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The manuscript by Fox et al. highlights the impact of uncertainty on time-temperature (t–T ) inversions with
respect to the widely used (U–Th)/He kinetic model that describes radiation damage effects on 4He diffusion in zircon
(ZRDAAM; Guenthner et al., 2013). The focus on diffusion kinetic uncertainty is timely and commendable—hopefully
stimulating further work to understand foundational aspects of zircon thermochronometry. A similar conclusion has
been discussed for nearly a decade in the published literature regarding kinetic model calibration and uncertainty
(e.g., Powell et al., 2016; Anderson et al., 2017; Johnson et al., 2017; Mackintosh et al., 2017; McDannell et al., 2019;
Guenthner, 2021), but to date, few attempts have been made to formally account for uncertainties directly in the
most commonly used thermal history modeling programs, nor have many more comprehensive laboratory diffusion
experiments been undertaken to better understand how radiation damage affects diffusivity for a broader suite of
natural zircons (e.g., Ginster et al., 2019). Kinetic uncertainties extend to the apatite (U–Th)/He system as well (e.g.,
Flowers et al., 2009; Gautheron et al., 2009; Fox and Shuster, 2014; Recanati et al., 2017; Willett et al., 2017; Guo et
al., 2021). Thus, (U–Th)/He kinetic uncertainty has been a well-known problem that perhaps has not been addressed
more decisively because the models have been considered good enough for most geologic applications.

1 Kinetic model uncertainty

Estimates of the effects of kinetic uncertainty for the (U–Th)/He system are rarely, if ever performed. Empirically
derived results suggest α-damage kinetics can be explained to first order by general characteristics of fission-track
annealing (Guenthner et al., 2013, Ketcham et al., 2013), but there are differences in detail and gaps in our
understanding remain (Ginster et al., 2019; Guenthner, 2021). Thus the ZRDAAM kinetic model recalibration
presented in the Fox et al. preprint is also by definition imperfect. So it becomes a question of what level of
kinetic model uncertainty are we willing to live with and when does it cause significant t–T inversion inaccuracy?
This is probably a challenge relevant to all timescales but it may be more important for certain geologic scenarios
(e.g., Guenthner, 2021) and becomes especially difficult to quantify in deep time—since geological benchmarks are
scarce and laboratory kinetic extrapolations become murky (Ketcham, 2019). Regardless of personal bias, seemingly
casting “thermochronometric uncertainty” as only a concern for resolving the origin of the Great Unconformity is
inappropriately narrow∗.

2 Parameter correlations

The authors raise important points about parameter correlations and how different kinetics may change model
results due to differences in damage annealing. Correlations between ZRDAAM diffusion kinetic parameters such
as activation energy (Ea) and frequency factor (D0) are important for assessing model accuracy and addressing
uncertainties—yet extrapolations between theoretical minimally damaged and highly damaged amorphous zircons are
still based on real, but limited, laboratory data. So while it is a useful exercise, it is nonetheless inhibited by the data
grounding the established radiation damage relationship. Of course, Ea and D0 are dependent on time-temperature
conditions. Time and temperature are also correlated and any change in temperature at one time can be compensated

∗A detail worth noting is that Fox et al. stated (lines 91–92): “...the uncertainties in the radiation damage model make it challenging

to accurately infer the timing and magnitude of unconformities in the deep past”. Thermochronological methods lack the temperature

sensitivity to determine the final erosional event that results in an unconformity, and the erosional surface itself is inherently a feature

terminated and preserved by sedimentation. McDannell et al. (2022a) were not ‘dating the unconformity’ but were instead placing limits

on the timing, magnitude, and most importantly the spatial pattern of widespread rock cooling and exhumation that led to formation of

the Great Unconformity in North America.
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by an opposing temperature change at another time (e.g., Willett, 1997). Isolating kinetic uncertainty in models is
important, however, ignoring other factors that may affect t–T inversions makes it hard to evaluate the absolute
effects and practicality of such measures.

• Does reduction of the uncertainty of the diffusion data for the critically important damaged N17 zircon (lines
189–192) drive the ‘excellent’ MCMC recovery of Ea and D0 (their fig. 2), and does this in any way have
an effect on the poorer recovery (with respect to the canonical values) of the parameters for the undamaged
crystal?

• Can the Fox et al. ZRDAAM Ea and D0 calibration values simply be resampled using MCMC in a Bayesian
t–T inversion, and if so, how would that affect thermal history recovery?

3 The effects of additional constraints on inversions results?

Fox et al. presented QTQt inversions (Gallagher, 2012) without imposed constraints (latter commonly represented
as t–T boxes through which candidate histories must pass). To be clear, the so-called “unconstrained” models in
McDannell et al. (2022a) were explicitly shown to assess the t–T sensitivity of the data during recursive modelling
and comparison of alternate models with t–T boxes. Gallagher (2021) most recently discussed this QTQt modelling
strategy in some detail. Other commentary has improperly dismissed that class of models as ‘invalid’ due to
misunderstandings about their meaning and purpose (Flowers et al., 2022). However, such exercises prove useful and
informative for validation of near-endmember models against the geologic record, rather than just simply forcing the
data to conform to an uncertain, presupposed geologic model (see McDannell et al., 2022b). Any models presented in
the former way should be viewed within the bounds of the kinetic assumptions (that are held fixed between inversions).
Evaluating different inversion parameterizations with other geological constraints and/or associated uncertainties are
valuable and motivationally transparent. Unconstrained inversions without many t–T boxes are undoubtedly affected
by uncertainty and parameter correlations (as are those with boxes). Yet, systematic uncertainties may pose a more
dubious problem for inversions that enforce many optimistically certain t–T constraint boxes based on interpretive
assumptions.

• How do known physical geologic constraints affect the Fox et al. QTQt inversions? It is understood that
examining kinetic parameter uncertainty in isolation was a goal of the paper, however, the effects of that
uncertainty on the thermal histories would likely change with imposed constraints—this should be investigated
and compared to the baseline case.

• Do geologic constraints imposed in a thermal history inversion impact the covariance/correlations between
(kinetic) parameters?

• How do the observed vs. predicted zircon (U–Th)/He (ZHe) dates compare for the different QTQt inversions
(i.e., Gallagher, 2016)?

• Does inverting multiple thermochronometers (as was done in the McDannell et al. 2022a MRVT models) reduce
model non-uniqueness and change t–T resolution?

4 Posterior probabilities

It is unclear how much the Fox et al. thermal histories actually change in detail (their fig. 5), and if such changes
quantitatively impact interpretations for parts of t–T space where the thermochronometer data are most sensitive.
For example, their QTQt models mostly show differences in the pre-1000 Ma thermal history for the Minnesota
River Valley Terranes (MRVT; McDannell et al., 2022a), which is not well constrained by data due to Neoproterozoic
(and later) thermal resetting. However, by our account, the late Neoproterozoic cooling and episodic Phanerozoic
reheating history is quite similar between the models implementing the original ZRDAAM kinetics and recalibrated
high/low amorphous frequency factor kinetics. Fox et al. asserted that (line 251): “Results show that while the general
trend of the cooling is very similar, the posterior probabilities are all quite different (figure 5).” The relative posterior
probabilities seem comparable across all models except for the extremely linear regions of high probability (see below).
The first-order differences in the recovered history styles, or at least the posterior probabilities of the accepted paths
compared to the inversions in McDannell et al. (2022a) [that were run for much longer in QTQt], indicate that there
may be procedural reasons for these discrepancies.

• Could the posterior probability change with increased MCMC sampling?
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• Could the number of model iterations required for the posterior distribution to become stationary change
depending on the kinetics?

4.1 MCMC burn-in and ZHe uncertainties

In all three of the Fox et al. QTQt models, the regions of t–T space with the highest relative probabilities are
very “linear”—a possible cause for this could be that the burn-in for the inversions was too short (and/or restarted
QTQt inversions began with a poor model). We discovered analogous posterior probability behavior related to
burn-in in preliminary QTQt tests for the MRVT samples (McDannell et al. 2022a; published models ≥ 500,000
burn-in/post-burn-in iterations). We ran QTQt model tests with up to 1,500,000 burn-in iterations and 1,000,000 post
burn-in iterations—the accepted paths typically gained structure with longer run times. Much longer burn-in periods
are required for deep-time inversions spanning billions of years with large (multi-)thermochronometer datasets.

Another likely reason for the linearity in the regions of high relative posterior probability in the accepted
t–T paths may be that, as far as we can tell, the Fox et al. QTQt models allowed the ZHe age uncertainties to
be resampled up to 1–2× the input age error (K. Gallagher, pers. comm.). Fox et al. used the same the same
Minnesota QTQt input ZHe data file was used in McDannell et al. (2022a). The problem with that approach
is that the Minnesota dates in McDannell et al. (2022a) already underwent a form of Empirical Bayes error
resampling prior to inverse modelling (see fig. S15 in that paper). The internal analytical uncertainties were
used to calculate the ‘external uncertainty’ by creating a Gaussian kernel or normal probability density function
in eU space centered on each uncorrected ZHe date (eU = effective uranium = U+0.238*Th). A 100-ppm eU
kernel was taken to represent the range over which zircon grains with similar eU should have similar ages and the
Empirical uncertainty was estimated by summing the internal and external uncertainties in quadrature (code available:
https://github.com/OpenThermochronology/EmpiricalBayes).

Therefore, Fox et al. allowed the uncertainties on the input data to be much too large, which essentially causes a
loss of apparent complexity in the observed date-eU pattern and allows the data to be easily reproduced—resulting in
more simple t–T paths being accepted (regions of t–T space with high relative probability are linear). For example,
the oldest 770 Ma zircon had an input Empirical Bayes uncertainty of ± 100 Myr but this was allowed to be sampled
up to ± 200 Myr in the Fox et al. inversions. Due to this, we assume that the fits between the observed and predicted
data are poor (i.e., many of the predictions are at the margin of acceptability), but that is unable to be evaluated in
the preprint. A similar discussion in McDannell and Keller (2022) touched on the issue of uncertainty estimation
for apatite (U–Th)/He data and how if uncertainties become too large then all t–T sensitivity is lost (see their Fig.
S1). In QTQt this can result in simple linear histories being accepted more often. Such a model may be interpreted
as geologically meaningful but that may not be appropriate (e.g., Gallagher, 2021). Simple t–T models are merely
due to inadequate sensitivity/resolution, which could be sourced from the kinetics or the chronometer data. These
outcomes are not just limited to Bayesian methods. Other software that utilize pure Monte Carlo search methods
instead rely on many “exploration boxes” to delineate the model space, therefore, loss of sensitivity due to outsized
data errors would probably never be recognized by the modeller. In many cases this would also be a welcome effect
because it would allow more paths to be found more easily with a nondirected MC algorithm—this means that boxes
(based on assumptions) could have more influence on the thermal history results than the (U–Th)/He data.

4.2 Timing of cooling

Fox et al. expressed (lines 96–98): “Using QTQt, we show that different diffusion kinetics can lead to the onset
of cooling for resolved thermal histories from inverse methods varying by hundreds of millions of years.” and lines
(253–254): “In particular, the part of the thermal history that appears well resolved by the data changes from 1000 Ma
to 1500 Ma depending on the choice of radiation damage parameters.” These statements seem based on interpretation
of where the initial timing of higher relative probability begins within the different QTQt models. Considering the
potential limiting circumstances surrounding their date uncertainties being too large (and/or incomplete burn-in?)
this seems a tenuous conclusion. Their interpretation overlooks the consistent Neoproterozoic cooling present in all
of their models. In addition, there is no obvious reason why ‘cooling onset’ would necessarily correlate with high
posterior probability. The time of peak cooling when the first derivative of a cooling curve is maximized is perhaps a
better metric to consider (fig. 1). The apparent differences in resolution in their models is not necessarily because of
the choice of radiation damage parameters. The fact that Neoproterozoic cooling is present in the Fox et al. models
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but low probability suggests that there are possible issues surrounding burn-in or overall poor t–T resolution due to
overestimated ZHe uncertainties.
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Figure 1: Schematic time-temperature plot showing three cooling curves of decreasing cooling rate from high to low temperature. In
thermochronological inversions typically comprising a group of possible solutions, variable rate is a source of uncertainty and cooling onset is
mostly controlled by data sensitivity (i.e., how well the model t–T path resolves some true cooling signal). For example, if the true total cooling
magnitude is 200°C, and the data are only sensitive to temperatures ≤ 100°C, then the apparent cooling onset with be temporally biased by the
difference in time between the true cooling onset and data sensitivity onset, proportional to the slope of the cooling curve. Thus in this scenario,
cooling onset would only be accurate for near instantaneous cooling and would be highly inaccurate for situations involving slow cooling—more
similar to that expected in a cratonic setting like Minnesota. Moreover, if chronometer data are low sensitivity then direct bias can be introduced
by t–T constraint box arrangement portraying a seemingly well-resolved but inaccurate onset of cooling. Refer to McDannell and Keller (2022) for
further discussion. It is our opinion that cooling onset is difficult to interpret and it is arguably less important than the time of ‘peak cooling’ for
an overall cooling signature—when the first derivative of the cooling curve is maximized. The time of peak cooling is the same for all cooling
curves shown here, as is the time of the true cooling event, yet with dramatically different times of “cooling onset”.

4.3 Continuous spread of ages as a function of eU

Fox et al. also discussed an aspect of the measured ZHe data that directly plays into thermal history recovery—the
impact of the spread in zircon eU—and if the spread is narrow, sensitivity is limited and modelled histories are more
uncertain (their fig. 6). This was also reviewed broadly in McDannell and Keller (2022); see their supplementary
material. Fox et al. stated “Many ages need to be sampled in order to accurately capture the spread in ages over
a specific [eU] bin” and also said (line 295): “The need to accurately capture spread are especially important if ages
need to be averaged within [eU] bins to find acceptable paths as the uncertainty for the mean age is determined by the
standard deviation.” We would argue that their findings actually make a clear and obvious argument against binning
ages by eU and averaging them in the first place. The need to capture the spread in ages supports collection of more
ZHe data, not less by arbitrary means. The practice of eU binning and averaging is increasingly common but it is an
ad hoc attempt to circumvent other statistical limitations (see McDannell et al., 2022b). Therefore, if eU binning is
performed, the assertion that thermochronometer data are inherently “low resolution” is an oversimplification and
without merit—since a natural outcome of averaging is information loss. All thermochronometers have fundamental
limits on t–T resolution, which is the primary reason to apply multiple thermochronometers in deep time (McDannell
et al., 2019; McDannell and Flowers, 2020).
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(a) Canonical ZRDAAM Minnesota inversion without geologic constraints.
250,000 burn-in iterations and 250,000 post-burn-in iterations.

(b) Canonical ZRDAAM Minnesota inversion without geologic constraints.
350,000 burn-in iterations and 250,000 post-burn-in iterations.

(c) Canonical ZRDAAM Minnesota inversion with near-surface constraint at 560 ± 80
Ma between 0–50°C (black dashed box).

Figure 2: Inversion results for the Minnesota zircon (U–Th)/He data using Thermochron.jl and the canonical ZRDAAM kinetics. Cryogenian
cooling is a consistent signal in all models. This is less clear in panel (a) due to incomplete burn-in; note the similarity with the Fox et al. QTQt
models. Relative probability is proportional to path density, where warmer colors and higher saturation indicate more thermal histories pass
through that region of t–T space (i.e., higher marginal posterior probability). The color scale is the normalized path density (minimum value
of 0 is equal to no paths, and a maximum value of 1 is equal to the upper 95th percentile of path density). Except for panel (b), the Markov
chain was run for 500,000 total iterations with a burn-in of 250,000 iterations. The prior was 400–0°C and 3500–0 Ma with a maximum allowed
heating/cooling rate of 10°C/Myr (time step of 10 Myr). The modern surface temperature was allowed to be 0–10°C and the high-temperature
starting condition was 400–350°C. White bar in each panel represents the Cryogenian Snowball Earth period from 717–635 Ma. QTQt plotting
script is available at: https://github.com/OpenThermochronology/QTQtPlot.
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5 Bayesian MCMC inversion tests

Here we show new models from a thermal history inversion code: Thermochron.jl (Keller et al., 2022),
that utilizes a (transdimensional) Markov chain Monte Carlo algorithm similar to QTQt. The code is publicly
available as a registered Julia package on OSF (https://doi.org/10.17605/osf.io/wq2U5) or Github at https://
github.com/OpenThermochronology. Thermochron.jl currently only inverts the zircon (U–Th)/He system but is
still in development with other thermochronometers being added. The code utilizes a 1-D Crank-Nicholson finite
difference diffusion model and the published Guenthner et al. (2013) ZRDAAM kinetics. We present inversions that
implement the same kinetic model variants presented in the Fox et al. manuscript with changes to the amorphous
frequency factor. We focus on the canonical ZRDAAM and the low amorphous frequency factor model shown in their
figure 5C, since that model exhibited the most apparent differences with respect to their normal ZRDAAM inversion.
Inversions are shown with and without a geologic constraint. The usage of geologic/other information were minimized
to align somewhat with the models presented in the preprint—yet we wanted to determine if the thermal histories are
more consistent overall despite the kinetic model changes. A single Cambrian unconformity was either omitted or
enforced in the model at 560 ± 80 Ma between 0–50°C. Cambrian and Ordovician rocks are present in Minnesota and
the size of the constraint box is set conservatively small in time when compared to the other models shown without
boxes (i.e., those models show cooling to surface temps. over a broader time interval—similar to the model that did
not have a Cambrian constraint discussed in McDannell et al. 2022a).

5.1 Date uncertainty sampling

We allowed date uncertainties to be resampled (i.e., confidence in the derived uncorrected age but not the total
uncertainty on that age), while making the same kinetic model changes as in the Fox et al. paper. They briefly
mention age uncertainty treatment in QTQt (lines 268–281) and in that paragraph: “Either additional uncertainty
can be assigned to the measurements by resampling a scaling factor (> 1) that multiplies the input errors. This
tends to allow the predicted age-[eU] relationship to pass through the observed data+resampled uncertainty. Or,
alternatively, the thermal history can be adjusted to change the predicted age-[eU] relationship to try and ensure that
the predictions fit the data, at least to within the error.” We prefer investigating the data uncertainties because in
general little is known a priori about the total size of the errors associated with ZHe dates—except that the observed
reproducibility of ZHe dates rarely approaches the analytical precision. Known factors such as U-Th zoning, grain
geometry estimation/alpha-ejection correction uncertainty (see Reiners et al., 2017 for summary), and radiation
damage zoning cause excess age dispersion (Anderson et al., 2020). Currently, radiation damage models assume
uniform kinetics. The model misfit between observed and predicted ages cannot be attributed only to the kinetic
model because the kinetic model cannot explain the overdispersion of grains with identical histories and eU. Both
kinetic model uncertainty and a wide range of geological and analytical uncertainties contribute to the total misfit
between model ages and analytical ages. However, dispersion observed for grains of equivalent eU show that much of
the misfit is a result of the latter processes (see Minnesota zircons for an example of this). Resampling the total date
uncertainties can accommodate both kinetic and other unknown or poorly characterized sources of dispersion.

We handled date uncertainties differently than in QTQt or in the McDannell et al. (2022a) inversions (the latter
utilized the ‘scaling factor’ mentioned by Fox et al.—except for the MRVT dataset; see text below). The zircon
(U–Th)/He date uncertainty (AnalyticalSigma) was set to 10% for most grains (50% errors highest eU grains) and
the ModelUncertainty was set to 25 Myr, which is not well known as it depends on annealing/diffusion parameters
and decay constants etc—but it is certainly non-zero. A Simulated Annealing approach (SA; e.g., Kirkpatrick et
al. 1983; van Laarhoven and Aarts, 1987) was used to increase the rate at which the Markov chain explores the
probability space during burn-in, by adding an additional uncertainty term (InitialUncertainty; 35 Myr), which
slowly decays to 0 with a decay constant of λ over the burn-in period†. As a result, SA initially makes it more likely
to accept an unfavorable solution, but then slowly decreases the probability of accepting lower likelihood solutions as

†The AnalyticalSigma was added in quadrature to the AnnealingSigma to yield Sigma, which is defined as the total date uncer-

tainty. Sigma = sqrt(AnalyticalSigma2 + AnnealingSigma2); where, AnnealingSigma = InitialUncertainty * exp(-λ)

+ ModelUncertainty. So for example, the oldest input MRVT uncorrected grain age was 770 ± 77 Ma. The starting uncertainty was ±
97.6 Ma [given as: sqrt((35+25)2 + 772)] that decayed to ± 80.9 Ma [given as: sqrt((35*exp(-10)+25)2 + 772)] by the end of burn-in,

which is similar in initial error magnitude to the Empirical Bayes error resampling approach used in McDannell et al. (2022a) for the

Minnesota example (i.e., oldest grain age input as 770 ± 100 Ma).
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the model space is explored. Since it is necessary to temporarily accept a less favorable solution to escape a local
optimum (and ultimately find the global optimum), accepting less likely solutions early in the inversion perhaps
counterintuitively accelerates convergence by allowing for a more extensive search of the parameter space for the
global optimum. As a result, SA can speed up convergence to the stationary t–T path distribution with a shorter
burn-in. In contrast, in a standard MCMC inversion without SA, low likelihood solutions have an equal probability of
being accepted at any time during the burn-in. Given sufficient burn-in, this also results in a thorough global search
but may require a longer burn-in to achieve convergence on the global optimum and thus stationarity.

This SA approach should not be confused either with the Hierarchical Bayes uncertainty resampling currently
supported by QTQt, or the Empirical Bayes uncertainty resampling (e.g., Malinverno and Briggs, 2004) that can
be applied to ZHe data prior to either QTQt or Thermochron.jl inversions. Hierarchical uncertainty resampling in
QTQt allows independent, random scaling of each date error, which will not necessarily assist in convergence on the
stationary distribution. Hierarchical and Empirical Bayes resampling may also change the posterior distribution if the
date uncertainties are either under- or overestimated. Ideally, Hierarchical and Empirical Bayes resampling both
increase the accuracy of the posterior (i.e., make the stationary distribution better reflect reality). Whereas, SA does
not increase accuracy but it will help find the posterior distribution more quickly and can be combined with forms of
Hierarchical or Empirical Bayes resampling.

(a) Low amorphous frequency factor Minnesota inversion without geologic constraints.

(b) Low amorphous frequency factor Minnesota inversion with near-surface constraint
at 560 ± 80 Ma between 0–50°C (black dashed box).

Figure 3: Inversion results for the Minnesota zircons using Thermochron.jl and the low amorphous frequency factor kinetics provided in the
Fox et al. preprint. The Markov chain was run for 500,000 total iterations with a burn-in of 250,000 iterations. All other models parameters were
the same as those in figure 2. We either omitted or enforced a single unconformity constraint in the model at 560 ± 80 Ma between 0–50°C.
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5.2 Inversion results

Results demonstrate that there are no discernible differences (figs. 2 and 3) for parts of the inverted thermal
histories with greater thermochronological sensitivity using the published ZRDAAM kinetics (figs. 2b and 2c) or the
low amorphous frequency factor kinetics (figs. 3a and 3b). We recovered essentially the same thermal histories for
each kinetic model variant with some expected, but minor, differences in the predicted vs. observed ZHe dates (fig.
4). Thermal histories were accepted that reach surface temperatures in late Precambrian/Cambrian time (figs. 2a
and 3a), but their likelihood is lower because the data lack sensitivity to cooler temperatures, and simpler histories
explain the data nearly as well. That was also a feature found to some degree in the Minnesota thermal history
published in McDannell et al. (2022a; fig. 2C) that disappeared with applied geologic information (see McDannell
et al. 2022a; fig. S1). Inadequate burn-in for the model in figure 2a produced a simple linear (but multimodal)
high probability t–T region that was better resolved with a longer burn-in of 350,000 iterations (fig. 2b). Note that
posterior probability behavior similar to this is present in all of the Fox et al. QTQt inversions. The approximate
Cambrian surface constraint is necessary to moderate overly simplistic linear cooling posterior t–T paths spanning
the late Neoproterozic to early Phanerozoic. The Minnesota inversions shown here are able to generally reproduce
those shown in McDannell et al. (2022a); here excluding apatite (U–Th)/He data.

The Cambrian geologic constraint improves recovery/resolution of the late Neoproterozic-early Paleozoic thermal
history for both kinetic variants (figs. 2c and 3b). The Phanerozoic portion of the model reproduces the Phanerozoic
geologic record for Minnesota (Jirsa et al., 2011). We acknowledge that there are differences in the thermal histories
for the pre-1200 Ma history for the canonical ZRDAAM and the low amorphous frequency factor models. The amount
of Neoproterozoic heating allowed in the low-frequency-factor models is ∼30–40 °C hotter than the conventional
ZRDAAM model, but this varies depending on kinetics, burn-in length, and trade-offs in time and temperature;
compare figure 2b, figure 2c, and figure 3a near 1000–700 Ma. It may be that the low amorphous frequency factor
kinetics produce unrealistically high temperatures required to reset the lowest damage (low-eU) zircons, since the late
Paleoproterozoic was the last time MRVT basement underwent local magmatism and metamorphic temperatures
of ∼300–350°C (e.g., Goldich, 1970; Bauer et al., 2011), although the complex regional geological evolution is still
coming into focus (e.g., Southwick, 2014). The zircons are nonetheless thermally reset, regardless of the differences in
heating magnitude between models. As Fox et al. stated (lines 301–302): “The large uncertainties on the parameters
controlling helium diffusion in zircon and the dramatic impact this has on temperature sensitivity highlights that this is
important to consider.” The models we have shown here exhibit subtle differences in the recovered thermal histories,
but overall they are very similar where the data have t–T sensitivity, which is reinforced when a single approximated
geologic constraint is added.

Cryogenian cooling is consistently present in all of the inversions

While the ZRDAAM kinetic calibration of Guenthner et al. (2013) is not perfect, the conclusions of Fox et al.
may be overstated with respect to the effects of kinetic uncertainties on inverted thermal histories. That is not to say
that more laboratory diffusion experiments on zircon should not be done—they most certainty should be performed.
The authors provide an innovative solution to better incorporate estimates of kinetic model uncertainty into t–T
inversions and this avenue is definitely worth pursuing in ongoing work. The authors may argue that some of the
points addressed herein are outside the scope of their original manuscript, but it is one thing for their paper to
discuss a realistic outlook on the precision and accuracy of kinetic models, and another to discuss those concepts for a
single deep-time example—in our opinion, this results in a misleading framing of the current issues and their broader
applicability. Hopefully this comment will stimulate further conversation on these important topics.

Kind regards,

K. McDannell
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(a) Observed versus model predicted dates with respect to eU for ZRDAAM
inversion without geologic constraint. 250,000 iteration burn-in.

(b) Observed versus model predicted dates with respect to eU for ZRDAAM
inversion without geologic constraint. 350,000 iteration burn-in.

(c) Observed versus model predicted dates with respect to eU for ZRDAAM
inversion with geologic constraint.

(d) Observed versus model predicted dates with respect to eU for low amorphous
frequency factor inversion without geologic constraint.

(e) Observed versus model predicted dates with respect to eU for low amorphous
frequency factor inversion with geologic constraint.

Figure 4: Predicted zircon (U–Th)/He date-eU trends for the Thermochron.jl inversions. Purple points are input uncorrected data shown with
uncertainty (AnalyticalSigma*2; for plotting purposes only). Other colored points are the predicted dates from the posterior distribution of the
accepted t–T paths.
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