	-	-	20.16	Ξ	Ξ	Ξ	Ξ
Orthoclase	$KAlSi_3O_8$	64.76	-	18.32	-	-	-	-	-	Ξ	16.92	Ξ	Ξ
Forsterite	$\mathrm{Mg}_2\mathrm{SiO}_4$	42.71	-	-	-	-	-	57.30	-	Ξ	Ξ	=	Ξ
Fayalite	Fe_2SiO_4	29.49	-	-	70.51	-	-	-	-	Ξ	Ξ	=	Ξ
Wollastonite	$\mathrm{Ca_{2}Si_{2}O_{6}}$	51.72	-	-	-	-	-	-	48.28	<u>=</u>	Ξ	Ξ	Ξ
$Augite^{I}$	$\frac{(Ca,Mg,Fe)(Mg,Fe)Si_2O_6(Ca,Na)(Mg,Fe,}{Al,Ti)(Si,Al)_2O_6}$	24.184 8.30	<u>-3.38</u>	<u>-8.63</u>	16.836 . 08	-	-	7.3215. 35	10.35 ₂ 1.35	-1.31	Ξ	Ξ	Ξ
Ferrosilite	$Fe_2Si_2O_6$	45.54	-	-	54.46	-	-	-	-	=	Ξ	Ξ	=
Enstatite	$Mg_2Si_2O_6$	59.85	-	-	-	-	-	40.15	-	Ξ	Ξ.	Ξ	Ξ
$Calcite^2$	$CaCO_3$	-	-	-	-	-	-	-	56.03	Ξ	Ξ.	Ξ	43.97
$Dolomite^2$	$CaMg(CO_3)_2$	-	-	-	-	-	-	21.86	30.41	Ξ	Ξ	=	47.73
Rock type ³													
Ultramafic	_	40.64	0.05	0.66	-	14.09	0.19	42.94	0.98	0.77	0.04	0.04	=
Basalt	_	51.34	1.50	16.55	-	12.24	0.26	7.46	9.40	2.62	1.00	0.32	Ξ
Hi-Ca Granite	_	67.16	0.57	15.49	-	4.23	0.07	1.56	3.54	<u>3.83</u>	<u>3.04</u>	0.21	Ξ
Low-Ca Granite	_	74.22	0.20	13.60	-	2.03	0.05	0.27	0.71	<u>3.48</u>	<u>5.06</u>	0.14	Ξ
Granodiorite	-	69.09	0.57	14.55	-	3.86	0.08	0.93	2.21	<u>3.73</u>	4.02	<u>0.16</u>	Ξ.

 $^{^{1}} Assumed empirical composition of augite \underline{(Morimoto, 1988; https://www.mindat.org/min-419.html): (Ca_{0.6}Mg_{0.2}Fe_{0.2})(Mg_{0.5}Fe_{0.5})Si_{2}O_{6}} \\ \underline{(Ca_{0.9}Na_{0.1})(Mg_{0.9}Fe^{2+}_{0.2}Al_{0.4}Ti_{0.1})Si_{1.9}O_{6}} \\$

² LOI = Loss on ignition. <u>Used in oxygen number density calculation for carbonates; Assumed to be entirely CO₂-in those cases for carbonates, u. sed in oxygen number density calculation</u>

³ Compositions from Parker (1967)

Table 2

	Neutron PCDpred	Proton PcDpred	Total PcDpred	P_{CD}	% Diff PCD vs. PQcal
Mineral	$at g^{-1} y^{-1}$	$at g^{-1} y^{-1}$	$at g^{-1} y^{-1}$	$at g^{-1} y^{-1}$	
Quartz	15.37	0.47	15.84	13. 53 <u>50</u>	0.0
Albite	15. <u>49</u> 55	0.48	1 <u>5.97</u> 6.04	13. <u>61</u> 70	<u>0.8</u> 1.2
$Albite^{I}$	14. <u>95</u> 74	0.48	15. <u>43</u> 22	13. <u>15</u> 00	-4 <u>2.6</u> .0
Anorthite	13.43	0.42	13.85	11.80	-12.6
Orthoclase	13. <u>20</u> 35	0. <u>39</u> 42	13. <u>60</u> 77	11. <u>59</u> 73	-1 <u>4.2</u> 3.1
Forsterite	13.6 <u>7</u> 6	0.46	14.12	12.03	-10.9
Fayalite	9.0 <u>1</u> 7	0.2 <u>7</u> 8	9.35	7.9 <u>1</u> 7	-41. <u>4</u> 0
Wollastonite	11.85	0.36	12.21	10.41	-22.9
Augite	1 <u>2.00</u> 3.28	0. <u>37</u> 42	1 <u>2.38</u> 3.70	1 <u>0.54</u> 1.67	- <u>21.9</u> 13.6
Ferrosilite	10.46	0.32	10.78	9.18	-32.0
Enstatite	14.1 <u>8</u> 7	0.46	14.64	12. <u>47</u> 50	-7.6
Calcite	13.55	0.38	13.9 <u>4</u> 3	11.8 <u>8</u> 7	-12. <u>0</u> 4
Dolomite	14.96	0.44	15.4 <u>0</u> 4	13.1 <u>2</u> 3	-2.8
Rock					
Ultramafic	13.11	0.43	13.54	11.56	-14.5
Basalt	13.72	0.43	14.15	12.08	-10.7
Hi-Ca Granite	14.30	0.44	14.75	12.59	-6.9
Low-Ca Granite	14.52	0.45	14.97	12.79	-5.5
Granodiorite	14.27	0.44	14.71	12.57	-7.1

 $^{^{1}}Production$ is calculated using the spliced TENDL-2019 and JENDL/HE-2007 proton and neutron excitation functions (Na_{TJ} in text). All other Na production rates use JENDL/HE-2007 exclusively.

Table 3

	0	Si	Ti	Al	Fe ²⁺	Fe ³⁺	Mn	Mg	Ca	Na	K	P
Minerals												
Quartz	97.5	2.5	-	-	-	-	-	-	-	-	-	-
Albite	88. <u>67</u>	1. <u>70</u> 2	-	1. <u>08</u> 6	-	-	-		-	<u>8.56</u> 1	-	-
	09	9		3						2.99		
$Albite^{l}$	88.62	1.36	-	1.72	-	-	-	-	-	8.30	-	-
Anorthite	96.37	1.23	-	2.33	-	-	-	-	0.07	-	< 0.01	-
Orthoclase	9 <u>8.11</u> 6.89	0.63 1. 85	-	1.1 <u>9</u> 7	-	-	-	-	-	-	0.08	-
Forsterite	93.4 <u>5</u> 4	1.19	-	-	-	-	-	5.3 <u>6</u> 7	-	-	-	-
Fayalite	98.14	1.2 <u>5</u> 4	-	-	<u>0.61</u> -	<u>-0.61</u>	-	-	-	-	-	-
Wollastonite	98.16	1.67	-	-	==	<u>=</u> -	-	-	0.1 <u>7</u> 8	-	-	-
Augite	9 <u>6.87</u>	1. <u>65</u> 3	_	- 0.56	< 0.01	_	-	1.304	0.075	1.11	_	_
	5.35	9	<0.01	_	_	<0.01		8	_			
Ferrosilite	97.93	1.66	-	-	<u>0.41</u> -	<u>-0.41</u>	-	-	-	-	-	-
Enstatite	94.7 <u>7</u>	1.61	-	-	-	=	-	3.6 <u>2</u> 3	-	-	-	-
	6											
Calcite	99.82	-	-	-	-	=	-	-	0.18	-	-	-
Dolomite	98. <u>04</u> 19	-	-	-	-	-	-	1. <u>87</u> 7 4	0.0 <u>9</u> 7	-	-	-
Rock type												
Ultramafic	93.84	1.18	< 0.01	0.04	< 0.01	<u>0.08</u> <	< 0.01	4.20	< 0.01	0.66	< 0.01	< 0.01
					0.08	0.01						
Basalt	94.60	1.43	< 0.01	1.08	<0.01	<u>0.07</u> <	< 0.01	0.70	0.03	2.14	< 0.01	< 0.01
H: C C '	04.00	1.70	.0.01	1.01	0.07	0.01	.0.01	0.14	0.01	2.00	0.01	.0.01
Hi-Ca Granite	94.09	1.79	< 0.01	1.01	$\frac{<0.01}{0.02}$	<u>0.02</u> < 0.01	< 0.01	0.14	0.01	3.00	0.01	< 0.01
Low-Ca Granite	94.50	1.95	< 0.01	0.89	<0.01	0.01≤	< 0.01	0.02	< 0.01	2.69	0.02	< 0.01
	,			****	0.01	0.01						
Granodiorite	94.22	1.85	< 0.01	0.95	< 0.01	<u>0.02</u> €	< 0.01	0.08	0.01	2.93	0.02	< 0.01
					0.02	0.01						

¹Production is calculated using the spliced TENDL-2019 and JENDL/HE-2007 proton and neutron excitation functions (Na_{TJ} in text). All other Na production rates use JENDL/HE-2007 exclusively.

Table 4

Rock Type	Depth (m) ¹	density	N_{SE} $(at g^{-1})^1$	$P_{160\text{-}FM}^{1}$ (at $g^{-1}y^{-1}$)	P_{160}^{2} (at $g^{-1}y^{-1}$)
Ultramafic	0.18		135706	16.4	9.0
Basalt	0.18		132621	16.0	9.3
Hi-Ca Granite	0.19		148043	17.9	9.7
Low-Ca Granite	0.19		151127	18.3	9.9
Limestone	0.19		151127	18.3	10.1

¹Data from Fabryka-Martin (1988), assumes SLHL production rate from oxygen in Yokoyama et al. (1977)

Table 5

P_{M02}	PcDn
$(at \ g^{-1} \ y^{-1})$	$(at \ g^{-1} \ y^{-1})$
18.72	15.37
1 <u>7.20</u> 9.99	15. <u>49</u> 56
16.25	13.43
16.20	13. <u>20</u> 35
16.43	13.6 <u>7</u> 6
11.06	9.0 <u>1</u> 7
14.42	11.85
1 <u>4.59</u> 5.91	1 <u>1.85</u> 3.28
1 <u>2.80</u> 4.85	10.46
17.11	14.1 <u>8</u> 7
16.48	13.55
18.12	14.96
15.27	13.11
15.38	13.72
17.15	14.30
17.15	14.52
17.14	14.27
	(at g ⁻¹ y ⁻¹) 18.72 17.209.99 16.25 16.20 16.43 11.06 14.42 14.595.91 12.804.85 17.11 16.48 18.12 15.27 15.38 17.15 17.15

²Data from this study assuming only production from neutron spallation of O and an attenuation length of 160 g cm⁻²

Figure 1

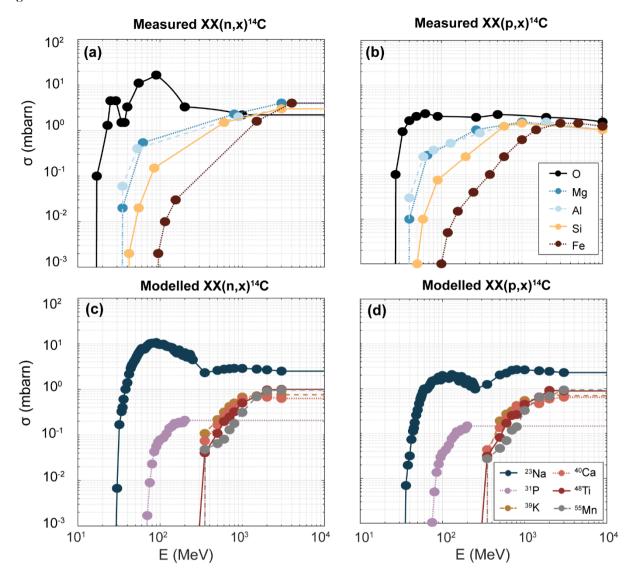
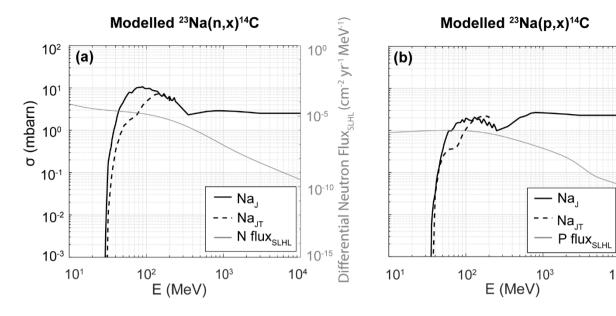
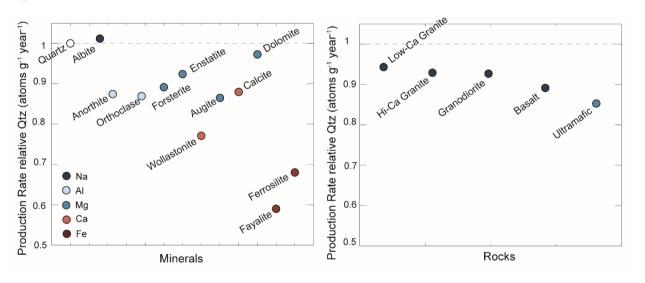



Figure 2

Differential Proton Flux_{SLHL} (cm⁻² yr⁻¹ MeV⁻¹)

10°

10-5


10-10

10⁴

Figure 3

550

555

Supplemental information for "A software framework for calculating compositionally dependent *in situ* ¹⁴C production rates", by Alexandria J. Koester and Nathaniel A. Lifton

565 **Table S1:** In situ ¹⁴C global calibration dataset formatted for production rate calibration input to University of Washington online calculator, version 3 (Balco et al., 2008; http://hess.ess.washington.edu/math/y3/y3 cal in.html). This dataset can be copied and pasted directly into the input data block field. Data from Borchers et al. (2016), Phillips et al. (2016), Schimmelpfennig et al. (2012), and Young et al. (2014), NL gratefully acknowledges the following colleagues for providing samples from surfaces at 570 secular equilibrium, as part of the CRONUS-Earth project (NSF EAR-0345150): Tibor Dunai (CA-05A, northern Chile), Jay Ouade (SPN samples, northern Chile), John Stone (98-PCM and WBC samples, Antarctica). 05PPT-01 41.26367 -112.47527 1603 std 2.65 0.978 2005 05PPT-01 C-14 344740 10630 05PPT-01 Bonneville 18300 quartz true t 575 300 -112.47527 0.994 05PPT-02 41.26367 1603 std 2.65 2005 C-14 05PPT-02 Bonneville 18300 05PPT-02 quartz 327590 6700 true t 300 05PPT-03 41.26356 -112.4758 1600 std 2.65 0.962 2005 580 05PPT-03 C-14 336220 18810 05PPT-03 Bonneville 18300 quartz true t 300 05PPT-04 41.26362 -112.47693 1598 std 2.66 0.982 2005 05PPT-04 C-14 330140 8660 05PPT-04 Bonneville 18300 quartz true t 300 585 05PPT-05 41.2639 -112.47498 1605 2.67 0.99 0 2005 05PPTstd 3 357560 11670 05PPT-05 Bonneville 18300 300 C-14 quartz true t 05PPT-08 41.26379 -112.47476 1606 std 2.5 2.68 0.986 0 2005 05PPT-08 C-14 quartz 368590 15820 05PPT-08 true_t Bonneville 18300 300 590 06HKY-01 57.41523 -5.64637134 std 2.52 0.98 0 2006 06HKY-01 C-14 quartz 117490 15540 06HKY-01 true_t Scotland 11700 300 06HKY-03 57.4155 -5.64662131 std 6.7 2.47 0.981 0 2006 06HKY-03 C-14 06HKY-03 Scotland 11700 100780 6620 300 quartz true t 595 06HKY-04 57.42302 2.59 2006 ; -5.65808137 std 4 0.956 0 06HKY-04 C-14 118090 7820 06HKY-04 Scotland 11700 quartz true t 300 06HKY-05 57.48743 -5.44933521 3.5 2.55 0.987 0 std 2006 : Scotland 11700 06HKY-05 C-14 quartz 144320 12210 06HKY-05 true t 300 600 <u>06HKY</u>-06 57.48755 -5.44978527 std 3.5 2.53 0.987 0 2006 ; 06HKY-06 C-14 quartz 155910 21320 06HKY-06 true t Scotland 11700 06HKY-07 57.4878 -5.4477 500 6.5 2.59 0.989 0 2006 std 06HKY-07 Scotland 11700 605 C-14 124260 21430 06HKY-07 true t 300 quartz 06HKY-08 57.48863 -5.44705502 std 3 2.58 0.988 0 2006 06HKY-08 C-14 quartz 146950 15000 06HKY-08 true t Scotland 11700

	<u>06HKY</u>	-09	57.4886	3	-5.4470	5502	std	5	2.51	0.976	0	2006	<u>;</u>	
610		06HKY	-09	C-14	quartz	140500	14950	;	06HKY	-09	true t	Scotlan	d11700	300
		<u>;</u>			-									
	<u>06HKY</u>					3510					0	2006	;	
		06HKY	-10	C-14	quartz	128260	19410	;	06HKY	-10	true t	Scotlan	d11700	300
		;												
615						5528				0.987	0	2006	<u>;</u>	
		06HKY	-11	C-14	quartz	157140	14940	;	06HKY	-11	true t	Scotlan	d11700	300
		<u>;</u>												
						303			2.55				2008	
				C-14	quartz	227200	9000	;	MR-08-	03	true t	NewZe	aland	9692
620		50												
						625							2008	
				C-14	quartz	194880	8770	;	MR-08-	05	true t	<u>NewZea</u>	aland	9692
		50	<u>;</u>											
						5959							2008	
625	-			C-14	quartz	213480	8830	;	MR-08-	13	true t	<u>NewZe</u>	aland	9692
		50												
						194							2008	
				C-14	quartz	200310	8920	;	MR-08-	14	true t	<u>NewZe</u>	aland	9692
		50												0.4
630	11Q00					std							11Q00	
	11000		_	133900			11Q00				ind		45	
	<u>11Q00</u>			-50.7569			1.5		0.995	0			11Q00	
	11000	C-14		152640		;	11Q00				ind 2011		45	
C25	11Q00			-50.7569			11000	2.65	0.995	0	2011	;	11QOO	
635		C-14		146510			11QOO		true_t			9235	45	
	11Q00	-04 C 14		-50.7569		std ;	1.25		0.995	0	2011		11QOO	
	11000	-05		142790			1				and 2011	9235	45	
		-05 C-14				std ;					nd		11QOO 45	
640		36.2182					std		2.65		0			
640													;	DV-19
		36.2185				; std		2.65					 DV-18	C 14
						DV-18							DV-10	C-14
	DV 0	36.5272				std			0.999				DW 0	C 14
645	<u>DV-9</u>					DV-9							DV-9	<u>C-14</u>
043		36.2323				805			2.65		0		•	DV-6
	D V-0			189330		;		truo t	DeathVa	0.220		500		D V-0
	DV-25	36.8095		-116.909		1191	std	3	2.65		0	2000		DV-25
	D V-23	C-14	quartz	309670			DV-25		DeathVa		50000	500	•	D V-23
650	DV-3	36.3442		-117.136		1576	std	1	2.65	0.998	0	2000	<u>.</u>	DV-3
050	D V-3	C-14	guartz	348130		;	DV-3	true t	DeathV:		50000	500	:	D V-3
	WHM-2			8			std	2	2.65	0.985	0	2000		WHM-
	25	C-14	quartz	490850		;	WHM-2		true t	WhiteM		50000	500	;
		37.7265		-118.576		2337	std	3	2.65	0.975	0	2000		BNR-4
655	DIMI-4	C-14	<u>z</u> quartz	560300		;	BNR-4		WhiteM		50000	500		DIMIN-4
055	BNR-3	37.7331		-118.56		2431	std	3	2.65	0.967	0	2000		BNR-3
	באוזים	C-14	guartz			;	BNR-3		WhiteM		50000	500		DIMIX-3
I		C-14	qualtz	001200	ロムプリ	•	DIME-3	aue t	vv miletvi	iuis	20000	300		

ĺ	WHM-1 37.5348	31	-118.15	325	2834	std	4	2.65	0.946	0	2000	;	WHM-
		quartz					l true t			50000	500	:	
660	WHM-6 37.4913	_	-118.16		3200	std	4	2.65	0.944	0		-	WHM-
			1061480			WHM-6	f true t		Itns	50000	500	:	
	WHM-7 37,4906	52	-118.17	12	3210	std		2.65	0.945	0		_	WHM-
	7 C-14	guartz	1005940	17210	:	WHM-7	7 true_t			50000	500		
	WHM-11	37.5506	56	-118.22	295	3556		3		0.932	0		:
665	WHM-								11			Itns	50000
000		;	<u> </u>	ej erect eta	110777	7100.70	,	111111		01000	11110011	2020	00000
	WHM-10		56	-118 220	295	3556	std	5	2.65	0.932	0	2000	;
	WHM-											Itns	
	500		0 11	quartz	1505710	717700	•	*********		true t	***************************************	T CITE	20000
670	WHM-19)7	-118 24	12	3879	std	6	2 65	0.92	0	2000	
070	WHM-											Itns	50000
	500		<u> </u>	quartz	1270070	717030	•	***************************************	1)	true t	VV III CIV	TCI15	30000
	WHM-15		94	-118 240	737	3885	std	6	2 65	0.92	0	2000	
	WHM-	<u></u>	C-14	miartz	1272320)22010		WHM-	15			Itns	
675	500	•	C 17	quartz	12/232(722010	•	VV 111V1	15	truc t	William	Itiis	30000
075	WHM-16		94	-118 240	737	3885	std	6	2 65	0.92	0	2000	
	WHM-								<u>2.03</u> 16			Itns	
	500		C 17	quartz	1217700	727370	•	VV 111V1	10	truc t	William	Itiis	30000
	CA03-5A		-70.760	3889	224	std	4	2.65	1	0	2003	;	CA03-
680	5A C-14						Ā		Chile		500		C/103
000	SPN-699									0			SPN-
					;		9	true_t		50000	500		DITT
	699 C-14	allartz	1////										
	699 C-14 SPN-977	_											
	SPN-977	-24.073	13	-70.205	65	977	std	3	2.65	0.977	0	2002	
685		-24.073	13	-70.205	65	977	std	3			0	2002	
685	<u>SPN-977</u> <u>SPN-97</u> ;	-24.073 77	C-14	-70.2050 quartz	210260	977 42600	std ;	3 SPN-97	2.65	0.977 true_t	0 Chile	<u>2002</u> <u>50000</u>	
685	SPN-977 SPN-97 SPN-1921	-24.073 77 -24.477	C-14	-70.2050 quartz -69.4080	65 210260 02	977 42600 1921	std ; std	3 SPN-97	2.65 77 2.65	0.977 true_t	0 Chile	2002 50000 2002	<u>500</u>
685	<u>SPN-977</u> <u>SPN-97</u> ;	-24.073 77 -24.477	C-14	-70.2050 quartz -69.4080	210260	977 42600 1921	std ; std	3 SPN-97	2.65	0.977 true_t	0 Chile	2002 50000 2002	<u>500</u>
685	SPN-977 SPN-97 : SPN-1921 SPN-19 : ;	-24.073 27 -24.477 021	C-14 C-14 C-14	-70.2056 quartz -69.4086 quartz	65 210260 02 331590	977 42600 1921 19490	std ; std ;	3 SPN-97 2 SPN-19	2.65 27 2.65 221	0.977 true_t 0.997 true_t	O Chile O Chile	2002 50000 2002 50000	500 : 500
	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-3 SPN-3 SPN-3	-24.073 -24.477 -21 3-68.801	C-14 C-14 4333	-70.2056 quartz -69.4086 quartz 3098	65 210260 02 331590 std	977 42600 1921 19490 2.5	std; std;	3 SPN-97 2 SPN-19 0.997	2.65 27 2.65 221	0.977 true_t 0.997 true_t	0 Chile	2002 50000 2002	500 : 500
685 690	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz	-24.073 77 -24.477 221 3-68.801 571490	13 C-14 225 C-14 4333 19260	-70.2056 quartz -69.4086 quartz 3098	55 210260 02 331590 std SPN-3	977 42600 1921 19490 2.5 true t	std; std; 2.65 Chile	3 SPN-97 2 SPN-19 0.997 50000	2.65 2.65 221 0 500	0.977 true_t 0.997 true_t 2002	Chile Chile Chile ;	2002 50000 2002 50000 SPN-3	500 : 500 C-14
	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542	-24.073 77 -24.477 221 3-68.801 571490 4-68.709	C-14 C-14 C-14 4333 19260 27	-70.2056 quartz -69.4086 quartz 3098 ; 3689	55 210260 02 331590 std SPN-3 std	977 42600 1921 19490 2.5 true t 4	std; std; 2.65 Chile 2.65	3 SPN-97 2 SPN-19 0.997 50000 0.997	2.65 2.65 221 0 500 0	0.977 true_t 0.997 true_t 2002 2002	O Chile O Chile	2002 50000 2002 50000	500 : 500 C-14
	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz	-24.073 77 -24.477 221 3-68.801 571490 4-68.709 928560	C-14 C-14 C-14 4333 19260 27 16330	-70.2056 quartz -69.4086 quartz 3098 ; 3689	55 210260 02 331590 std SPN-3 std SPN-7D	977 42600 1921 19490 2.5 true t 4	std; std; 2.65 Chile 2.65 Chile	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000	2.65 2.65 221 0 500 0 500	0.977 true_t 0.997 true_t 2002 ;	Chile Chile Chile ;	2002 50000 2002 50000 SPN-3 SPN-7I	500 500 C-14 C-14
	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c	-24.073 77 -24.477 921 3-68.801 571490 4-68.709 928560 -24.565	C-14 C-14 C-14 4333 19260 227 16330 42	-70.2056 quartz -69.4086 quartz 3098 ; 3689 ; -68.634	55 210260 02 331590 std SPN-3 std SPN-7D	977 42600 1921 19490 2.5 true t 4 0 true t 4035	std; std; 2.65 Chile 2.65 Chile std	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5	2.65 2.65 221 0 500 0 500 2.7	0.977 true_t 0.997 true t 2002 2002 0.997	Chile Chile Chile ; 0	2002 50000 2002 50000 SPN-3 SPN-7I 2002	500 500 C-14 C-14
690	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz	-24.073 77 -24.477 921 3-68.801 571490 4-68.709 928560 -24.565	C-14 C-14 C-14 4333 19260 227 16330 42	-70.2056 quartz -69.4086 quartz 3098 ; 3689 ; -68.634	55 210260 02 331590 std SPN-3 std SPN-7D	977 42600 1921 19490 2.5 true t 4 0 true t 4035	std; std; 2.65 Chile 2.65 Chile std	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5	2.65 2.65 221 0 500 0 500 2.7	0.977 true_t 0.997 true_t 2002 ;	Chile Chile Chile ; 0	2002 50000 2002 50000 SPN-3 SPN-7I	500 500 C-14 C-14
	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c SPN-11 ;	24.073 77 -24.477 221 3-68.801 571490 4-68.709 928560 -24.565 c	25 C-14 4333 19260 27 16330 42 C-14	-70.2056 quartz -69.4086 quartz 3098 : 3689 : -68.634 quartz	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240	977 42600 1921 19490 2.5 true t 4 0 true t 4035 51810	std; std; 2.65 Chile 2.65 Chile std;;	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11	2.65 2.65 221 0 500 0 500 2.7 c	0.977 true_t 0.997 true t 2002 2002 0.997 true_t	O Chile Chile ; ; O Chile	2002 50000 2002 50000 SPN-3 SPN-7I 2002	500 500 C-14 D C-14 500
690	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c SPN-11c SPN-11 SPN-11 SPN-11 SPN-11 SPN-11	-24.073 77 -24.477 021 3-68.801 571490 4-68.709 928560 -24.565 c	25 C-14 4333 19260 27 16330 42 C-14 -70.86	-70.2056 quartz -69.4086 quartz 3098 : 3689 : -68.634 quartz	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240	977 42600 1921 19490 2.5 true t 4 0 true t 4035	std; std; 2.65 Chile 2.65 Chile std;	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11	2.65 2.65 2.1 0 500 0 500 2.7 c	0.977 true_t 0.997 true t 2002 2002 0.997 true_t	O Chile Chile Chile Chile Chile 1998	2002 50000 2002 50000 SPN-3 SPN-7I 2002 50000	500 : 500 C-14 D C-14 : 500 98-
690	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c SPN-11c SPN-11c SPN-11c	-24.073 77 -24.477 021 3-68.801 571490 4-68.709 928560 -24.565 c	25 C-14 4333 19260 27 16330 42 C-14	-70.2056 quartz -69.4086 quartz 3098 : 3689 : -68.634 quartz	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240	977 42600 1921 19490 2.5 true t 4 0 true t 4035 51810	std; std; 2.65 Chile 2.65 Chile std;	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11	2.65 2.65 2.1 0 500 0 500 2.7 c	0.977 true_t 0.997 true t 2002 2002 0.997 true_t	O Chile Chile ; ; O Chile	2002 50000 2002 50000 SPN-3 SPN-7I 2002 50000	500 500 C-14 D C-14 500
690	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c	-24.073 77 -24.477 021 3-68.801 571490 4-68.709 928560 -24.565 c	25 C-14 4333 19260 27 16330 42 C-14 -70.86 quartz	-70.2050 quartz -69.4080 quartz 3098 ; 3689 ; -68.634 quartz 68.13 183030	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240 225 8420	977 42600 1921 19490 2.5 true t 4 0 true t 4035 51810 std ;	std; std; 2.65 Chile 2.65 Chile std; 3 98-PCM	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11 2.7 4-010-SR	2.65 77 2.65 221 0 500 0 500 2.7 c	0.977 true_t 0.997 true t 2002 : 2002 : 0.997 true_t 0 true_t	O Chile Chile Chile Chile Chile 1998	2002 50000 2002 50000 SPN-3 SPN-7I 2002 50000	500 : 500 C-14 D C-14 : 500 98- 50000
690 695	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c	-24.073 77 -24.477 021 3-68.801 571490 4-68.709 928560 -24.565 c	13 C-14 225 C-14 4333 19260 227 16330 442 C-14 -70.86 quartz 160.8	-70.2050 quartz -69.4080 quartz 3098 ; 3689 ; -68.634 quartz 68.13 183030	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240 225 8420 std	977 42600 1921 19490 2.5 true t 4 0 true t 4035 51810 std ;	std; std; 2.65 Chile 2.65 Chile std; 3 98-PCM	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11 2.7 4-010-SR	2.65 77 2.65 221 0 500 0 500 2.7 c	0.977 true_t 0.997 true t 2002 2002 0.997 true_t 0 true_t	O Chile Chile Chile Chile Chile Antarct Chile	2002 50000 2002 50000 SPN-3 SPN-7I 2002 50000 ; ica	500 : 500 C-14 D C-14 : 500 98- 50000
690	SPN-977 SPN-97 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c SPN-11c SPN-11c SPN-11c SPN-11c SPN-11c SPN-11c SPN-11c SPN-11c C-14	-24.073 77 -24.477 221 3-68.801 571490 4-68.709 928560 -24.565 c RDK K C-14 : -77.75 quartz	13 C-14 25 C-14 4333 19260 27 16330 42 C-14 -70.86 quartz 160.8 968970	-70.2050 quartz -69.4080 quartz 3098 ; 3689 ; -68.634 quartz 68.13 183030 2160 15770	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240 225 8420 std	977 42600 1921 19490 2.5 true t 4 0 true t 4035 51810 std ;	std; std; 2.65 Chile 2.65 Chile std; 3 98-PCM	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11 2.7 4-010-SR	2.65 77 2.65 221 0 500 0 500 2.7 c	0.977 true_t 0.997 true t 2002 : 2002 : 0.997 true_t 0 true_t	O Chile Chile Chile Chile Chile Chile Antarct 50000	2002 50000 2002 50000 SPN-3 SPN-7I 2002 50000	500 : 500 C-14 D C-14 : 500 98- 50000 JVP :
690 695	SPN-977 SPN-97 SPN-1921 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c SPN-11c SPN-11c SPN-11c SPN-11c SPN-11c SPN-11d SPN-1d SPN-1d	24.073 27 -24.477 21 3-68.801 571490 4-68.709 928560 -24.565 c RDK K C-14 : -77.75 quartz	C-14 25 C-14 4333 19260 27 16330 42 C-14 -70.86 quartz 160.8 968970 -70.82	-70.2050 quartz -69.4080 quartz 3098 ; 3689 ; -68.634 quartz 68.13 183030 2160 15770 68.17	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240 225 8420 std :	977 42600 1921 19490 2.5 true t 4 0 true t 4035 51810 std ; 5 WBC-U std	std; std; 2.65 Chile 2.65 Chile std; 3 98-PCM 2.5 TVP 3	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11 2.7 4-010-SR 1 true t 2.8	2.65 77 2.65 221 0 500 0 500 2.7 c	0.977 true_t 0.997 true t 2002 2002 0.997 true_t 0 true_t 1999 ica 0	0 Chile 0 Chile ; ; 0 Chile 1998 Antarct 50000 1998	2002 50000 2002 50000 SPN-3 SPN-7I 2002 50000 ; iica WBC-U 500	500 : 500 C-14 D C-14 : 500 98- 50000 DVP : 98-
690 695	SPN-977 SPN-97 SPN-1921 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c SPN-11c SPN-11 SPN-11 SPN-11 SPN-10-SPN-11 SPN-11 S	24.073 27 -24.477 21 3-68.801 571490 4-68.709 928560 -24.565 c RDK X C-14 ; -77.75 quartz VLK X C-14	13 C-14 25 C-14 4333 19260 27 16330 42 C-14 -70.86 quartz 160.8 968970	-70.2050 quartz -69.4080 quartz 3098 ; 3689 ; -68.634 quartz 68.13 183030 2160 15770	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240 225 8420 std :	977 42600 1921 19490 2.5 true t 4 0 true t 4035 51810 std ;	std; std; 2.65 Chile 2.65 Chile std; 3 98-PCM 2.5 TVP 3	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11 2.7 4-010-SR	2.65 77 2.65 221 0 500 0 500 2.7 c	0.977 true_t 0.997 true t 2002 : 2002 : 0.997 true_t 0 true_t	O Chile Chile Chile Chile Chile Chile Antarct 50000	2002 50000 2002 50000 SPN-3 SPN-7I 2002 50000 ; iica WBC-U 500	500 : 500 C-14 D C-14 : 500 98- 50000 JVP :
690 695	SPN-977 SPN-97 SPN-1921 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-11 quartz SPN-7D -24.542 quartz SPN-11c SPN-11 SPN-11 SPN-11 SPN-11 SPN-10-SPN-11 SPCM-010-SRDM 500 WBC-UVP C-14 98-PCM-002-BV PCM-002-BV 500	24.073 27 -24.477 21 3-68.801 571490 4-68.709 928560 -24.565 c RDK CC-14 ; -77.75 quartz VLK CC-14 ;	25 C-14 4333 19260 27 16330 42 C-14 -70.86 quartz 160.8 968970 -70.82 quartz	-70.2056 quartz -69.4086 quartz 3098 ; 3689 ; -68.634 quartz 68.13 183030 2160 15770 68.17 160050	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240 225 8420 std ; 100 12860	977 42600 1921 19490 2.5 true t 4 0 true t 4035 51810 std ; 5 WBC-U std ;	std ; std ; 2.65 Chile 2.65 Chile std ; 3 98-PCM 2.5 UVP 3 98-PCM	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11 2.7 4-010-SR 1 true t 2.8 4-002-BV	2.65 7 2.65 921 0 500 0 500 2.7 c 1 RDK 0 Antarct 1 //LK	0.977 true_t 0.997 true t 2002 : 2002 : 0.997 true_t 0 true_t 1999 ica 0 true_t	Chile Chile Chile Chile Chile Chile Substitute of the control of the chile of	2002 50000 2002 50000 SPN-3 SPN-7I 2002 50000 ; iica WBC-U 500 ;	500 .: 500 C-14 D C-14 .: 500 98-50000 JVP .: 98-50000
690 695	SPN-977 SPN-97 SPN-1921 SPN-1921 SPN-19 SPN-19 SPN-19 SPN-3 -24.311 quartz SPN-7D -24.542 quartz SPN-11c SPN-11c SPN-11 SPN-11 SPN-11 SPN-10-SPN-11 SPN-11 S	24.073 27 -24.477 21 3-68.801 571490 4-68.709 928560 -24.565 c RDK X C-14 ; -77.75 quartz VLK X C-14	C-14 25 C-14 4333 19260 27 16330 42 C-14 -70.86 quartz 160.8 968970 -70.82	-70.2050 quartz -69.4080 quartz 3098 ; 3689 ; -68.634 quartz 68.13 183030 2160 15770 68.17 160050	55 210260 02 331590 std SPN-3 std SPN-7D 15 983240 225 8420 std :	977 42600 1921 19490 2.5 true t 4 0 true t 4035 51810 std ; 5 WBC-U std	std ; std ; 2.65 Chile 2.65 Chile std ; 3 98-PCM 2.5 IVP 3 98-PCM 2.5	3 SPN-97 2 SPN-19 0.997 50000 0.997 50000 2.5 SPN-11 2.7 4-010-SR 1 true t 2.8	2.65 77 2.65 221 0 500 0 500 2.7 c	0.977 true_t 0.997 true t 2002 : 2002 : 0.997 true_t 0 true_t 1999 ica 0 true t	0 Chile 0 Chile ; ; 0 Chile 1998 Antarct 50000 1998	2002 50000 2002 50000 SPN-3 SPN-7I 2002 50000 ; iica WBC-U 500	500 .: 500 C-14 D C-14 .: 500 98-50000 JVP .: 98-50000

98-PCM-105-MNZ	-73.44	61.9	2538	std	3	2.7	1	0	1998	•	98-
PCM-105-MNZ C-14	quartz	117793	019490	;	98-PC	M-105-M	INZ	true t	Antarc	tica	50000
	_										
98-PCM-067-MNZ	-73.39	61.72	2137	std	3	2.7	1	0	1998	;	98-
PCM-067-MNZ C-14	quartz	103801	020640	;	98-PC	M-067-M	INZ	true t	Antarc	tica	50000
	_										
CRONUS-A -77.883	02	160.943	308	1666	std	4	2.1	0.999	0	2004	;
CRONUS-A	C-14	quartz	713510	13360	;	CRON	US-A	true t	Antarc	tica	50000
		_									

Table S2: Predicted modern *in situ* ¹⁴C spallogenic production rates (atoms g⁻¹ y⁻¹) at SLHL from neutrons and protons in minerals and rock types considered, both theoretical (P_{CDpred}) and normalized to calibrated production in quartz ($P_{CD,GD}$) using the geocentric dipolar R_{CD} record of Lifton (2016).

Mineral	Neutron P _{CDpred}	Proton P _{CDpred}	Total P _{CDpred}	$P_{CD,GD}$	$\%$ $Diff$ $P_{CD,GD}$ $vs.$ P_{Qcal}
	at $g^{-1} y^{-1}$	at $g^{-1} y^{-1}$	at $g^{-1}y^{-1}$	$at g^{-1} y^{-1}$	
Quartz	15.37	0.47	15.84	13.71	0.0
Albite	15.49	0.48	15.97	13.82	0.8
$Albite^{1}$	14.95	0.48	15.43	13.35	-2.6
Anorthite	13.43	0.42	13.85	11.98	-12.6
Orthoclase	13.20	0.39	13.60	11.77	-14.2
Forsterite	13.67	0.46	14.12	12.22	-10.9
Fayalite	9.01	0.27	9.28	8.03	-41.4
Wollastonite	11.85	0.36	12.21	10.57	-22.9
Augite	12.00	0.37	12.38	10.71	-21.9
Ferrosilite	10.46	0.32	10.78	9.33	-32.0
Enstatite	14.18	0.46	14.64	12.67	-7.6
Calcite	13.55	0.38	13.94	12.06	-12.0
Dolomite	14.96	0.44	15.40	13.33	-2.8
Rock					
Ultramafic	13.11	0.43	13.54	11.69	-14.5
Basalt	13.72	0.43	14.15	12.22	-10.7
Hi-Ca Granite	14.30	0.44	14.75	12.73	-6.9
Low-Ca Granite	14.52	0.45	14.97	12.93	-5.5
Granodiorite	14.27	0.44	14.71	12.70	-7.1

 $^{^{1}}$ Production calculated using the spliced TENDL-2019 and JENDL/HE-2007 proton and neutron excitation functions (Na_{TJ} in text). All other Na production rates use JENDL/HE-2007 exclusively.