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Abstract.

Initial radioactive disequilibrium amongst intermediate nuclides of the U decay chains can have a significant impact on the

accuracy of U-Pb ages, especially in young samples. For samples that can reasonably be assumed to have attained radioactive

equilibrium at the time of analysis, a relatively straightforward correction may be applied. However, in younger materials where

this assumption is unreasonable, it is necessary to replace the familiar U-Pb age equations with more complete expressions5

that account for growth and decay of intermediate nuclides through time. DQPB is software for calculating U-Pb ages while

accounting for the effects of radioactive disequilibrium among intermediate nuclides of the U decay chains. The software

is written in Python and distributed both as a pure Python package and a stand-alone GUI application that integrates with

standard Microsoft Excel spreadsheets. The software implements disequilibrium U-Pb equations to compute ages using various

approaches, including concordia intercept ages on a Tera-Wasserburg diagram, U-Pb isochron ages, Pb∗/U ages based on10

single aliquots, and 207Pb-corrected ages. While these age calculation approaches are tailored toward young samples that

cannot reasonably be assumed to have attained radioactive equilibrium at the time of analysis, they may also be applied to

older materials where disequilibrium is no longer analytically resolvable. The software allows users to implement a variety of

regression algorithms based on both classical and robust statistics approaches, compute weighted average ages, and construct

customisable, publication-ready plots of U-Pb age data. The regression and weighted average algorithms implemented in DQPB15

may also be applicable to other (i.e., non-U-Pb) geochronological datasets.

1 Introduction

With the exception of major uranium-bearing phases, rocks and minerals younger than a few million years were once consid-

ered virtually inaccessible to U-Pb methods owing to difficulties inherent in measuring the small quantities of radiogenic Pb

generated over such short time periods (Getty and DePaolo, 1995). However, analytical advances over the past two decades,20

including improvements in pre-screening (Rasbury and Cole, 2009), sample preparation (e.g., Engel et al., 2020), and mass

spectrometry (e.g., Getty and DePaolo, 1995; Woodhead et al., 2006; Sakata et al., 2014), have opened up the possibility of

accurately and precisely dating materials as young as Late Pleistocene age. These methodologies are now widely applied to

radiogenic-Pb rich minerals including zircon (e.g., Paquette et al., 2019), as well as common-Pb rich materials such as car-

bonates (e.g., Richards et al., 1998), using both bulk, and laser-ablation/SIMS sampling techniques. In addition to analytical25
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challenges in applying the U-Pb geochronometer to such young materials, another major issue lies in the need to accurately

account for the effects of initial radioactive disequilibrium among intermediate nuclides of the U-series decay chains. For older

samples the effects of initial disequilibrium are often small relative to the precision of individual age determinations, but in

younger materials, failure to correct for these effects can lead to large inaccuracies in final calculated ages (Ludwig, 1977;

Schärer, 1984).30

Secondary carbonates, such as speleothems, are well-known to be deposited out of radioactive equilibrium with respect to
234U/238U, reflecting the 234U/238U ratios in the parent waters from which they form (Osmond and Cowart, 1992). More-

over, the insolubility of Th and Pa in these parent waters leads to their near exclusion from newly precipitated carbonate,

causing an additional component of disequilibrium (Richards et al., 1998). On the other hand, igneous minerals formed in

high-temperature environments tend to be crystallised at, or very close to, radioactive equilibrium with respect to 234U/238U,35

but out of equilibrium with respect to Th and Pa (Schoene, 2014). For example, minerals such as zircon tend to crystalise with
230Th/238U ratios below radioactive equilibrium, and initial 231Pa/235U ratios in excess of radioactive equilibrium (Schmitt,

2007), whereas Th-rich phases, such as monazite, tend to crystalise with 230Th/238U ratios in excess of radioactive equilib-

rium (Schärer, 1984). Over time, any initial excess or deficiency of intermediate nuclides gradually decreases as the U decay

chains evolve toward radioactive equilibrium, eventually reaching a point after about six to eight half-lives where disequilib-40

rium effects are too small to be measured using current analytical techniques. For carbonates, this is typically 1.5 to 2 Ma for

both 234U/238U and 230Th/238U since evolution of 230Th toward equilibrium is constrained to follow that of the preceding

nuclide 234U. For high-temperature minerals formed in equilibrium with respect to 234U/238U but out of equilibrium with

respect to 230Th/238U, this age limit is typically closer to ∼ 0.5 Ma.

There are two main approaches to accounting for the effects of radioactive disequilibrium on U-Pb ages. The first of these45

is applicable to samples that can reasonably be assumed to have attained radioactive equilibrium at the time of analysis. This

involves correcting Pb∗/U isotope ratios (where * denotes radiogenic Pb formed in situ by decay of U) for any excess or

deficiency of intermediate nuclides relative to their radioactive equilibrium values (Schärer, 1984; Parrish, 1990). In a closed

system, each daughter nuclide in initial excess or deficiency of equilibrium will cause an equivalent over or under abundance of

Pb∗ once radioactive equilibrium is established (Mattinson, 1973). Therefore, it is possible to apply a relatively straightforward50

correction by adding or subtracting this excess or deficit of Pb∗, provided the initial disequilibrium state is known or can

be reliably estimated. Ages can then be computed using the regular U-Pb equations that disregard in-growth and decay of

intermediate nuclides.

However, for younger samples, which cannot be assumed to be in a state of radioactive equilibrium at the time of analysis,

it is necessary to replace the familiar U-Pb age equations with more complete expressions that can account for the growth55

and decay of intermediate nuclides through time. Equations of this form were first presented for the U-Pb system by Ludwig

(1977) based on Bateman’s (1910) general solution to differential equations describing time evolution of radionuclides for an

arbitrary linear decay chain. Later, Wendt and Carl (1985) presented an alternative version of these equations that includes

some simplifying assumptions, whilst Guillong et al. (2014) provide a similar equation that accounts for disequilibrium in a
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Figure 1. Comparison of U-Pb ages calculated using two different approaches: (i) ages corrected for disequilibrium assuming radioactive

equilibrium has been established at the time of analysis, and (ii) ages calculated using the more accurate disequilibrium U-Pb equations

which account for growth and decay of intermediate nuclides through time (e.g., Eq. 1 and 7). Age difference is given as age calculated via

approach i (assumed equilibrium at time of analysis) minus age calculated via approach ii (more accurate approach). The top panel shows a

comparison of zircon 206Pb/238U ages calculated assuming various DTh/U values (where DTh/U denotes the ratio of mineral–melt partition

coefficients). The bottom panel shows a comparison of Tera-Wasserburg concordia intercept ages for carbonate samples assuming various

initial [234U/238U] values (where square brackets denote activity ratios).

single intermediate nuclide only1. These “disequilibrium U-Pb” equations are general and can also be applied to older samples60

that have, in a practical sense, attained radioactive equilibrium at the time of analysis. On the other hand, inappropriate use

1For the 238U-206Pb decay series, the assumption inherent in this approach that 226Ra remains fixed at equilibrium with 230Th can lead to inaccuracy

on the order of ka when
[
230Th/226Ra

]
i

is significantly less than or greater than 1.
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of the Pb∗ correction approach described above can lead to large over- or under-correction, and thus inaccuracy in calculated

ages, over timescales similar to those in which analytically resolvable disequilibrium persists (Fig. 1).

As these more complete disequilibrium U-Pb equations are more cumbersome to implement than the conventional U-Pb

age equations, they are typically handled using specialised software or in-house computer code. Various approaches have been65

devised to achieve this. Isoplot (Ludwig, 2012) may still be the most widely used software in geochronology and contains

in-built functions based on Ludwig (1977) that can be used to calculate disequilibrium U-Pb ages as part of a spreadsheet-based

approach. However, this has a number of limitations. Firstly, Isoplot, which is distributed as an Excel add-in, is no longer

being maintained and is incompatible with recent versions of Excel. Secondly, the Isoplot licensing status is ambiguous,

and so it is unclear if the source code can be modified or extended, for example, to produce plots of disequilibrium U-Pb age70

data. Thirdly, numerical computing and plotting within the Excel environment is rather limited. More recently, other software

packages for handling disequilibrium U-Pb age data have been developed (Engel et al., 2019), or are in the developmental

stage (additions to the IsoplotR package of Vermeesch, 2018). However, this former solution runs on proprietary software

that isn’t widely used in geochronology, and the latter is not yet documented within the peer-review literature and does not

currently propagate disequilibrium correction uncertainties.75

Here we introduce DQPB, a software package for calculating disequilibrium U-Pb ages. DQPB implements the disequilibrium

U-Pb equations outlined below to compute ages using approaches that are suited to various young sample types. The following

sections outline software functionality and discuss approaches that are implemented for age calculation, error propagation,

linear regression, weighted average calculations, and plotting.

2 Software overview80

DQPB is written in Python, an interpreted, high-level, general-purpose programming language that is rapidly gaining popularity

within the geosciences. DQPB is available both as a regular Python package and a stand-alone application that does not require

users to have a separate Python distribution pre-installed (see Sect. 8 for further details). Python offers several advantages

as a language for scientific software development, including its open-source status, well-equipped libraries of functions and

routines for scientific computing, and relatively easy-to-read syntax (e.g., Oliphant, 2007). Being a general-purpose language,85

Python also offers significant advantages in developing stand-alone graphical user interface (GUI) based applications, when

compared to “domain specific” scientific languages such as MATLAB and R.

DQPB is built on the core Python scientific computing libraries NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020)

and Matplotlib (Hunter, 2007). It also takes advantage of PyQt to provide a modern GUI on macOS and Windows, and

xlwings to facilitate integration with Microsoft Excel. This allows users to select data from an open Excel spreadsheet,90

perform calculations via the graphical interface, and have results (both numeric and figures) output to the same spreadsheet

once computations are complete. In this way, it emulates the ease of use of the popular Isoplot program (Ludwig, 2012). As

is common practice with open-source software, all Python source code is available for viewing, download, and modification,

via an online code repository (see Sect. 8).
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3 Disequilibrium U-Pb age calculations95

DQPB employs the equations of Ludwig (1977) to calculate U-Pb ages and plot disequilibrium age data. These equations were

initially derived by Ludwig from a form of Bateman’s (1910) solution that assumes zero initial abundance of all intermediate

daughter nuclides and independently considers in-growth of Pb∗ from decay of the primordial parent and each preceding inter-

mediate nuclide in the decay series (see also Ivanovich and Harmon, 1992; Neymark et al., 2000). These separate components

are then summed, or “superposed” (Bateman, 1910), to obtain the total quantity of Pb∗ as a function of age, t.100

Following this approach for the 238U decay chain, and ignoring intermediate nuclides with a half-life less than or equal to

that of 210Pb (i.e., ∼ 22 a), results in an equation of the form:

F = F1 +F2 +F3 +F4, (1)

where F =206 Pb∗/238U, and each term represents in-growth from the primordial parent (subscript 1) and initial abundances

of each preceding intermediate daughter nuclide in the decay chain (subscripts >1). In full, these individual components are105

F1 = eλ238t
(
c1e
−λ238t + c2e

−λ234t + c3e
−λ230t + c4e

−λ226t1
)

(2)

F2 =
λ238

λ234

[
234U
238U

]
i

eλ238t
(
h1e
−λ234t +h2e

−λ230t +h3e
−λ226t + 1

)
(3)

F3 =
λ238

λ230

[
230Th
238U

]
i

eλ238t
(
p1e
−λ230t + p2e

−λ226t + 1
)

(4)

F4 =
λ238

λ226

[
226Ra
238U

]
i

eλ238t
(
1− e−λ226t

)
(5)

where square brackets denote activity ratios, i denotes initial ratio, and c, h, and p, are Bateman coefficients given by Eq. (6)110

in Ludwig (1977), i.e.,

ci/hi/pi =

∏n−1
j=1 λj∏n

j=1
i6=j

(λj −λi)
(6)

where n is the number of nuclides in the part of the decay chain under consideration (this includes 206Pb, for which λ= 0, but

excludes any preceding nuclides for h and p). Similarly, for the 235U decay chain we have

G=G1 +G2 (7)115

where G=207 Pb∗/235U and

G1 = eλ235t
(
d1e
−λ235t + d2e

−λ231t + 1
)

(8)

G2 =
λ235

λ231

[
231Pa
235U

]
i

eλ235t
(
1− e−λ231t

)
(9)

where d is Bateman coefficient defined in an equivalent manner to above. Identical equations may also be derived via

the matrix exponential approach (e.g., Albarède, 1995), or using the Laplace transformation (Catchen, 1984). However, we120
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have opted to preserve the original Bateman form for the purpose of clarity and because we see no advantage in adopting

these alternative forms here. These disequilibrium U-Pb equations may be employed to compute ages using single aliquot or

diagrammatic approaches in a similar fashion to the more familiar U-Pb equations, although they require numerical methods

to solve in all instances (see discussion below).

When dealing with materials young enough to retain
[
234U/238U

]
or
[
230Th/238U

]
values that are analytically resolvable125

from radioactive equilibrium, it is generally more accurate to use present-day (i.e., measured) activity ratios rather than assumed

initial values. This information can be incorporated into the above equations by employing an “inverted” form of the U-series

age equations, whereby initial activity ratios are expressed as a function of present-day ratios and t (Woodhead et al., 2006).

These equations may then be substituted into the disequilibrium U-Pb equations above and included in the numerical solving

procedure, resulting in a solution to both age and the initial activity ratio value. For example, this approach has been widely130

applied to Quaternary speleothems using measured
[
234U/238U

]
values (e.g., Woodhead et al., 2006; Pickering et al., 2011;

Bajo et al., 2012).

3.1 Pb∗/U and 207Pb-corrected ages

The most straightforward implementation of the disequilibrium U-Pb age equations outlined above involves treating each U

decay series independently to compute a radiogenic 206Pb/238U or 207Pb/235U age. This is achieved by solving135 (
206Pb∗

238U

)
meas.

−F = 0 (10)

or,(
207Pb∗

235U

)
meas.

−G= 0 (11)

where subscript meas. denotes a measured ratio corrected for blank and common Pb, and F and G are given above (Eq. 1–5,

and 7–9). This age calculation approach may be applied, for example, to compute 206Pb∗/238U ages in young, radiogenic-140

Pb rich minerals such as Quaternary zircons, provided common Pb is negligible or can be accurately corrected for (e.g., in

CA-TIMS studies, von Quadt et al., 2014).

Where common Pb is not negligible, or not amenable to accurate correction based on measurement of 204Pb-based ratios

(e.g., in samples analysed by ICP-MS techniques), a version of the 207Pb-corrected age employed by SIMS analysts (e.g.,

Williams, 1998) but modified to account for disequilibrium (Sakata, 2018), may be more practically useful. This approach,145

which is similar to the “single-aliquot” method of Woodhead et al. (2012) for calculating ages in high U/Pb speleothems, in-

volves plotting each data point, uncorrected for common-Pb and disequilibrium, on a Tera-Wasserburg diagram (207Pb/206Pb

vs. 238U/206Pb; Tera and Wasserburg, 1972), and projecting a line from a common initial 207Pb/206Pb value on the y-axis

intercept, through each data point to the disequilibrium concordia (Fig. 2). An intercept age may then be computed for each

data point, assuming concordance between the 238U and 235U decay schemes (Chew et al., 2011). This provides a means150

of correcting ages for common-Pb and disequilibrium in an internally consistent fashion. However, unlike the disequilibrium

concordia intercept approach outlined below (Sect. 3.3), the common Pb composition is not given by linear regression of the
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to common 
207Pb/206Pb = 0.83

measured data 
point

Figure 2. Graphical representation of a 207Pb-corrected age calculation. A straight line (blue) is projected from the initial 207Pb/206Pb

value at the y-axis intercept through the measured data point to the disequilibrium concordia curve, constructed here using DTh/U = 0.2 ±

0.1 (2σ) and DPa/U = 2.9 ± 0.8 (2σ). The dashed black lines represent uncertainties (95% CI) in the trajectory of the concordia arising due

to distribution coefficient uncertainties (see Sect. 6). Age markers along the disequilibrium concordia are shown as 95% confidence ellipses

(white), also accounting for distribution coefficient uncertainties. The 207Pb-corrected age of 275 ± 23 ka (95% CI) is represented by the

grey intercept ellipse (95% confidence). Note that the equilibrium concordia, if plotted, would appear as a horizontal line along the bottom

of this figure at y ≈ 0.046.

data points themselves and must be specified independently. For igneous minerals, this may be achieved using whole rock

measurements, analysis of Pb isotope ratios in co-genetic phases with high common-Pb/U ratios (e.g., K-feldspars), or model

estimates of average crustal Pb composition, such as that of Stacey and Kramers (1975).155

To compute disequilibrium U-Pb ages using these approaches, it is necessary to specify the initial radioactive disequilibrium

state of long-lived intermediate nuclides. For minerals that are assumed to have crystallised from a melt in secular equilibrium,

[230Th/238U]i may be computed accoding to the following relationship (e.g., McLean et al., 2011)[
230Th
238U

]
i

=
(Th/U)min.

(Th/U)melt

= DTh/U (12)

where min. denotes mineral and DTh/U is the ratio of mineral–melt partition coefficients (i.e., DTh/DU). An equivalent ex-160

pression may be written for [231Pa/235U]i. Based on this relationship, it is possible to account for disequilibrium in computing

U-Pb ages for co-genetic igneous minerals using one of two different approaches, each entailing different assumptions regard-

ing mineral–melt partitioning.

Approach (i) assumes that the Th/U elemental ratio of the melt is constant, but may vary across different grains. For this

approach, Th/Umelt is estimated from whole rock measurements (Schärer, 1984), or measured Th/U in co-genetic phases165

assumed to be representative of the original melt composition (e.g., volcanic glasses, Rioux et al. 2012). Th/Umin. values

are then determined based on either direct measurement of 232Th/238U in each mineral grain (e.g., in LA-ICPMS analyses,
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Guillong et al., 2014), or inferred from the radiogenic 208Pb/206Pb ratio and age using an iterative procedure (e.g., in TIMS

analyses, Crowley et al., 2007). Approach (ii), on the other hand, assumes that DTh/U is constant for all mineral grains, imply-

ing that Th/U of the magma may be heterogenous. For this approach, DTh/U values may be estimated based on experimental170

values or average values from geologically similar contexts (e.g., Sakata, 2018). For estimating [231Pa/235U]i values, the sec-

ond approach is more widely applicable owing to difficulties inherent in constraining Pa/U values of the melt, and more easily

justified for 207Pb-corrected ages owing to their lower sensitivity to this value (Sakata et al., 2017).

For a suite of co-genetic mineral grains that are thought to belong to a single statistical population, a weighted average

age may be computed using equivalent approaches to conventional U-Pb ages. However, in the case of disequilibrium ages,175

uncertainty in Th/Umelt for approach i outlined above, or DTh/U and DPa/U for approach ii, acts as a systemic component

of uncertainty, giving rise to correlated age uncertainties. These correlations can be non-trivial and should be considered

in any weighted average calculation to accurately propagate assigned uncertainties and avoid artificially deflating MSWD

(mean squared weighted deviation) (McLean et al., 2011). DQPB allows users to compute disequilibrium 206Pb∗/238U and
207Pb-corrected ages, specifying the initial disequilibrium state using either of the approaches above. For approach i, either180

a measured 232Th/238U or radiogenic 208Pb/206Pb ratio with analytical uncertainty is input for each aliquot along with a

common Th/Umelt value and uncertainty. For approach ii, a common DTh/U (DPa/U) value and uncertainty is input and

applied to all aliquots under the assumption that these uncertainties are perfectly correlated. Age uncertainties and uncertainty

covariances are then estimated either by Monte Carlo methods or analytical uncertainty propagation (see Sect. 5), and where

appropriate, weighted average ages accounting for this covariance structure may be computed using either classical or robust185

statistics approaches (see Sect. 4 for further details).

3.2 “Classical” U-Pb isochron ages

Disequilibrium 238U-206Pb and 235U-207Pb “classical” isochron ages may be computed for common-Pb rich samples by

numerically solving F − b= 0, or G− b= 0, where b is the slope of the isochron regression line on a 206Pb/204Pb vs.
238U/204Pb or 207Pb/204Pb vs. 235U/204Pb diagram respectively. For “classical” U-Pb isochron diagrams, isotope ratios are190

traditionally referenced to 204Pb, however, when dating young materials with very low 232Th abundance, such as carbonates

with low detrital content, it is also possible to reference to 208Pb instead under the assumption that 232Th has produced

negligible radiogenic 208Pb since the time of system closure (Getty et al., 2001). The two formulations are mathematically

equivalent, but the latter can be advantageous where accurate measurement of 204Pb proves difficult, such as in ICP-MS dating

of young samples (Engel et al., 2019). While U-Pb isochron approaches can be less reliable than concordia intercept ages195

(Ludwig, 1998), especially for young data sets incorporating the low abundance 204Pb isotope, they are offered in DQPB

because of their potential utility in computing ages for Pb-rich materials where the disequilibrium state of only one of the

U-series decay chains is well constrained.
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3.3 Concordia intercept ages

Concordia intercept ages are well-suited to Pb-rich materials such as carbonates and apatite that typically contain variable200

Pb∗/common-Pb ratios within individual growth horizons (Woodhead and Pickering, 2012; Chew et al., 2011; Engel and

Pickering, 2022). To compute ages using this approach, multiple co-genetic samples uncorrected for common Pb are plotted on

a Tera-Wasserburg diagram. If all samples (i) have remained closed to exchange of U-series isotopes post crystallisation, and

(ii) contain varying quantities of common Pb with an identical 207Pb/206Pb composition, and (iii) were initially crystallised in

the same disequilibrium state, they form a mixing line on a Tera-Wasserburg diagram between a purely radiogenic end-member205

lying on the concordia curve (the locus of all radiogenic Pb ICs through time) and a common Pb end-member at the y-axis

intercept (Tera and Wasserburg, 1972). When accounting for the effects of radioactive disequilibrium, the familiar equilibrium

concordia is replaced with a family of disequilibrium concordia constructs (e.g., Wendt and Carl, 1985), based on equations

x=
238U

206Pb∗
=

1

F
(13)

and,210

y =
207Pb∗

206Pb∗
= U−1Gx (14)

where U denotes the present-day natural 238U/235U ratio. Activity ratios may either be input directly into functions F andG as

initial values, or as present-day values via the inverted U-series equations as described in Sect. 3, and ages are then calculated

as the intersection of a regression line with the appropriate concordia curve, by solving

U−1G− aF − b= 0 (15)215

where a and b are the slope and y-intercept values obtained by linear regression of the data points. DQPB allows users to fit a

variety of regression models to Tera-Wasserburg data (Sect. 4), compute ages based on either initial or present-day intermediate

nuclide activity ratios values, and construct customisable plots of the disequilibrium concordia intercept ages (e.g., Fig. 3).

3.4 “Forced-concordance” initial
[
234U/238U

]
values

DQPB also implements a version of the “forced concordance” routine of Engel et al. (2019), which targets closed-system220

samples where the initial 234U/238U activity ratio is unknown, but activity ratios of other long-lived intermediate nuclides

(i.e., [230Th/238U] and [231Pa/235U]) are reliably constrained (e.g., very low initial Th carbonates). The routine determines

the
[
234U/238U

]
value that forces concordance between the 235U–207Pb and 238U–206Pb decay schemes, and outputs this

value along with its uncertainty computed by Monte Carlo methods. This algorithm may be useful for characterising initial[
234U/238U

]
values for particular geological contexts (e.g., cave sites when dating carbonate speleothems) where all available225

samples lie beyond the range of measurable disequilibrium.
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(a)

(b)

Figure 3. Example of Tera-Wasserburg concordia intercept age plots for Middle-Pleistocene stalagmite CCB (see Sect. 7.1 for further

details). (a) Plot showing the spine linear regression fit to data (red line), with dashed red lines indicating uncertainties (95% confidence).

Measured data points (white 95% confidence ellipses), exhibit a strong negative uncertainty correlation due the effects of blank subtraction

(Woodhead et al., 2012). (b) Enlarged view of the concordia intercept. The disequilibrium concordia line (black) is constructed using a

measured [234U/238U] value of 0.9512 ± 0.0013 (2σ), with initial activity ratios for other intermediate nuclides assumed equal to 0.

The dashed black lines indicate uncertainties (95% confidence) arising from uncertainty in this measured [234U/238U] value. The black

diagonal lines represent 95% confidence age ellipses, which are collapsed to straight line segments because there is no uncertainty assigned

to [231Pa/235U] (see Sect. 6). The grey “intercept ellipse” (95% confidence) is representative of the 106 simulated concordia intercept points

from the Monte Carlo simulation.

4 Linear regression and weighted average age protocols

Linear regression and weighted average age algorithms capable of accounting for analytical uncertainties and accommodating

the possibility of “excess scatter” (i.e., scatter in excess of that attributable to assigned analytical uncertainties) are crucial
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to attaining reliable U-Pb ages. DQPB offers two distinct approaches to performing linear regression and computing weighted230

averages. The first of these (Sect. 4.1) is rooted in a classical statistics paradigm and emulates the default protocols of Isoplot

(Ludwig, 2012). The second approach (Sect. 4.2) takes advantage of recent developments in the application of robust statistics

to geochronology, implementing the spine algorithm of Powell et al., (2020) as well a weighted average variant of this

algorithm (the “spine” weighted average), and a newly developed robust regression algorithm (the “robust model 2”). Although

users are free to choose the most appropriate algorithm for their particular data set, the spine linear regression and weighted235

average algorithms are set as the default because they are considered suitable for a wider range of datasets than their classical

statistics-based counterparts.

4.1 Classical statistics approaches

For the classical statistics-based approach, linear regression and weighted averaging of data is first performed using algo-

rithms that weight data points according to assigned analytical uncertainties, under the assumption that these are the only240

source of data point scatter. For linear regression, this involves implementing the error-weighted least-squares algorithm of

York et al. (2004), which yields equivalent results to the original algorithm of York (1969) with uncertainties on regression

parameters calculated following the Maximum-Likelihood Estimation (MLE) approach of Titterington and Halliday (1979).

For weighted average calculations, an uncertainty weighted least-squares algorithm is implemented, whereby individual data

points are weighted according to the inverse of their analytical variance, accounting for the uncertainty covariance structure245

where relevant (e.g., McLean et al., 2011). An apparent advantage of this classical approach is that it allows a statistic with a

well-established distribution, i.e., the MSWD, to be used to assess data point scatter in relation to measurement uncertainties,

under the assumption that residuals are strictly Gaussian distributed (Wendt and Carl, 1991). Probabilistic-based conclusions

can then be drawn regarding the likely presence (or not) of excess scatter.

Where the MSWD lies within a probabilistically acceptable range about 1, as indicated either by a confidence interval250

on MSWD (e.g., Powell et al., 2002), or equivalently, the “probability-of-fit” value (Ludwig, 2012), the initial least-squares

solution and analytical uncertainty-based standard errors are retained. However, if the MSWD value falls outside such limits,

the dataset is deemed likely to contain a component of excess scatter, which may be either “geological scatter” (variability in

initial Pb composition, open-system behaviour etc.) or some unaccounted-for component of analytical uncertainty. Provided

the MSWD is not unreasonably high, assigned analytical uncertainties likely still dominate the uncertainty budget, and, on255

this basis, the initial least-squares solution is retained, but uncertainties are inflated so as to reduce the MSWD to 1. For

linear regression fitting, this may be termed the “model 1x”, borrowing the terminology of Powell et al. (2020). On the other

hand, where the MSWD lies well outside a probabilistically acceptable range, the assumptions of the York fit or analytical

uncertainty-weighted average are clearly violated, and it is commonplace to either manually reject data points to restore scatter

to an acceptable range, or turn to alternative classical statistics-based approaches, for example, by employing the Isoplot260

model 2 or model 3 fits (Ludwig, 2012).

Although this classical-statistics approach is predominant within geochronology, it has some limitations. Firstly, the rejection

of outliers from small sample sizes typical in geochronology is notoriously difficult. Secondly, this approach relies on a stepwise
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mode of uncertainty handling, which is both conceptually unsatisfying and requires choice of arbitrary cut-off points, the values

of which can have a substantial impact on calculated ages and uncertainties (see Powell et al., 2020). Thirdly, MSWD is very265

sensitive to small departures in residuals from a strict Gaussian distribution, making it an overly sensitive indicator of excess

scatter for many real-world geochronological data sets, which are often slightly “heavy tailed” (Rock et al., 1987; Powell et al.,

2002). And lastly, the model 2 and 3 linear regression algorithms are not well-suited to all data sets. For example, the model

3 fit parameterises excess scatter as an external Gaussian-distributed component of scatter, an assumption that is difficult to

justify in the typical case where the precise cause of excess scatter is not well-established nor known to be strictly Gaussian270

(Ludwig, 2003). The model 2 fit, on the other hand, makes few assumptions regarding the statistical distribution of the excess

scatter, however, it weights all data points equally and does not account for analytical uncertainties at all.

4.2 Robust statistics approaches

Robust algorithms, which do not rely on the assumption of Gaussian distributed residuals, offer a means of addressing some

of the limitations of the classical statistics approach outlined above. Robust statistics approaches have previously been pro-275

posed in geochronology, including the median-of-medians linear regression algorithm (Siegel, 1982), which is implemented in

Isoplot (Ludwig, 2012), and weighted average algorithms of varying complexity (e.g., Rock et al., 1987; Ludwig, 2012).

While these algorithms are resistant to the effects of outliers, a limitation of these approaches is that they ignore analytical

uncertainties, leading to suboptimal results where these do in fact constitute a significant component of the total data point

scatter. The spine linear regression algorithm (Powell et al., 2020) improves on these previous robust approaches by account-280

ing for assigned analytical uncertainties, and exhibits a number of favourable properties that arguably make it more generally

applicable to geochronological datasets compared to the classical statistics approach.

The spine algorithm minimises a piece-wise objective function (the “Huber loss function”), whereby data points lying

along a central linear band (i.e., the “spine”) are given full weighting, but points falling outside this band are progressively

down-weighted according to their weighted residual. Uncertainties on regression parameters are calculated using a first-order285

error propagation approach and tend to increase smoothly with increasing data point scatter. Notably, in the case where all

data points lie within this central band, spine yields identical results to York, making this algorithm suitable for both “well

behaved” and excess scatter data sets, provided that the majority of data points comprise a well-defined linear array within

their uncertainties. In place of the MSWD, a robust metric called the spine width, s, is used to assess whether or not data point

scatter is commensurate with accurate use of this algorithm given assigned uncertainties. s is the median absolute deviation290

of weighted residuals, normalised to be equal to the standard deviation for a strictly Gaussian distribution (i.e., NMAD). This

statistic tends toward 1 for well-behaved data sets and may be used in a similar manner to the MSWD, although, in contrast to

MSWD, confidence intervals on s must be derived from simulation rather than from a formal statistical distribution (Powell et

al., 2020). DQPB outputs s along with this simulated upper 95% confidence bound (here denoted slim) allowing users to assess

if the central “spine” of data is sufficiently well-defined for use of this regression algorithm.295

For computing robust weighted averages, DQPB also offers a 1-dimensional variant of the spine linear regression algorithm,

termed the spine weighted average (see Appendix A). The spine weighted average is capable of accounting for assigned
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Figure 4. A comparison of the spine weighted average with the classical statistics weighted mean for Bishop Tuff zircon206Pb/238U ages

from Crowley et al. (2007). The black line shows the spine weighted average 206Pb/238U age of 767.59 ± 0.86 ka (95% CI), with this

uncertainty indicated by the light grey shading. The spine width, s, value for this data set is 1.31, which is within the upper 95% confidence

limit of s (slim = 1.42, n= 19), suggesting the data set contains a sufficiently well-defined “spine” of data points for use of this algorithm.

For comparison, the classical statistics weighted mean age is 767.85 ± 1.5 ka (95% CI) (MSWD= 4.43, n = 19), with this uncertainty

represented by the red hatched area. If the two oldest ages are treated as outliers, as for the preferred age in the original publication, the

classical weighted mean shifts to 767.06 ± 0.85 ka (95% CI) (MSWD= 1.3, n = 17). Note that age uncertainty covariances have not been

considered in this example, although the spine algorithm is capable of accounting for these where necessary (see Sect. 4).

analytical uncertainties, and like the classical least-squares approach, can accomodate uncertainty correlations among data

points. Analogously to the linear regression version, it gives full analytical weighting to data at the centre of the distribution,

and progressively down-weights data points lying away from this central “spine” according to the Huber loss function. In300

the case where data point scatter is commensurate with analytical uncertainties, the spine weighted average reduces to the

classical statistics weighted mean (e.g., Powell and Holland, 1988; McLean et al., 2011). Equivalently to the spine regression

algorithm, the quality of this central “spine” of data points can be assessed by considering s in relation to slim derived via

simulation of Gaussian distributed data sets (see Appendix B).

In addition to the spine linear regression algorithm, DQPB also offers a second robust linear regression approach for305

datasets that have an s value exceeding slim, but are still reasonably thought to have age significance (see Appendix C). This

regression algorithm, named the “Robust model 2”, is similar to the Isoplot model 2, but encompasses robust properties

which reduce the influence of outliers on the fitted line in a similar manner to spine. Although this algorithm discards

analytical uncertainties and provides less reliable age uncertainty estimates than spine, it is offered as a robust alternative to

the model 2 and 3 fits discussed above, as it is expected to be applicable to a wider range of data sets.310
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5 Age uncertainty propagation

First-order analytical uncertainty propagation is a suitable method for computing U-Pb age uncertainties in cases where input

variables (e.g., Pb/U measurements, regression fit parameters, and activity ratios) have relatively small uncertainties, and the

age equation is linear with respect to these variables within the neighbourhood of the age solution (e.g., Barlow, 1989). How-

ever, this approach can be inaccurate where uncertainties on input variables are larger, and the linear approximation breaks315

down. For example, applying analytical uncertainty propagation to isochron or concordia intercept ages with large regression

fitting uncertainties can result in inaccurate age uncertainties, because the age solution PDF (probability density function) can

be markedly asymmetric.

Monte Carlo simulation is an alternative approach to propagating U-Pb age uncertainties, which is not reliant on a linear

approximation. With this approach, input variables are randomly sampled from within their PDFs (typical Gaussian or mul-320

tivariate Gaussian distributions) for each trial, and an age is calculated. This procedure is then repeated many times to build

up an estimate of the output age PDF, from which summary statistics (e.g., standard deviation or confidence intervals) can be

estimated. Monte Carlo simulation is capable of accounting for asymmetric age distributions and can provide accurate results

even when uncertainties on input variables are large (e.g., Albarède, 1995). However, a potential drawback of the Monte Carlo

approach is that, owing to its stochastic nature, it requires a large number of trials to produce numerically accurate and sta-325

ble results, making it more computationally intensive than analytical approaches. The reliability of Monte Carlo uncertainty

estimates scales with the number of trials. Although the number of trials required to produce 95% confidence intervals that

are accurate to about 2 significant digits depends on the shape of the output age PDF, 105–106 trials are typically sufficient

(e.g., JCGM, 2008). For most age calculations in DQPB, Monte Carlo uncertainty calculations involving 105–106 trials are

completed in a matter of seconds, although, calculations can take longer in cases where either uncertainties on input variables330

are very large, there is a high proportion of trials with non-convergent age solutions, and/or a large number of single-aliquot

ages are computed simultaneously. DQPB allows users to adjust the number of Monte Carlo trials. By default, this is set to

5× 104 for convenience, but it is recommended that users increase this to ∼ 106 when computing final age uncertainties by

Monte Carlo simulation.

5.1 Monte Carlo uncertainties335

DQPB offers Monte Carlo uncertainty propagation for all disequilibrium U-Pb age types. For concordia intercept and “classical”

isochron datasets fitted either using robust or model 1 algorithms, regression parameters are randomised within uncertainties

according to a multivariate Gaussian distribution for each trial, accounting for uncertainty correlation between the slope and

y-intercept. For model 1x, model 2 and model 3 fits, (i.e., “excess scatter” fits) regression parameters are instead randomised

within their “observed scatter” uncertainties, i.e., 1σ analytical uncertainties multiplied by
√

MSWD according to a bivariate340

t distribution with n− 2 degrees of freedom, n being the number of data points. Activity ratios, either as initial or present-day

values, are then randomised according to univariate Gaussian distribution, and an age is computed for each combination of

inputs. In cases where a present-day activity ratio value is given, the initial activity ratio value is also computed for each trial
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as part of the numerical solving procedure. Age uncertainties are reported as a 95% confidence interval, estimated from the 2.5

and 97.5 percentiles of simulated ages.345

The application of Monte Carlo uncertainty propagation to disequilibrium ages computed using a present-day (i.e., mea-

sured) activity ratio values that are not clearly resolvable from radioactive equilibrium (i.e., where the activity ratio PDF sig-

nificantly overlaps the radioactive equilibrium value), can produce unreliable results. This is because random samples drawn

from the overlapping part of the measured activity ratio PDF tend to produce non-convergent age solutions, and this may

bias the output age distribution. To address this issue, DQPB performs two checks to verify that the input data are suitable350

for Monte Carlo uncertainty propagation. The first check is performed prior to commencing the simulation and ensures that

the measured activity ratio values are analytically resolvable from equilibrium with 95% confidence. Where this criterion is

not met, a warning is displayed to the user, and the Monte Carlo simulation does not proceed. The age is still reported, but

the uncertainties are listed as undefined. The second check, which is performed after a Monte Carlo simulation is completed,

verifies that a minimum number of trials were successful (the default value is set to 97.5%). Where this second criterion is355

not met, the software displays a warning that Monte Carlo simulation results may be unreliable and should not be used. This

second warning may also be triggered if the PDF of an initial activity ratio significantly overlaps negative values (e.g., if the

value of an initial activity ratio is assigned a value close to zero with some uncertainty), which may also lead to unreliable age

uncertainty estimates.

For multiple co-genetic Pb∗/U and 207Pb-corrected ages, an approach similar to Renne et al. (2010) is used to account360

for systematic components of uncertainty. With this approach, isotope ratios for each data point are first randomised within

their individual analytical uncertainties according to a Gaussian distribution (or a multivariate Gaussian distribution for 207Pb-

corrected ages). Variables that contribute a systematic component of uncertainty, such as distribution coefficients or Th/Umelt

ratios (and initial 207Pb/206Pb values for 207Pb-corrected ages) are then randomised within their uncertainties once per trial,

and this common value is used to compute an age for each data point. This procedure results in an m-by-n array of simulated365

ages (where m is the number of Monte Carlo trials and n is the number of single-aliquot ages) displaying the covariance

resulting from their common dependence on these variables (e.g., Renne et al., 2010). Age uncertainties on individual aliquots

are reported as 95% confidence intervals and age covariances are estimated from simulated ages for each of the n data points,

resulting in an n-by-n age covariance matrix. Where appropriate, this covariance structure is then used in subsequent weighted

average age calculations.370

5.2 Analytical uncertainty propagation

In addition to Monte Carlo uncertainty propagation, DQPB offers first-order analytical uncertainty propagation for Pb∗/U and
207Pb-corrected ages. While Monte Carlo methods can provide more accurate age uncertainties for these age types when

uncertainties on input variables are large and result in asymmetric age distributions (as discussed above), such asymmetries

are not typically accounted for in computing weighted averages. Although it is possible in principle to account for the effects375

of asymmetries in weighted averages, such approaches are not yet well developed in geochronology. At the same time, the

computation time required to implement Monte Carlo uncertainty propagation for large n (number of aliquots) and large
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m (number of trials) can be much more significant than for diagrammatic ages. For these reasons, analytical uncertainty

propagation may be preferable for these age types provided uncertainties on input variables are relatively small, and/or age

uncertainties on all data points are known to be approximately Gaussian. DQPB implements a matrix-based approach for380

analytical uncertainty propagation that accounts for the effect of random and systematic components of uncertainty on each

aliquot and keeps track of all covariance terms (e.g., McLean et al., 2011). This approach allows the age covariance structure

to be easily computed and used in subsequent weighted average age calculations in an equivalent manner to Monte Carlo

approach discussed above.

6 Data visualisation and plotting385

DQPB outputs customisable plots for all diagrammatic and weighted average U-Pb age calculations. For isochron and concordia

ages, a plot of the linear regression fit is provided showing data points as 95% confidence ellipses along with the regression

line and a 95% confidence band on the regression fit. This confidence band is plotted using the approach of Ludwig (1980)

for model 1–3 fits and Monte Carlo simulation for robust fits (e.g., Fig. 3a). For concordia intercept ages, an additional plot

is also provided showing an enlarged view of the intersection between the isochron and the disequilibrium concordia curve390

(e.g., Fig. 3b). The intercept points of all Monte Carlo simulated ages are also shown on this plot, either as m x-y points, or

plotted as a single 95% confidence ellipse representing the population of simulated intercept points. For 207Pb-corrected ages,

data points are plotted on a Tera-Wasserburg diagram. If DTh/U and DPa/U are input as constant values for all data points, a

disequilibrium concordia curve may also be plotted along with projection lines from the common Pb point through each data

point to its concordia intercept (e.g., Fig. 5a).395

For disequilibrium concordia curves on concordia intercept plots, age markers may either be plotted as point markers, or as

“age ellipses” that represent uncertainty in x-y for a given t value arising from uncertainty in activity ratio values. Where there

is uncertainty in activity ratios for both the 238U and 235U decay series, these “age ellipse” markers are true ellipses, akin to

those representing decay constant uncertainties on an equilibrium Tera-Wasserburg concordia diagram (Ludwig, 1998). On the

other hand, where there is activity ratio uncertainty assigned to only one of the U decay schemes, these age ellipses collapse400

to line segments with a slope equivalent to the Tera-Wasserburg “isochron” lines described in Eq. 7 of Wendt and Carl (1985).

A 95% confidence band representing uncertainty in the trajectory of the concordia curve arising from uncertainty in activity

ratios may also be plotted, based on Monte Carlo simulation. DQPB allows users to customise a wide range of plot settings,

export figures in a variety of image file formats, and access all numeric data used to construct plots via output to a new Excel

spreadsheet (see Supplementary Information for further details).405
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7 DQPB usage examples

7.1 Concordia intercept speleothem age

Despite their relatively low U content, clean (i.e., with low detrital content) carbonates, such as speleothems, can be well-

suited to U-Pb dating provided they contain relatively high U/Pb ratios and spread in U/Pb ratios within individual growth

layers (Woodhead et al., 2012). Here we demonstrate computation of a concordia intercept age for a Middle Pleistocene410

speleothem CCB from Corchia Cave, Italy, based on solution MC-ICPMS analyses. The sample is young enough to retain a[
234U/238U

]
ratio which is analytically resolvable from equilibrium but lies just beyond reach of the 230Th geochronometer

using routine methods. A measured 234U/238U activity ratio of 0.9512± 0.0013 (2σ) was used in the age calculation, obtained

via MC-ICPMS (Hellstrom, 2003). Speleothems from this cave site consistently exhibit very low detrital-Th (as reflected in
232Th/230Th ratios; Drysdale et al., 2012) and thus the initial [230Th/238U] is assumed equal to zero. The initial activity415

ratios for other intermediate nuclides are likewise assumed equal to zero. The data are regressed using the spine algorithm,

which in this case returns equivalent results to the York algorithm (Fig. 3a). A lower intercept age of 580± 7.9 ka (95% CI)

is computed, along with an initial
[
234U/238U

]
value of 0.749± 0.010 (95% CI). Age uncertainties are estimated by Monte

Carlo simulation using 106 trials (Fig. 3b).

7.2 Quaternary zircon 207Pb-corrected ages420

In this example, we demonstrate a 207Pb-corrected age calculation for a suite of zircons from the Sambe-Kisuki tephra (Shuhei

Sakata, unpublished data), which is thought to have erupted approximately 100 ka ago from the Sambe volcano located in

Shimane prefecture in the west of Japan. Analyses were performed by multi-collector LA-ICPMS using a method similar to

Hattori et al. (2017). Disequilibrium ages were calculated following approach i outlined in Sect. 3.1 using a DTh/U value of

0.2 ± 0.03 (2σ), a DPa/U value of 2.9 ± 1.0 (2σ), and a common 207Pb/206Pb value based on the two-stage model of Stacey425

and Kramers (1975). With this approach uncertainties in DTh/U and DPa/U are propagated as purely systematic components

of uncertainty. Age uncertainties were calculated by Monte Carlo simulation, using 106 trials for each age point (Fig. 5a).

These uncertainties are identical (within the quoted number of significant figures) to those obtained by analytical uncertainty

propagation.

Computing a weighted average using a classical statistics approach (accounting for uncertainty correlations), gives a weighted430

mean age of 96.6± 39 ka (95% CI), with an MSWD of 3.54, indicating a very high probability of excess scatter in the dataset

under the assumption of Gaussian distributed residuals. On the other hand, the robust spine weighted average algorithm

gives a weighted average age of 94.2± 10.9 ka (95% CI) (Fig. 5b), with a s value of 1.28 which lies within the upper 95%

confidence limit of s (slim = 1.57, n= 6). This suggests that there is sufficiently well-defined “spine” of data at the centre of

the distribution for use of this algorithm, and thus the weighted average is likely to carry age significance under the assumption435

that crystallisation of these zircons constitutes a geologically discrete event (e.g., see Ickert et al., 2015). Note, the spine

weighted average algorithm down-weights the single point lying away from the average age line, and thus it has little influence
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(a)

(b)

Figure 5. Example of 207Pb-corrected age plots. (a) Data ellipses plotted on a Tera-Wasserburg diagram as 95% confidence ellipses (green).

The black line shows the disequilibrium concordia constructed using DTh/U = 0.2± 0.03(2σ) and DPa/U = 2.9± 1.0(2σ), with dashed

black lines indicating uncertainty bounds (95% CI). Concordia markers are plotted as 95% age ellipses, representing x-y uncertainty for a

given age due to uncertainty in distribution coefficients. The dashed blue lines show a line projecting from the common Pb point at the y-

intercept (207Pb/206Pb = 0.836) through the centre of each data point to its intercept with the disequilibrium concordia. (b) Plot of individual
207Pb-corrected ages. The dark blue bars indicate age uncertainties (2σ) accounting for random analytical uncertainties only, while the larger

white bars show combined random and systematic uncertainties (2σ) (i.e., including components due to uncertainty in DTh/U and DPa/U

values). The black line shows the weighted average age computed using the robust spine algorithm which accounts for the age covariance

structure, with the light grey shading indicating a 95% confidence interval on this weighted average. Initial disequilibrium corrections were

applied assuming constant distribution coefficient ratios, i.e., approach i in Sect. 3.1, treating uncertainties in DTh/U and DPa/U as purely

systematic uncertainties.
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on the computed weighted average. For comparison, excluding this point gives a classical weighted average age of 92.1± 6.3

ka (95% CI) with an MSWD of 0.55.

8 Availability and distribution440

DQPB is released under a MIT license, permitting modification of the source code and re-distribution with minimal restrictions.

The source code may be viewed via an online code repository (see: https://github.com/timpol/DQPB). This repository also

contains links to downloadable installers for macOS and Windows and online documentation. Suggestions for bug fixes and

new features, as well as pull requests, are also accepted via this repository.

In addition to the stand-alone GUI version of the software, DQPB is also available as part of a pure Python package named445

pysoplot, offering greater flexibility for more experienced Python users. The pysoplot package is hosted at a separate

online repository (see: https://github.com/timpol/pysoplot) and is available via pip (the package installer for Python) – see:

https://pypi.org/project/pysoplot/.

9 Conclusion

This paper introduces DQPB, an open-source software package for calculating disequilibrium U-Pb ages. The software im-450

plements disequilibrium U-Pb equations to compute ages using various approaches, including disequilibrium Pb∗/U ages

based on single aliquots, U-Pb isochron ages, and concordia intercept ages on a Tera-Wasserburg diagram. Various linear re-

gression and weighted average age algorithms are implemented in the software, including those based on both classical and

robust statistics, and high quality “publication ready” figures are output. A key feature of the stand-alone GUI based version

of the software is that it allows close integration with Microsoft Excel and thus continues the legacy of Isoplot in allowing455

straightforward interaction with U-Pb datasets from within a simple spreadsheet environment. DQPB is free open-source soft-

ware, and all source-code is available for viewing and download via an online repository. For more experienced Python users,

DQPB is available as part of a pure Python package, which may be downloaded and modified with minimal restrictions to meet

individual requirements. This software will continue to be developed under an open-source model and new features will be

added in the future.460

Appendix A: spine robust weighted average

Following the logic of Powell et al. (2020) for the 2-dimensional case, a robust spine weighted average accounting for analytical

uncertainties may be obtained for 1-dimensional data (e.g., multiple coeval ages). To achieve this in the general case where

correlated age uncertainties are permitted, it is first necessary to express weighted residuals in an uncorrelated form. In the

classical statistics solution (e.g., Powell et al., 1988, McLean et al., 2011), the weighted average age is obtained by finding t̄,465
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that minimises the sum of squared weighted residuals:

S = (t− t̄1)Vt
−1 (t− t̄1) (A1)

where t is a column vector of ages, 1 is a column vector of ones, and Vt is the uncertainty (covariance) matrix of the ages. To

apply the Huber loss function, which is defined as

ρ(rk) =

rk
2 if |rk| ≤ h

2hrk −h2 |rk|> h,
(A2)470

where rk is the weighted residual of the kth data point and h= 1.4, the sum of weighted residuals must first be recast as a sum

of uncorrelated weighted residuals. This may be achieved via eigen-decomposition of the covariance matrix:

Vt = QΛQT (A3)

where Λ is the eigenvalue matrix consisting of positive eigenvalues on the diagonals and Q is the eigenvector matrix. From

this we obtain,475

Vt
−1/2 = QΛ−1/2QT , (A4)

which can be substituted into equation A1 to give

S = rTr, (A5)

where r is a column vector of weighted residuals, given by:

r = Vt
−1/2 (t− t̄1) . (A6)480

Following the approach in Powell et al., (2020), we minimise
∑
ρk by finding the t̄ value that solves

1TVt
−1/2ψ (r) = 0, (A7)

where,

2ψ =
∂ρ

∂rk
. (A8)

This is achieved using an iterative re-weighting procedure, whereby the weight function w(rk) = ψ(rk)/rk is introduced,485

resulting in

1TWe = 0 (A9)

with,

e = t− t̄ (A10)
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and,490

W = WhVt
−1, (A11)

such that Wh is a diagonal matrix having w(rk) as the kkth element. This combines the weighting from w with the weighting

from the correlated uncertainties on t. Re-arranging this gives an expression equivalent to equation B13 in Powell et al., (2020),

t̄= 1TWt
(
1TW1

)−1
(A12)495

which can be solved by iteration from a robust starting point (e.g., Maronna, 2019). Analogous to the development of B17 in

Powell et al., (2020), uncertainties on t̄ are then computed by first-order uncertainty propagation as

σt̄ =
1√

1TVt
−1I′1

(A13)

where I′ = diag(ψ̇(r)).

In the case where all |rk|< h, then ψ(r) = r, Wh = Vt
−1, and I′ = I, so500

t̄= 1TVt
−1t

(
1TVt

−11
)−1

(A14)

and,

σt̄ =
1√

1TVt
−11

(A15)

yielding the classical statistics result.

Appendix B: spine weighted average s simulations505

To assess whether the central “spine” of data points is sufficiently well-defined to obtain a meaningful weighted average, we

compare the spine width, s, to its upper 95% confidence limit bound derived via simulation of Gaussian distributed datasets.

Simulations were performed using sample sizes, n, ranging between 5–100 data points. For each n, 106 pseudorandom samples

were drawn from a standard normal distribution. s values were computed for each sample, and confidence limits on s were

estimated based on relevant percentiles (see Table B1). Odd and even n are considered independently in order to account for510

the effect of small sample bias inherent to NMAD (e.g., Hayes et al., 2014). The impact of different uncertainty covariance

structures on s were also examined, and found to have a negligible effect on these confidence limits.

Appendix C: Robust model 2

The robust data-fitting algorithm in Powell et al. (2020) in the 2-dimensional case, and above, in Appendix A, in the 1-

dimensional case, are predicated on the one-sided confidence intervals on the spine width (in Table 1, last column of Powell515
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Table B1. Simulated 95% confidence intervals for
√
MSWD and s (spine width) as a function of the number of data points, n, where *

denotes a one-sided upper 95% confidence limit. The results for MSWD are equivalent to those obtained from formal statistical tables. DQPB

outputs the one-sided upper 95% confidence limit on s (denoted slim in the software) to evaluate suitability of the spine weighted average

algorithm for a particular data set. DQPB also outputs equivalent values for the spine linear regression which are given in Table 1 of Powell

et al. (2020).

n

√
MSWD s

Low High * Low High *

5 0.348 1.669 1.540 0.12 1.94 1.72

7 0.454 1.552 1.449 0.22 1.83 1.65

9 0.522 1.481 1.392 0.29 1.74 1.59

15 0.634 1.366 1.301 0.43 1.59 1.47

29 0.739 1.260 1.215 0.58 1.42 1.34

59 0.818 1.181 1.151 0.70 1.30 1.24

6 0.408 1.602 1.488 0.21 1.75 1.57

8 0.491 1.513 1.412 0.29 1.70 1.55

10 0.548 1.454 1.371 0.35 1.65 1.52

16 0.646 1.354 1.291 0.46 1.54 1.44

30 0.744 1.256 1.211 0.60 1.41 1.33

60 0.820 1.180 1.149 0.71 1.29 1.24

et al., 2020), and in Table B1 here). The calculation of age, and particularly the uncertainty on age, is appropriate for the case

where a dataset gives a spine width that is consistent with the confidence interval.

Not covered is how best to proceed if in fact a dataset is not consistent with the confidence interval. Whereas the argument

developed in Powell et al. (2020), and, by extension here, is that datasets which are consistent with this interval are likely to

have age significance, this becomes progressively more awkward to argue as the spine width increases. The view taken in this520

section is that the calculations advocated are for datasets that are considered to have age significance, commonly by geological

inference, even though the spine width is outside the confidence interval.

Once the spine width is too large, the data-fitting should plausibly not depend on the analytical uncertainties on the data as

these are deemed insufficient to account for the observed scatter. A clear-cut and robust way to proceed is then to discard the

analytical uncertainties and rely on the scatter of the data—specifically the spine width—to provide the data uncertainties.525

Model 2 in Isoplot provides a framework for how to proceed. As outlined in the Appendix of Powell et al. (2020),

for the Isoplot model 2, in which analytical uncertainties are discarded, data are fit y on x, and x on y, and the results

combined, circumventing the potentially deleterious effects of error-in-variables effects (e.g., Fuller, 1987). In Isoplot, such

calculations are done by applying ordinary least squares in the two calculations, giving the slopes, byx and 1/bxy , respectively,

22



with the combined slope being given by530

b=±
√
byxbxy =±

√∑
(yk − y)2∑
(xk −x)2

(C1)

and,

a= y− bx (C2)

(see Powell et al., 2020, for notation and details).

In the equivalent of model 2 using the spine algorithm, the analytical uncertainties are discarded, then the spine width is535

calculated from the scatter of the data about the line, s= nmad(e). The development in Appendix B of Powell et al. (2020)

can be applied as-is to the two calculations required: y on x, and x on y, except that two definitions need to be changed: Eq.

B52 should involve We with diagonal elements, 1/s, and Eq. B13 should involve W with diagonal elements, w(rk)/s2.

Applying the spine algorithm in the above-modified form to fitting y on x, and x on y, allows the slope, b=±
√
byxbxy to be

calculated, and the intercept a, as in Appendix A3 of Powell et al. (2020). The covariance matrix for each slope and intercept540

can be calculated by Eq. B17. Combination into a covariance matrix for {a,b} requires the observation that byx and bxy are

uncorrelated. An error propagation is then straightforward to b, and in fact a good approximation is generally given by adding

the constituent covariance matrices and dividing by 4.
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