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Abstract. Initial radioactive disequilibrium amongst inter-
mediate nuclides of the U decay chains can have a signif-
icant impact on the accuracy of U–Pb ages, especially in
young samples. For samples that can reasonably be assumed
to have attained radioactive equilibrium at the time of anal-5

ysis, a relatively straightforward correction may be applied.
However, in younger materials where this assumption is un-
reasonable, it is necessary to replace the familiar U–Pb age
equations with more complete expressions that account for
growth and decay of intermediate nuclides through time.10

DQPB is software for calculating U–Pb ages while account-
ing for the effects of radioactive disequilibrium among in-
termediate nuclides of the U decay chains. The software is
written in Python and distributed as both a pure Python pack-
age and a stand-alone graphical user interface (GUI) appli-15

cation that integrates with standard Microsoft Excel spread-
sheets. The software implements disequilibrium U–Pb equa-
tions to compute ages using various approaches, including
concordia intercept ages on a Tera–Wasserburg diagram,
U–Pb isochron ages, Pb∗/U ages based on single aliquots,20

and 207Pb-corrected ages. While these age-calculation ap-
proaches are tailored toward young samples that cannot rea-
sonably be assumed to have attained radioactive equilibrium
at the time of analysis, they may also be applied to older
materials where disequilibrium is no longer analytically re-25

solvable. The software allows users to implement a variety
of regression algorithms based on both classical and robust
statistical approaches, compute weighted average ages and
construct customisable, publication-ready plots of U–Pb age
data. The regression and weighted average algorithms imple-30

mented in DQPB may also be applicable to other (i.e. non-U–
Pb) geochronological datasets.

1 Introduction

With the exception of major uranium-bearing phases, rocks
and minerals younger than a few million years were once 35

considered virtually inaccessible to U–Pb methods owing to
difficulties inherent in measuring the small quantities of ra-
diogenic Pb generated over such short time periods (Getty
and DePaolo, 1995). However, analytical advances over the
past two decades, including improvements in pre-screening 40

(Rasbury and Cole, 2009), sample preparation (e.g. Engel
et al., 2020) and mass spectrometry (e.g. Getty and De-
Paolo, 1995; Woodhead et al., 2006; Sakata et al., 2014),
have opened up the possibility of accurately and precisely
dating materials as young as the Late Pleistocene age. These 45

methodologies are now widely applied to radiogenic Pb-
rich minerals including zircon (e.g. Paquette et al., 2019), as
well as common Pb-rich materials such as carbonates (e.g.
Richards et al., 1998), using both bulk and laser ablation
(LA) or secondary ion mass spectrometry (SIMS) sampling 50

techniques. In addition to analytical challenges in applying
the U–Pb geochronometer to such young materials, another
major issue lies in the need to accurately account for the ef-
fects of initial radioactive disequilibrium among intermediate
nuclides of the U-series decay chains. For older samples, the 55

effects of initial disequilibrium are often small relative to the
precision of individual age determinations, but in younger
materials, failure to correct for these effects can lead to large
inaccuracies in final calculated ages (Ludwig, 1977; Schärer,
1984). 60

Secondary carbonates, such as speleothems, are well-
known to be deposited out of radioactive equilibrium with
respect to 234U/238U, reflecting the 234U/238U ratios in the
parent waters from which they form (Osmond and Cowart,
1992). Moreover, the insolubility of Th and Pa in these par- 65
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ent waters leads to their near exclusion from newly precipi-
tated carbonate, causing an additional component of disequi-
librium (Richards et al., 1998). On the other hand, igneous
minerals formed in high-temperature environments tend to be
crystallised at, or very close to, radioactive equilibrium with5

respect to 234U/238U, but out of equilibrium with respect
to Th and Pa (Schoene, 2014). For example, minerals such
as zircon tend to crystalise with 230Th/238U ratios below ra-
dioactive equilibrium and initial 231Pa/235U ratios in excess
of radioactive equilibrium (Schmitt, 2007), whereas Th-rich10

phases, such as monazite, tend to crystalise with 230Th/238U
ratios in excess of radioactive equilibrium (Schärer, 1984).
Over time, any initial excess or deficiency of intermediate
nuclides gradually decreases as the U decay chains evolve to-
ward radioactive equilibrium, eventually reaching a point af-15

ter about 6–8 half-lives where disequilibrium effects are too
small to be measured using current analytical techniques. For
carbonates, this is typically 1.5 to 2 Ma for both 234U/238U
and 230Th/238U, since evolution of 230Th toward equilibrium
is constrained to follow that of the preceding nuclide 234U.20

For high-temperature minerals formed in equilibrium with
respect to 234U/238U but out of equilibrium with respect to
230Th/238U, this age limit is typically closer to ∼ 0.5 Ma.

There are two main approaches employed to account for
the effects of radioactive disequilibrium on U–Pb ages. The25

first of these is applicable to samples that can reasonably be
assumed to have attained radioactive equilibrium at the time
of analysis. This involves correcting Pb∗/U isotope ratios
(where * denotes radiogenic Pb formed in situ by decay of U)
for any excess or deficiency of intermediate nuclides rela-30

tive to their radioactive equilibrium values (Schärer, 1984;
Parrish, 1990). In a closed system, each daughter nuclide
in initial excess or deficiency of equilibrium will cause an
equivalent over or under abundance of Pb∗ once radioactive
equilibrium is established (Mattinson, 1973). Therefore, it is35

possible to apply a relatively straightforward correction by
adding or subtracting this excess or deficit of Pb∗, provided
the initial disequilibrium state is known or can be reliably
estimated. Ages can then be computed using the regular U–
Pb equations that disregard in-growth and decay of interme-40

diate nuclides.
However, for younger samples, which cannot be assumed

to be in a state of radioactive equilibrium at the time of anal-
ysis, it is necessary to replace the familiar U–Pb age equa-
tions with more complete expressions that can account for45

the growth and decay of intermediate nuclides through time.
Equations of this form were first presented for the U–Pb sys-
tem by Ludwig (1977) based on Bateman’s (1910) general
solution to differential equations that describes time evo-
lution of radionuclides for an arbitrary linear decay chain.50

Later, Wendt and Carl (1985) presented an alternative version
of these equations that includes some simplifying assump-
tions, whilst Guillong et al. (2014) provide a similar equa-
tion that accounts for disequilibrium in a single intermediate

nuclide only1. These “disequilibrium U–Pb” equations are 55

general and can also be applied to older samples that have,
in a practical sense, attained radioactive equilibrium at the
time of analysis. On the other hand, inappropriate use of the
Pb∗-correction approach described above can lead to large
over- or under-correction, and thus inaccuracy in calculated 60

ages, over timescales similar to those in which analytically
resolvable disequilibrium persists (Fig. 1).

As these more complete disequilibrium U–Pb equations
are rather cumbersome to implement compared to the con-
ventional U–Pb age equations, they are typically handled us- 65

ing specialised software or in-house computer code. Vari-
ous approaches have been devised to achieve this. Isoplot
(Ludwig, 2012) may still be the most widely used software in
geochronology and contains built-in functions based on Lud-
wig (1977) that can be used to calculate disequilibrium U– 70

Pb ages as part of a spreadsheet-based approach. However,
this has a number of limitations. Firstly, Isoplot, which
is distributed as an Excel add-in, is no longer being main-
tained and is incompatible with recent versions of Excel. Sec-
ondly, the Isoplot licensing status is ambiguous, and so it 75

is unclear if the source code can be modified or extended, for
example, to produce plots of disequilibrium U–Pb age data.
Thirdly, numerical computing and plotting within the Excel
environment is limited. More recently, other software pack-
ages for handling disequilibrium U–Pb age data have been 80

developed (Engel et al., 2019), or are in the developmental
stage (additions to the IsoplotR package of Vermeesch,
2018). However, this former solution runs on proprietary
software that is not widely used in geochronology, and the
latter is not yet documented within the peer-review literature 85

and does not currently propagate disequilibrium correction
uncertainties.

Here we introduce DQPB, a software package for calcu-
lating disequilibrium U–Pb ages. DQPB implements the dis-
equilibrium U–Pb equations outlined below to compute ages 90

using approaches that are suited to various young sample
types. The following sections outline software functionality
and discuss approaches that are implemented for age calcu-
lation, error propagation, linear regression, weighted average
calculations and plotting. 95

2 Software overview

DQPB is written in Python, an interpreted, high-level,
general-purpose programming language that is rapidly gain-
ing popularity within the geosciences. DQPB is available as
both a regular Python package and a stand-alone application 100

that does not require users to have a separate Python distribu-
tion pre-installed (see Sect. 8 for further details). Python of-

1For the 238U–206Pb decay series, the assumption inherent in
this approach that 226Ra remains fixed at equilibrium with 230Th
can lead to inaccuracy in the order of thousands of CE1 years when
[
230Th/226Ra]i is significantly less than or greater than 1.
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Figure 1. Comparison of U–Pb ages calculated using two differ-
ent approaches: (i) ages corrected for disequilibrium assuming ra-
dioactive equilibrium has been established at the time of analy-
sis and (ii) ages calculated using the more accurate disequilibrium
U–Pb equations that account for growth and decay of intermedi-
ate nuclides through time (e.g. Eqs. 1 and 7). Age difference is
given as age calculated via approach (i) (assumed equilibrium at
time of analysis) minus age calculated via approach (ii) (more ac-
curate approach). The top panel (a) shows a comparison of zircon
206Pb/238U ages calculated assuming variousDTh/U values (where
DTh/U denotes the ratio of mineral–melt partition coefficients). The
bottom panel (b) shows a comparison of Tera–Wasserburg concor-
dia intercept ages for carbonate samples assuming various initial
[234U/238U] values (where square brackets denote activity ratios).

fers several advantages as a language for scientific software
development, including its open-source status, well-equipped
libraries of functions and routines for scientific computing,
and relatively easy-to-read syntax (e.g. Oliphant, 2007). Be-
ing a general-purpose language, Python also offers signif-5

icant advantages in developing stand-alone graphical user
interface (GUI) applications when compared to “domain-
specific” scientific languages such as MATLAB and R.
DQPB is built on the core Python scientific computing li-

braries NumPy (Harris et al., 2020), SciPy (Virtanen et al.,10

2020) and Matplotlib (Hunter, 2007). It also takes ad-

vantage of PyQt to provide a modern GUI on macOS and
Windows and xlwings to facilitate integration with Mi-
crosoft Excel. This allows users to select data from an open
Excel spreadsheet, perform calculations via the graphical in- 15

terface and have results (both numeric and figures) output to
the same spreadsheet once computations are complete. In this
way, it emulates the ease of use of the popular Isoplot pro-
gramme (Ludwig, 2012). As is common practice with open-
source software, all Python source code is available for view- 20

ing, download and modification via an online code repository
(see Sect. 8).

3 Disequilibrium U–Pb age calculations

DQPB employs the equations of Ludwig (1977) to calculate
U–Pb ages and plot disequilibrium age data. These equations 25

were initially derived by Ludwig from a form of Bateman’s
(1910) solution that assumes zero initial abundance of all
intermediate daughter nuclides and independently considers
in-growth of Pb∗ from decay of the primordial parent and
each preceding intermediate nuclide in the decay series (see 30

also Ivanovich and Harmon, 1992; Neymark et al., 2000).
These separate components are then summed, or “super-
posed” (Bateman, 1910), to obtain the total quantity of Pb∗

as a function of age, t .
Following this approach for the 238U decay chain, and 35

ignoring intermediate nuclides with a half-life less than or
equal to that of 210Pb (i.e. ∼ 22 a), results in an equation of
the following form:

F = F1+F2+F3+F4, (1)

where F = 206Pb∗/238U, and each term represents in-growth 40

from the primordial parent (subscript 1) and initial abun-
dances of each preceding intermediate daughter nuclide in
the decay chain (subscripts > 1). In full, these individual
components are

F1 = e
λ238t

(
c1e
−λ238t + c2e

−λ234t + c3e
−λ230t

+c4e
−λ226t1

)
, (2) 45

F2 =
λ238

λ234

[ 234U
238U

]
i
eλ238t

(
h1e
−λ234t +h2e

−λ230t

+h3e
−λ226t + 1

)
, (3)

F3 =
λ238

λ230

[ 230Th
238U

]
i
eλ238t

(
p1e
−λ230t +p2e

−λ226t + 1
)
, (4)

F4 =
λ238

λ226

[ 226Ra
238U

]
i
eλ238t

(
1− e−λ226t

)
, (5)

where square brackets denote activity ratios; i denotes ini-
tial ratio; and c, h, and p are Bateman coefficients given by 50

Eq. (6) in Ludwig (1977), i.e.:

ci/hi/pi =

∏n−1
j=1 λj∏n

j=1
i 6=j

(λj − λi)
, (6)
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where n is the number of nuclides in the part of the decay
chain under consideration (this includes 206Pb, for which λ=
0, but excludes any preceding nuclides for h and p). Simi-
larly, for the 235U decay chain, we have

G=G1+G2, (7)5

where G= 207Pb∗/235U and

G1 = e
λ235t

(
d1e
−λ235t + d2e

−λ231t + 1
)
, (8)

G2 =
λ235

λ231

[ 231Pa
235U

]
i
eλ235t

(
1− e−λ231t

)
, (9)

where d is the Bateman coefficient defined in an equivalent
manner to above. Identical equations may also be derived10

via the matrix exponential approach (e.g. Albarède, 1995),
or using the Laplace transformation (Catchen, 1984). How-
ever, we have opted to preserve the original Bateman form
for the purpose of clarity and because we see no advantage in
adopting these alternative forms here. These disequilibrium15

U–Pb equations may be employed to compute ages using sin-
gle aliquot or diagrammatic approaches in a similar fashion
to the more familiar U–Pb equations, although they require
numerical methods to solve in all instances (see discussion
below).20

When dealing with materials young enough to retain
[234U/238U] or [230Th/238U] values that are analytically re-
solvable from radioactive equilibrium, it is generally more
accurate to use present-day (i.e. measured) activity ratios
rather than assumed initial values. This information can be25

incorporated into the above equations by employing an “in-
verted” form of the U-series age equations, whereby initial
activity ratios are expressed as a function of present-day ra-
tios and t (Woodhead et al., 2006). These equations may then
be substituted into the disequilibrium U–Pb equations above30

and included in the numerical solving procedure, resulting in
a solution to both age and the initial activity ratio value. For
example, this approach has been widely applied to Quater-
nary speleothems using measured [234U/238U] values (e.g.
Woodhead et al., 2006; Pickering et al., 2011; Bajo et al.,35

2012).

3.1 Pb∗/U and 207Pb-corrected ages

The most straightforward implementation of the disequilib-
rium U–Pb age equations outlined above involves treating
each U decay series independently to compute a radiogenic40

206Pb/238U or 207Pb/235U age. This is achieved by solving( 206Pb∗
238U

)
meas.
−F = 0, (10)

or( 207Pb∗
235U

)
meas.
−G= 0, (11)

where the subscript meas. denotes a measured ratio corrected 45

for blank and common Pb, and F and G are given above
(Eqs. 1–5, and 7–9). This age-calculation approach may be
applied, for example, to compute 206Pb∗/238U ages in young,
radiogenic Pb-rich minerals such as Quaternary zircons, pro-
vided that common Pb is negligible or can be accurately cor- 50

rected for (e.g. von Quadt et al., 2014).
Where common Pb is not negligible, or not amenable

to accurate correction based on the measurement of 204Pb-
based ratios (e.g. in samples analysed by ICP–MS tech-
niques), a version of the 207Pb-corrected age employed by 55

SIMS analysts (e.g. Williams, 1998), but modified to account
for disequilibrium (Sakata, 2018), may be more practically
useful. This approach, which is similar to the “single-aliquot”
method of Woodhead et al. (2012) for calculating ages in
high U/Pb speleothems, involves plotting each data point, 60

uncorrected for common Pb and disequilibrium, on a Tera–
Wasserburg diagram (207Pb/206Pb vs. 238U/206Pb; Tera and
Wasserburg, 1972) and projecting a line from a common ini-
tial 207Pb/206Pb value on the y-axis intercept, through each
data point to the disequilibrium concordia (Fig. 2). An inter- 65

cept age may then be computed for each data point, assum-
ing concordance between the 238U and 235U decay schemes
(Chew et al., 2011). This provides a means of correcting
ages for common Pb and disequilibrium in an internally con-
sistent fashion. However, unlike the disequilibrium concor- 70

dia intercept approach outlined below (Sect. 3.3), the com-
mon Pb composition is not given by linear regression of the
data points themselves and must be specified independently.
For igneous minerals, this may be achieved using whole rock
measurements, analysis of Pb isotope ratios in co-genetic 75

phases with high common Pb/U ratios (e.g. K-feldspars) or
model estimates of average crustal Pb composition, such as
that of Stacey and Kramers (1975).

To compute disequilibrium U–Pb ages using these ap-
proaches, it is necessary to specify the initial radioactive 80

disequilibrium state of long-lived intermediate nuclides. For
minerals that are assumed to have crystallised from a melt in
secular equilibrium, [230Th/238U]i may be computed accord-
ing to the following relationship (e.g. McLean et al., 2011):

85[ 230Th
238U

]
i
=

(Th/U)min.

(Th/U)melt
=DTh/U, (12)

where min. denotes mineral and DTh/U is the ratio of
mineral–melt partition coefficients (i.e.DTh/DU). An equiv-
alent expression may be written for [231Pa/235U]i. Based on
this relationship, it is possible to account for disequilibrium 90

in computing U–Pb ages for co-genetic igneous minerals us-
ing one of two different approaches, each entailing different
assumptions regarding mineral–melt partitioning.

Approach (i) assumes that the Th/U elemental ratio of
the melt is constant, but may vary across different grains. 95

For this approach, Th/Umelt is estimated from whole rock
measurements (Schärer, 1984), or measured Th/U in co-
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Figure 2. Graphical representation of a 207Pb-corrected age
calculation. A straight line (blue) is projected from the initial
207Pb/206Pb value at the y-axis intercept through the measured data
point to the disequilibrium concordia curve, constructed here using
DTh/U= 0.2± 0.1 (2σ ) and DPa/U= 2.9± 0.8 (2σ ). The dashed
black lines represent uncertainties (95 % CI) in the trajectory of the
concordia arising due to distribution coefficient uncertainties (see
Sect. 6). Age markers along the disequilibrium concordia are shown
as 95 % confidence ellipses (white), also accounting for distribution
coefficient uncertainties. The 207Pb-corrected age of 275± 23 ka
(95 % CI) is represented by the grey intercept ellipse (95 % con-
fidence). Note that the equilibrium concordia, if plotted, would ap-
pear as a horizontal line along the bottom of this figure at y ≈ 0.046.

genetic phases assumed to be representative of the original
melt composition (e.g. volcanic glasses, Rioux et al., 2012).
Th/Umin. values are then determined based on either direct
measurement of 232Th/238U in each mineral grain (e.g. in
LA-ICP-MS analyses, Guillong et al., 2014), or inferred from5

the radiogenic 208Pb/206Pb ratio and age using an iterative
procedure (e.g. in TIMS analyses, Crowley et al., 2007). Ap-
proach (ii), on the other hand, assumes thatDTh/U is constant
for all mineral grains, implying that Th/U of the magma may
be heterogenous. For this approach,DTh/U values may be es-10

timated based on experimental values or average values from
geologically similar contexts (e.g. Sakata, 2018). For esti-
mating [231Pa/235U]i values, the second approach is more
widely applicable, owing to difficulties inherent in constrain-
ing Pa/U values of the melt. It is also more easily justified15

for 207Pb-corrected ages owing to their lower sensitivity to
this value (Sakata et al., 2017).

For a suite of co-genetic mineral grains that are thought
to belong to a single statistical population, a weighted av-
erage age may be computed using equivalent approaches to20

conventional U–Pb ages. However, in the case of disequi-
librium ages, uncertainty in Th/Umelt for approach (i) out-
lined above, or DTh/U and DPa/U for approach (ii), acts as a
systemic component of uncertainty, giving rise to correlated
age uncertainties. These correlations can be non-trivial and25

should be considered in any weighted average calculation to

accurately propagate assigned uncertainties and avoid artifi-
cially deflating mean squared weighted deviation (MSWD)
statistic (McLean et al., 2011). DQPB allows users to com-
pute disequilibrium 206Pb∗/238U and 207Pb-corrected ages, 30

specifying the initial disequilibrium state using either of
the approaches above. For approach (i), either a measured
232Th/238U or radiogenic 208Pb/206Pb ratio with analytical
uncertainty is input for each aliquot along with a common
Th/Umelt value and uncertainty. For approach (ii), a com- 35

mon DTh/U (DPa/U) value and uncertainty is input and ap-
plied to all aliquots under the assumption that these uncer-
tainties are perfectly correlated. Age uncertainties and uncer-
tainty covariances are then estimated by either Monte Carlo
methods or analytical uncertainty propagation (see Sect. 5), 40

and where appropriate, weighted average ages accounting for
this covariance structure may be computed using either clas-
sical or robust statistical approaches (see Sect. 4 for further
details).

3.2 “Classical” U–Pb isochron ages 45

Disequilibrium 238U–206Pb and 235U–207Pb “classical”
isochron ages may be computed for common Pb-rich sam-
ples by numerically solving F − b = 0 or G− b = 0, where
b is the slope of the isochron regression line on a 206Pb/204Pb
vs. 238U/204Pb or 207Pb/204Pb vs. 235U/204Pb diagram, re- 50

spectively. For classical U–Pb isochron diagrams, isotope ra-
tios are traditionally referenced to 204Pb, however, when dat-
ing young materials with very low 232Th abundance, such as
carbonates with low detrital content, it is also possible to ref-
erence to 208Pb instead under the assumption that 232Th has 55

produced negligible radiogenic 208Pb since the time of sys-
tem closure (Getty et al., 2001). The two formulations are
mathematically equivalent, but the latter can be advantageous
where accurate an measurement of 204Pb proves difficult,
such as in ICP–MS dating of young samples (Engel et al., 60

2019). While U–Pb isochron approaches can be less reliable
than concordia intercept ages (Ludwig, 1998), especially for
young datasets incorporating the low abundance 204Pb iso-
tope, they are offered in DQPB because of their potential util-
ity in computing ages for Pb-rich materials where the dise- 65

quilibrium state of only one of the U-series decay chains is
well constrained.

3.3 Concordia intercept ages

Concordia intercept ages are well-suited to Pb-rich materi-
als such as carbonates and apatite that typically contain vari- 70

able Pb∗/common Pb ratios within individual growth hori-
zons (Woodhead and Pickering, 2012; Chew et al., 2011; En-
gel and Pickering, 2022). To compute ages using this ap-
proach, multiple co-genetic samples uncorrected for com-
mon Pb are plotted on a Tera–Wasserburg diagram. If all 75

samples (i) have remained closed to the exchange of U-series
isotopes post crystallisation, (ii) contain varying quantities
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of common Pb with an identical 207Pb/206Pb composition
and (iii) were initially crystallised in the same disequilib-
rium state, they form a mixing line on a Tera–Wasserburg di-
agram between a purely radiogenic end-member lying on the
concordia curve (the locus of all radiogenic Pb ICs through5

time) and a common Pb end-member at the y-axis intercept
(Tera and Wasserburg, 1972). When accounting for the ef-
fects of radioactive disequilibrium, the familiar equilibrium
concordia is replaced with a family of disequilibrium con-
cordia constructs (e.g. Wendt and Carl, 1985), based on the10

following equations:

x =
238U

206Pb∗
=

1
F
, (13)

and

y =
207Pb∗
206Pb∗

= U−1Gx, (14)

where U denotes the present-day natural 238U/235U ratio.15

Activity ratios may either be input directly into functions F
and G as initial values, or as present-day values via the in-
verted U-series equations as described in Sect. 3, and ages
are then calculated as the intersection of a regression line
with the appropriate concordia curve, by solving20

U−1G− aF − b = 0, (15)

where a and b are the slope and y-intercept values obtained
by linear regression of the data points. DQPB allows users to
fit a variety of regression models to Tera–Wasserburg data
(Sect. 4), compute ages based on either initial or present-25

day (i.e. measured) intermediate nuclide activity ratios val-
ues, and construct customisable plots of the disequilibrium
concordia intercept ages (e.g. Fig. 3).

3.4 “Forced concordance” initial [ 234U/238U] values

DQPB also implements a version of the “forced concor-30

dance” routine of Engel et al. (2019), which targets closed-
system samples where the initial 234U/238U activity ratio is
unknown, but activity ratios of other long-lived intermedi-
ate nuclides (i.e. [230Th/238U] and [231Pa/235U]) are reli-
ably constrained (e.g. very low initial Th carbonates). The35

routine determines the [234U/238U] value that forces con-
cordance between the 235U–207Pb and 238U–206Pb decay
schemes based on individual U–Pb isochrons and outputs this
value along with its uncertainty computed by Monte Carlo
methods. This algorithm may be useful for characterising40

initial [234U/238U] values for particular geological contexts
(e.g. cave sites when dating carbonate speleothems) where
all available samples lie beyond the range of measurable dis-
equilibrium.

Figure 3. Example of Tera–Wasserburg concordia intercept age
plots for Middle Pleistocene stalagmite CCB (see Sect. 7.1 for
further details). (a) Plot showing the spine linear regression fit
to data (red line), with dashed red lines indicating uncertainties
(95 % confidence). Measured data points (white 95 % confidence
ellipses), exhibit a strong negative uncertainty correlation due the
effects of blank subtraction (Woodhead et al., 2012). (b) Enlarged
view of the concordia intercept. The disequilibrium concordia line
(black) is constructed using a measured [234U/238U] value of
0.9512± 0.0013 (2σ ), with initial activity ratios for other inter-
mediate nuclides assumed equal to 0. The dashed black lines in-
dicate uncertainties (95 % confidence) arising from uncertainty in
this measured [234U/238U] value. Regular concordia age markers
are shown as white circles, and the black diagonal lines represent
95 % confidence age ellipses, which are collapsed to straight line
segments because there is no uncertainty assigned to [231Pa/235U]
(see Sect. 6). The grey “intercept ellipse” (95 % confidence) is rep-
resentative of the 106 simulated concordia intercept points from the
Monte Carlo simulation.

4 Linear regression and weighted average age 45

protocols

Linear regression and weighted average age algorithms ca-
pable of accounting for analytical uncertainties and accom-
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modating the possibility of “excess scatter” (i.e. scatter in ex-
cess of that which is attributable to assigned analytical uncer-
tainties) are crucial for attaining reliable U–Pb ages. DQPB
offers two distinct approaches to perform linear regression
and compute weighted averages. The first of these (Sect. 4.1)5

is rooted in a classical statistical paradigm and emulates the
default protocols of Isoplot (Ludwig, 2012). The second
approach (Sect. 4.2) takes advantage of recent developments
in the application of robust statistics to geochronology, im-
plementing the spine algorithm of Powell et al. (2020) as10

well a weighted average variant of this algorithm (the “spine”
weighted average), and a newly developed robust regression
algorithm (the “robust model 2”). Although users are free
to choose the most appropriate algorithm for their particu-
lar dataset, the spine linear regression and weighted aver-15

age algorithms are set as the default because they are consid-
ered suitable for a wider range of datasets than their classical
statistics-based counterparts.

4.1 Classical statistical approaches

For the classical statistics-based approach, linear regression20

and weighted averaging of data are first performed using al-
gorithms that weight data points according to assigned ana-
lytical uncertainties under the assumption that these are the
only source of data point scatter. For linear regression, this
involves implementing the error-weighted least-squares al-25

gorithm of York et al. (2004), which yields equivalent re-
sults to the original algorithm of York (1969) with uncer-
tainties on regression parameters calculated following the
maximum likelihood estimation (MLE) approach of Titter-
ington and Halliday (1979). For weighted average calcula-30

tions, an uncertainty-weighted least-squares algorithm is im-
plemented whereby individual data points are weighted ac-
cording to the inverse of their analytical variance, account-
ing for the uncertainty covariance structure where relevant
(e.g. McLean et al., 2011). An apparent advantage of this35

classical approach is that it allows a statistic with a well-
established distribution, i.e. the MSWD, to be used to as-
sess data point scatter in relation to measurement uncertain-
ties under the assumption that residuals are strictly Gaussian
distributed (Wendt and Carl, 1985). Probabilistic-based con-40

clusions can then be drawn regarding the likely presence (or
not) of excess scatter.

Where the MSWD lies within a probabilistically accept-
able range about 1, as indicated either by a confidence inter-
val on MSWD (e.g. Powell et al., 2002) or, equivalently, the45

“probability-of-fit” value (Ludwig, 2012), the initial least-
squares solution and analytical uncertainty-based standard
errors are retained. However, if the MSWD value falls out-
side such limits, the dataset is deemed likely to contain a
component of excess scatter, which may be either “geo-50

logical scatter” (variability in initial Pb composition, open-
system behaviour etc.) or some component of analytical un-
certainty that is unaccounted for. Provided that the MSWD

is not unreasonably high, assigned analytical uncertainties
likely still dominate the uncertainty budget, and, on this ba- 55

sis, the initial least-squares solution is retained, but uncer-
tainties are inflated so as to reduce the MSWD to 1. For linear
regression fitting, this may be termed the “model 1x”, bor-
rowing the terminology of Powell et al. (2020). On the other
hand, where the MSWD lies well outside a probabilistically 60

acceptable range, the assumptions of the York fit or analyt-
ical uncertainty-weighted average are clearly violated, and it
is commonplace to either manually reject data points to re-
store scatter to an acceptable range or turn to alternative clas-
sical statistics-based approaches, for example, by employing 65

the Isoplot model 2 or model 3 fits (Ludwig, 2012).
Although this classical statistics-based approach is pre-

dominant within geochronology, it has some limitations.
Firstly, the rejection of outliers from small sample sizes typ-
ical in geochronology is notoriously difficult. Secondly, this 70

approach relies on a stepwise mode of uncertainty handling,
which is both conceptually unsatisfying and requires the
choice of arbitrary cut-off points, the values of which can
have a substantial impact on calculated ages and uncertain-
ties (see Powell et al., 2020). Thirdly, the MSWD statistic is 75

very sensitive to small departures in residuals from a strict
Gaussian distribution, making it an overly sensitive indica-
tor of excess scatter for many real-world geochronological
datasets, which are often slightly “heavy tailed” (Rock et al.,
1987; Powell et al., 2002). And lastly, the model 2 and 3 lin- 80

ear regression algorithms are not well-suited to all datasets.
For example, the model 3 fit parameterises excess scatter as
an external Gaussian-distributed component of scatter, an as-
sumption that is difficult to justify in the typical case where
the precise cause of excess scatter is not well-established nor 85

known to be strictly Gaussian (Ludwig, 2003). The model 2
fit, on the other hand, makes few assumptions regarding
the statistical distribution of the excess scatter, however, it
weights all data points equally and does not account for ana-
lytical uncertainties at all. 90

4.2 Robust statistical approaches

Robust algorithms, which do not rely on the assumption
of Gaussian-distributed residuals, offer a means of ad-
dressing some of the limitations of the classical statistics-
based approach outlined above. Robust statistical approaches 95

have previously been proposed in geochronology, including
the median-of-medians linear regression algorithm (Siegel,
1982), which is implemented in Isoplot (Ludwig, 2012)
and weighted average algorithms of varying complexity (e.g.
Rock et al., 1987; Ludwig, 2012). While these algorithms 100

are resistant to the effects of outliers, a limitation of these
approaches is that they ignore analytical uncertainties, lead-
ing to suboptimal results where these do in fact constitute
a significant component of the total data point scatter. The
spine linear regression algorithm (Powell et al., 2020) im- 105

proves on these previous robust approaches by accounting
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for assigned analytical uncertainties; it also exhibits a num-
ber of favourable properties that arguably make it more gen-
erally applicable to geochronological datasets compared to
the classical statistics-based approach.

The spine algorithm minimises a piece-wise objective5

function (the “Huber loss function”), whereby data points ly-
ing along a central linear band (i.e. the spine) are given full
weighting, but points falling outside this band are progres-
sively down-weighted according to their weighted residual.
Uncertainties on regression parameters are calculated using10

a first-order error propagation approach and tend to increase
smoothly with increasing data point scatter. Notably, in the
case where all data points lie within this central band, spine
yields identical results to York, making this algorithm suit-
able for both “well-behaved” and excess scatter datasets, pro-15

vided that the majority of data points comprise a well-defined
linear array within their uncertainties. In the place of the
MSWD, a robust metric called the spine width, s, is used
to assess whether or not data point scatter is commensurate
with accurate use of this algorithm given assigned uncer-20

tainties. The s term CE2 is the median absolute deviation of
weighted residuals, normalised to be equal to the standard
deviation for a strictly Gaussian distribution (i.e. NMAD).
This statistic tends toward 1 for well-behaved datasets and
may be used in a similar manner to the MSWD, although, in25

contrast to MSWD, confidence intervals on s must be derived
from simulation rather than from a formal statistical distribu-
tion (Powell et al., 2020). DQPB outputs s along with this
simulated upper 95 % confidence bound (here denoted slim)
allowing users to assess if the central spine of data is suffi-30

ciently well-defined for use of this regression algorithm.
For computing robust weighted averages, DQPB also of-

fers a one-dimensional variant of the spine linear regres-
sion algorithm, termed the spine weighted average (see
Appendix A). The spine weighted average is capable of35

accounting for assigned analytical uncertainties, and like the
classical least-squares approach, it can accommodate uncer-
tainty correlations among data points. Analogously to the
linear regression version, it gives full analytical weighting
to data at the centre of the distribution, and progressively40

down-weights data points lying away from this central spine
according to the Huber loss function. In the case where data
point scatter is commensurate with analytical uncertainties,
the spine weighted average reduces to the classical statis-
tics weighted mean (e.g. Powell and Holland, 1988; McLean45

et al., 2011). Equivalently to the spine regression algo-
rithm, the quality of this central spine of data points can be
assessed by considering s in relation to slim which is derived
via the simulation of Gaussian distributed datasets (see Ap-
pendix B).50

In addition to the spine linear regression algorithm,
DQPB also offers a second robust linear regression approach
for datasets that have an s value exceeding slim but are
still reasonably thought to have age significance (see Ap-
pendix C). This regression algorithm, named the “Robust55

Figure 4. A comparison of the spine weighted average
with the classical statistics weighted mean for Bishop Tuff
zircon206Pb/238U ages from Crowley et al. (2007). The black
line shows the spine weighted average 206Pb/238U age of
767.59± 0.86 ka (95 % CI), with this uncertainty indicated by the
light grey shading. The spine width value, s, for this dataset is 1.31,
which is within the upper 95 % confidence limit of s (slim= 1.42,
n= 19), suggesting that the dataset contains a sufficiently well-
defined spine of data points for use of this algorithm. For compar-
ison, the classical statistics weighted mean age is 767.85± 1.5 ka
(95 % CI) (MSWD= 4.43, n= 19), with this uncertainty repre-
sented by the hatched red area. If the two oldest ages are treated as
outliers, as for the preferred age in the original publication, the clas-
sical statistics weighted mean shifts to 767.06± 0.85 ka (95 % CI)
(MSWD= 1.3, n= 17). Note that age uncertainty covariances have
not been considered in this example, although the spine algorithm
is capable of accounting for these where necessary (see Sect. 4).

model 2”, is similar to the Isoplot model 2, but encom-
passes robust properties which reduce the influence of out-
liers on the fitted line in a similar manner to spine. Al-
though this algorithm discards analytical uncertainties and
provides less reliable age uncertainty estimates than spine, 60

it is offered as a robust alternative to the model 2 and 3 fits
discussed above, as it is expected to be applicable to a wider
range of datasets.

5 Age uncertainty propagation

First-order analytical uncertainty propagation is a suitable 65

method for computing U–Pb age uncertainties in cases where
input variables (e.g. Pb/U measurements, regression fit pa-
rameters and activity ratios) have relatively small uncertain-
ties, and the age equation is linear with respect to these vari-
ables within the neighbourhood of the age solution (e.g. Bar- 70

low, 1989). However, this approach can be inaccurate where
uncertainties on input variables are relatively large, and the
linear approximation breaks down. For example, applying
analytical uncertainty propagation to isochron or concordia
intercept ages with large regression fitting uncertainties can 75
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result in inaccurate age uncertainties, because the age so-
lution PDF (probability density function) can be markedly
asymmetric.

Monte Carlo simulation is an alternative approach to prop-
agating U–Pb age uncertainties, which is not reliant on a lin-5

ear approximation. With this approach, input variables are
randomly sampled from within their PDFs (typical Gaus-
sian or multivariate Gaussian distributions) for each trial, and
an age is calculated. This procedure is then repeated many
times to build up an estimate of the output age PDF from10

which summary statistics (e.g. standard deviation or confi-
dence intervals) can be estimated. Monte Carlo simulation is
capable of accounting for asymmetric age distributions and
can provide accurate results even when uncertainties on input
variables are large (e.g. Albarède, 1995). However, a poten-15

tial drawback of the Monte Carlo approach is that, owing to
its stochastic nature, it requires a large number of trials to
produce numerically accurate and stable results, making it
more computationally intensive than analytical approaches.
The reliability of Monte Carlo uncertainty estimates scales20

with the number of trials. Although the number of trials re-
quired to produce 95 % confidence intervals that are accu-
rate to about two significant digits depends on the shape
of the output age PDF, 105–106 trials are typically suffi-
cient (e.g. JCGM, 2008). For most age calculations in DQPB,25

Monte Carlo uncertainty calculations involving 105–106 tri-
als are completed in a matter of seconds, although, calcula-
tions can take longer in cases where either uncertainties on
input variables are very large, there is a high proportion of tri-
als with non-convergent age solutions, and/or a large number30

of single-aliquot ages are computed simultaneously. DQPB
allows users to adjust the number of Monte Carlo trials. By
default, this is set to 5× 104 for convenience, but it is recom-
mended to increase this to ∼ 106 when computing final age
uncertainties by Monte Carlo simulation.35

5.1 Monte Carlo uncertainties

DQPB offers Monte Carlo uncertainty propagation for all
disequilibrium U–Pb age types. For concordia intercept
and classical isochron datasets fitted either using robust or
model 1 algorithms, regression parameters are randomised40

within uncertainties according to a multivariate Gaussian dis-
tribution for each trial, accounting for uncertainty correlation
between the slope and y-intercept. For model 1x, model 2
and model 3 fits, (i.e. excess scatter fits) regression param-
eters are instead randomised within their “observed scat-45

ter” uncertainties, i.e. 1σ analytical uncertainties multiplied
by
√

MSWD according to a bivariate t distribution with n−2
degrees of freedom, where n is the number of data points.
Activity ratios, either as initial or present-day values, are
then randomised according to univariate Gaussian distribu-50

tion, and an age is computed for each combination of inputs.
In cases where a present-day activity ratio value is given, the
initial activity ratio value is also computed for each trial as

part of the numerical solving procedure. Age uncertainties
are reported as a 95 % confidence interval, estimated from 55

the 2.5 and 97.5 percentiles of simulated ages.
The application of Monte Carlo uncertainty propagation

to disequilibrium ages, computed using present-day (i.e.
measured) activity ratio values that are not clearly resolv-
able from radioactive equilibrium (i.e. where the activity ra- 60

tio PDF significantly overlaps the radioactive equilibrium
value), can produce unreliable results. This is because ran-
dom samples drawn from the overlapping part of the mea-
sured activity ratio PDF tend to produce non-convergent age
solutions, and this may bias the output age distribution. To 65

address this issue, DQPB performs two checks to verify that
the input data are suitable for Monte Carlo uncertainty propa-
gation. The first check is performed prior to commencing the
simulation and ensures that the measured activity ratio values
are analytically resolvable from equilibrium with 95 % confi- 70

dence. Where this criterion is not met, a warning is displayed
to the user, and the Monte Carlo simulation does not pro-
ceed. The age is still reported, but the uncertainties are listed
as undefined. The second check, which is performed after a
Monte Carlo simulation is completed, verifies that a mini- 75

mum number of trials were successful (the default value is
set to 97.5 %). Where this second criterion is not met, the
software displays a warning that Monte Carlo simulation re-
sults may be unreliable and should not be used. This second
warning may also be triggered if the PDF of an initial activity 80

ratio significantly overlaps negative values (e.g. if the value
of an initial activity ratio is assigned a value close to zero
with some uncertainty), which may also lead to unreliable
age uncertainty estimates.

For multiple co-genetic Pb∗/U and 207Pb-corrected ages, 85

an approach similar to Renne et al. (2010) is used to ac-
count for systematic components of uncertainty. With this ap-
proach, isotope ratios for each data point are first randomised
within their individual analytical uncertainties according to a
Gaussian distribution (or a multivariate Gaussian distribution 90

for 207Pb-corrected ages). Variables that contribute a system-
atic component of uncertainty, such as distribution coeffi-
cients or Th/Umelt ratios (and initial 207Pb/206Pb values for
207Pb-corrected ages) are then randomised within their un-
certainties once per trial, and this common value is used to 95

compute an age for each data point. This procedure results in
an m-by-n array of simulated ages (where m is the number
of Monte Carlo trials and n is the number of single-aliquot
ages) displaying the covariance resulting from their common
dependence on these variables (e.g. Renne et al., 2010). Age 100

uncertainties on individual aliquots are reported as 95 % con-
fidence intervals and age covariances are estimated from sim-
ulated ages for each of the n data points, resulting in an n-by-
n age covariance matrix. Where appropriate, this covariance
structure is then used in subsequent weighted average age 105

calculations.
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5.2 Analytical uncertainty propagation

In addition to Monte Carlo uncertainty propagation, DQPB
offers first-order analytical uncertainty propagation for
Pb∗/U and 207Pb-corrected ages. While Monte Carlo meth-
ods can provide more accurate age uncertainties for these5

age types when uncertainties on input variables are large and
result in asymmetric age distributions (as discussed above),
such asymmetries are not typically accounted for in comput-
ing weighted averages. Although it is possible in principle to
account for the effects of asymmetries in weighted averages,10

such approaches are not yet well developed in geochronol-
ogy. At the same time, the computation time required to
implement Monte Carlo uncertainty propagation for large n
(number of aliquots) and large m (number of trials) can be
much more significant than for diagrammatic ages. For these15

reasons, analytical uncertainty propagation may be prefer-
able for these age types, provided that uncertainties on in-
put variables are relatively small, and/or age uncertainties
on all data points are known to be approximately Gaussian.
DQPB implements a matrix-based approach for analytical un-20

certainty propagation that accounts for the effect of random
and systematic components of uncertainty on each aliquot
and keeps track of all covariance terms (e.g. McLean et al.,
2011). This approach allows the age covariance structure to
be easily computed and used in subsequent weighted average25

age calculations in an equivalent manner to the Monte Carlo
approach discussed above.

6 Data visualisation and plotting

DQPB outputs customisable plots for all diagrammatic and
weighted average U–Pb age calculations. For isochron and30

concordia ages, a plot of the linear regression fit is provided,
showing data points as 95 % confidence ellipses along with
the regression line and a 95 % confidence band on the re-
gression fit. This confidence band is plotted using the ap-
proach of Ludwig (1980) for model 1, 2 and 3 fits and Monte35

Carlo simulation for robust fits (e.g. Fig. 3a). For concordia
intercept ages, an additional plot is also provided, showing
an enlarged view of the intersection between the isochron
and the disequilibrium concordia curve (e.g. Fig. 3b). The
intercept points of all Monte Carlo simulated ages are also40

shown on this plot, either as m x–y points or plotted as a
single 95 % confidence ellipse representing the population
of simulated intercept points. For 207Pb-corrected ages, data
points are plotted on a Tera–Wasserburg diagram. If DTh/U
and DPa/U are input as constant values for all data points,45

a disequilibrium concordia curve may also be plotted along
with projection lines from the common Pb point through each
data point to its concordia intercept (e.g. Fig. 5a).

For disequilibrium concordia curves on concordia inter-
cept plots, age markers may be plotted as either point mark-50

ers or “age ellipses” that represent uncertainty in x–y for a
given t value arising from uncertainty in activity ratio val-

ues. Where there is uncertainty in activity ratios for both the
238U and 235U decay series, these age ellipse markers are
true ellipses, akin to those representing decay constant un- 55

certainties on an equilibrium Tera–Wasserburg concordia di-
agram (Ludwig, 1998). On the other hand, where there is ac-
tivity ratio uncertainty assigned to only one of the U decay
schemes, these age ellipses collapse to line segments with a
slope equivalent to the Tera–Wasserburg isochron lines de- 60

scribed in Eq. (7) of (Wendt and Carl, 1985). A 95 % confi-
dence band representing uncertainty in the trajectory of the
concordia curve arising from uncertainty in activity ratios
may also be plotted, based on a Monte Carlo simulation.
DQPB allows users to customise a wide range of plot set- 65

tings, export figures in a variety of image file formats and
access all numeric data used to construct plots via output to a
new Excel spreadsheet (see Supplement for further details).

7 DQPB usage examples

7.1 Concordia intercept speleothem age 70

Despite their relatively low U content, clean (i.e. with low
detrital content) carbonates, such as speleothems, can be
well-suited to U–Pb dating provided they contain relatively
high U/Pb ratios and spread in U/Pb ratios within individ-
ual growth layers (Woodhead et al., 2012). Here, we demon- 75

strate computation of a concordia intercept age for a Middle
Pleistocene speleothem CCB from Corchia Cave, Italy, based
on solution MC-ICP-MS analyses. The sample is young
enough to retain a [234U/238U] ratio which is analytically
resolvable from equilibrium but lies just beyond reach of the 80

230Th geochronometer using routine methods. A measured
234U/238U activity ratio of 0.9512± 0.0013 (2σ ) was used
in the age calculation, obtained via MC-ICP-MS (Hellstrom,
2003). Speleothems from this cave site consistently exhibit
very low detrital Th (as reflected in 232Th/230Th ratios; Drys- 85

dale et al., 2012) and thus the initial [230Th/238U] is assumed
equal to 0. The initial activity ratios for other intermediate
nuclides are likewise assumed equal to 0. The data are re-
gressed using the spine algorithm, which in this case re-
turns equivalent results to the York algorithm (Fig. 3a). A 90

lower intercept age of 580± 7.9 ka (95 % CI) is computed,
along with an initial [234U/238U] value of 0.749± 0.010
(95 % CI). Age uncertainties are estimated by Monte Carlo
simulation using 106 trials (Fig. 3b).

7.2 Quaternary zircon 207Pb-corrected ages 95

In this example, we demonstrate a 207Pb-corrected age cal-
culation for a suite of zircons from the Sambe–Kisuki tephra
(Shuhei Sakata, unpublished data), which is thought to have
erupted approximately 100 ka ago from the Sambe volcano
located in the Shimane prefecture in the west of Japan. Anal- 100

yses were performed by multi-collector LA-ICP-MS using a
method similar to Hattori et al. (2017). Disequilibrium ages
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were calculated following approach (i) outlined in Sect. 3.1
using a DTh/U value of 0.2± 0.03TS1 (2σ ), a DPa/U value
of 2.9± 1.0 (2σ ) and a common 207Pb/206Pb value based on
the two-stage model of Stacey and Kramers (1975). With this
approach, uncertainties in DTh/U and DPa/U are propagated5

as purely systematic components of uncertainty. Age uncer-
tainties were calculated by the Monte Carlo simulation, using
106 trials for each age point (Fig. 5a). These uncertainties are
identical (within the quoted number of significant figures) to
those obtained by analytical uncertainty propagation.10

Computing a weighted average using a classical statistics-
based approach (accounting for uncertainty correlations),
gives a weighted mean age of 96.6± 39 ka (95 % CI), with
an MSWD of 3.54, indicating a very high probability of ex-
cess scatter in the dataset under the assumption of Gaussian-15

distributed residuals. On the other hand, the robust spine
weighted average algorithm gives a weighted average age of
94.2± 10.9 ka (95 % CI) (Fig. 5b), with a s value of 1.28
which lies within the upper 95 % confidence limit of s (slim =
1.57, n= 6). This suggests that there is a sufficiently well-20

defined spine of data at the centre of the distribution for use
of this algorithm, and thus the weighted average is likely to
carry age significance under the assumption that crystalli-
sation of these zircons constitutes a geologically discrete
event (e.g. see Ickert et al., 2015). Note that the spine25

weighted average algorithm down-weights the single point
lying away from the average age line, and thus it has little in-
fluence on the computed weighted average. For comparison,
excluding this point gives a classical weighted average age
of 92.1± 6.3 ka (95 % CI) with an MSWD of 0.55.30

8 Availability and distribution

DQPB (Pollard, 2023a, https://doi.org/10.5281/zenodo.7804190TS3 )
is released under a MIT license, permitting modification
of the source code and re-distribution with minimal re-
strictions. The source code may be viewed via an online35

code repository (see: https://github.com/timpol/DQPB, last
access: 6 April 2023). This repository also contains links to
downloadable installers for macOS and Windows, as well
as online documentation. Suggestions for bug fixes and new
features, as well as pull requests, are also accepted via this40

repository.
In addition to the stand-alone GUI version of the

software, DQPB is also available as part of a pure
Python package named pysoplot (Pollard, 2023b,
https://doi.org/10.5281/zenodo.7804162)TS4 , offering45

greater flexibility for more experienced Python users. The
pysoplot package is hosted at a separate online repos-
itory (see: https://github.com/timpol/pysoplot, last access:
6 April 2023) and is available via pip (the package installer
for Python) – see: https://pypi.org/project/pysoplot/ (last50

access: 6 April 2023).

Figure 5. Example of 207Pb-corrected age plots. (a) Data el-
lipses plotted on a Tera–Wasserburg diagram as 95 % confi-
dence ellipses (green). The black line shows the disequilibrium
concordia constructed using DTh/U= 0.2± 0.03 TS2 (2σ ) and
DPa/U= 2.9± 1.0 (2σ ), with dashed black lines indicating uncer-
tainty bounds (95 % CI). Concordia markers are plotted as 95 % age
ellipses, representing x–y uncertainty for a given age due to un-
certainty in distribution coefficients. The dashed blue lines show
a line projecting from the common Pb point at the y intercept
(207Pb/206Pb= 0.836) through the centre of each data point to its
intercept with the disequilibrium concordia. (b) Plot of individual
207Pb-corrected ages. The dark blue bars indicate age uncertain-
ties (2σ ) accounting for random analytical uncertainties only, while
the larger white bars show combined random and systematic un-
certainties (2σ ) (i.e. including components due to uncertainty in
DTh/U and DPa/U values). The black line shows the weighted av-
erage age computed using the robust spine algorithm which ac-
counts for the age covariance structure, with the light grey shad-
ing indicating a 95 % confidence interval on this weighted average.
Initial disequilibrium corrections were applied assuming constant
distribution coefficient ratios, i.e. approach (i) in Sect. 3.1, treating
uncertainties in DTh/U and DPa/U as purely systematic uncertain-
ties.

https://doi.org/10.5281/zenodo.7804190
https://github.com/timpol/DQPB
https://doi.org/10.5281/zenodo.7804162
https://github.com/timpol/pysoplot
https://pypi.org/project/pysoplot/
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9 Conclusion

This paper introduces DQPB, an open-source software pack-
age for calculating disequilibrium U–Pb ages. The software
implements disequilibrium U–Pb equations to compute ages
using various approaches, including disequilibrium Pb∗/U5

ages based on single aliquots, U–Pb isochron ages and con-
cordia intercept ages on a Tera–Wasserburg diagram. Various
linear regression and weighted average age algorithms are
implemented in the software, including those based on both
classical and robust statistics, and high-quality “publication-10

ready” figures are output. A key feature of the stand-alone
GUI-based version of the software is that it allows close in-
tegration with Microsoft Excel and thus continues the legacy
of Isoplot in allowing straightforward interaction with U–
Pb datasets from within a simple spreadsheet environment.15

DQPB is free open-source software, and all source-code is
available for viewing and download via an online repository.
For more experienced Python users, DQPB is available as
part of a pure Python package, which may be downloaded
and modified with minimal restrictions to meet individual re-20

quirements. This software will continue to be developed un-
der an open-source model and new features will be added in
the future.

Appendix A: spine robust weighted average

Following the logic of Powell et al. (2020) for the two-25

dimensional case, a robust spine CE3 weighted average ac-
counting for analytical uncertainties may be obtained for
one-dimensional data (e.g. multiple coeval ages). To achieve
this in the general case where correlated age uncertainties are
permitted, it is first necessary to express weighted residuals30

in an uncorrelated form. In the classical statistics-based so-
lution (e.g. Powell and Holland, 1988; McLean et al., 2011),
the weighted average age is obtained by finding t̄ that min-
imises the sum of squared weighted residuals:

S = (t − t1)Vt−1(t − t1), (A1)35

where t is a column vector of ages, 1 is a column vector
of ones, and Vt is the uncertainty (covariance) matrix of the
ages. To apply the Huber loss function, which is defined as

ρ(rk)=

{
rk

2 if |rk| ≤ h
2hrk −h2

|rk|> h,
(A2)

where rk is the weighted residual of the kth data point and40

h= 1.4, the sum of weighted residuals must first be recast
as a sum of uncorrelated weighted residuals. This may be
achieved via eigendecomposition of the covariance matrix:

Vt =Q3QT, (A3)

where 3 is the eigenvalue matrix consisting of positive45

eigenvalues on the diagonals and Q is the eigenvector ma-

trix. From this we obtain

Vt−1/2
=Q3−1/2QT, (A4)

which can be substituted into Eq. (A1) to give

S = rTr, (A5) 50

where r is a column vector of weighted residuals, given by

r = Vt−1/2(t − t1). (A6)

Following the approach in Powell et al. (2020), we min-
imise

∑
ρk by finding the t value that solves

1TVt−1/2ψ(r)= 0, (A7) 55

where

2ψ =
∂ρ

∂rk
. (A8)

This is achieved using an iterative reweighting procedure,
whereby the weight functionw(rk)= ψ(rk)/rk is introduced,
resulting in 60

1TWe = 0, (A9)

with

e = t − t (A10)

and

W=WhVt−1, (A11) 65

such that Wh is a diagonal matrix havingw(rk) as the kkth el-
ement. This combines the weighting fromw with the weight-
ing from the correlated uncertainties on t . Rearranging this
gives an expression equivalent to Eq. (B13) in Powell et al.
(2020): 70

t = 1TWt(1TW1)−1, (A12)

which can be solved by iteration from a robust starting
point (e.g. Maronna, 2019). Analogous to the development
of Eq. (B17) in Powell et al. (2020), uncertainties on t are
then computed by first-order uncertainty propagation as 75

σt =
1√

1TVt−1I′1
, (A13)

where I′ = diag(ψ̇(r)).
In the case where all |rk|< h, then ψ(r)= r , Wh = Vt−1

and I′ = I, so

t = 1TVt−1t
(

1TVt−11
)−1

(A14) 80

and

σt =
1√

1TVt−11
, (A15)

yielding the classical statistics-based result.
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Table B1. Simulated 95 % confidence intervals for
√

MSWD and s
(spine width) as a function of the number of data points, n, where ∗

denotes a one-sided upper 95 % confidence limit. The results for
MSWD are equivalent to those obtained from formal statistical ta-
bles. DQPB outputs the one-sided upper 95 % confidence limit on s
(denoted slim in the software) to evaluate suitability of the spine
weighted average algorithm for a particular dataset. DQPB also out-
puts equivalent values for the spine linear regression which are
given in Table 1 of Powell et al. (2020).

n
√

MSWD s

Low High ∗ Low High ∗

5 0.348 1.669 1.540 0.12 1.94 1.72
7 0.454 1.552 1.449 0.22 1.83 1.65
9 0.522 1.481 1.392 0.29 1.74 1.59
15 0.634 1.366 1.301 0.43 1.59 1.47
29 0.739 1.260 1.215 0.58 1.42 1.34
59 0.818 1.181 1.151 0.70 1.30 1.24

6 0.408 1.602 1.488 0.21 1.75 1.57
8 0.491 1.513 1.412 0.29 1.70 1.55
10 0.548 1.454 1.371 0.35 1.65 1.52
16 0.646 1.354 1.291 0.46 1.54 1.44
30 0.744 1.256 1.211 0.60 1.41 1.33
60 0.820 1.180 1.149 0.71 1.29 1.24

Appendix B: spine weighted average s simulations

To assess whether the central spine of data points is suffi-
ciently well-defined to obtain a meaningful weighted aver-
age, we compare the spine width, s, to its upper 95 % con-
fidence limit bound derived via simulation of Gaussian-5

distributed datasets. Simulations were performed using sam-
ple sizes, n, ranging between 5–100 data points. For each n,
106 pseudorandom samples were drawn from a standard nor-
mal distribution; s values were computed for each sample,
and confidence limits on s were estimated based on relevant10

percentiles (see Table B1). Odd and even n are considered in-
dependently in order to account for the effect of small sample
bias inherent to NMAD (e.g. Hayes et al., 2014). The impact
of different uncertainty covariance structures on s were also
examined and found to have a negligible effect on these con-15

fidence limits.

Appendix C: Robust model 2

The robust data-fitting algorithm in Powell et al. (2020) in the
two-dimensional case, and above in Appendix A, in the one-
dimensional case, are predicated on the one-sided confidence20

intervals on the spine width (in Table 1, last column of Powell
et al., 2020), and in Table B1 here). The calculation of age,
and particularly the uncertainty on age, is appropriate for the
case where a dataset gives a spine width that is consistent
with the confidence interval.25

Not covered is how best to proceed if in fact a dataset is
not consistent with the confidence interval. Whereas the ar-
gument developed in Powell et al. (2020), and by extension
here, is that datasets which are consistent with this interval
are likely to have age significance, this becomes progres- 30

sively more awkward to argue as the spine width increases.
The view taken in this section is that the calculations advo-
cated are for datasets that are considered to have age signif-
icance, commonly by geological inference, even though the
spine width is outside the confidence interval. 35

Once the spine width is too large, the data-fitting should
plausibly not depend on the analytical uncertainties on the
data as these are deemed insufficient to account for the ob-
served scatter. A clear-cut and robust way to proceed is then
to discard the analytical uncertainties and rely on the scatter 40

of the data – specifically the spine width – to provide the data
uncertainties.

Model 2 in Isoplot provides a framework for how to
proceed. As outlined in the Appendix of Powell et al. (2020),
for the Isoplot model 2, in which analytical uncertainties 45

are discarded, data are fit y on x, and x on y, and the results
combined, circumventing the potentially deleterious effects
of error-in-variables effects (e.g. Fuller, 1987). In Isoplot,
such calculations are done by applying ordinary least squares
in the two calculations, giving the slopes, byx and 1/bxy , re- 50

spectively, with the combined slope being given by

b =±
√
byxbxy =±

√∑
(yk − y)2∑
(xk − x)2 (C1)

and

a = y− bx (C2)

(see Powell et al., 2020, for notation and details). 55

In the equivalent of model 2 using the spine algorithm,
the analytical uncertainties are discarded, then the spine
width is calculated from the scatter of the data about the
line, s = nmad(e). The development in Appendix B of Pow-
ell et al. (2020) can be applied as is to the two calculations 60

required: y on x and x on y, except that the two definitions
need to be changed: Eq. (B5)2 should involve We with di-
agonal elements, 1/s, and Eq. (B13) should involve W with
diagonal elements, w(rk)/s2.

Applying the spine algorithm in the above-modified form 65

to fitting y on x and x on y allows the slope b =±
√
byxbxy

and the intercept a to be calculated, as in Appendix A3 of
Powell et al. (2020). The covariance matrix for each slope
and intercept can be calculated by Eq. (B17). Combination
into a covariance matrix for {a,b} requires the observation 70

that byx and bxy are uncorrelated. An error propagation is
then straightforward to b, and in fact a good approximation
is generally given by adding the constituent covariance ma-
trices and dividing by 4.

2The equation numbers here refer to those in Powell et al.
(2020).
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