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Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-
MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing
sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved
over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected
zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of
Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we
assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the
advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not
systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization
dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in

samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb

geochronology by LA-ICP-MS improves the resolution of age populations defined by "Pb/**U_dates

(Neoproterozoic and younger) and jncreases the percentage of concordant analyses in age populations defined by
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2Pb/2"Pb dates (Mesoproterozoic and older), The selective dissolution of zircon that has experienced high degrees

of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance

significantly modified during this process. However, we did not identify this gffect in either of the detrital zircon

samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be )

useful for applications that require increased resolution of detrital zircon populations and increased confidence that

2%Pb/28U dates are unaffected by Pb-loss,

1. Introduction

Detrital zircon U-Pb geochronology is awidely-used fool with a broad range of applications across multiple

subdisciplines of geology. As the efficiency, accuracy, and precision of U-Pb geochronology measurements continue
to improve (e.g., Carrapa, 2010; Gehrels, 2012; Gehrels, 2014; Pullen et al., 2014; Sundell et al., 2021), the production
of large detrital zircon datasets by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has
become more common. In basin analysis and tectonics, these datasets are often used to determine sediment

provenance, characterize source terranes, estimate maximum depositional ages, and reconstruct ancient sediment

routing pathways (Fedo et al., 2003; Anderson 2005; Smith et al., 2023). The resulting data is typically interpreted
using kernel density estimates (KDEs) or probability density plots (PDPs) and assessed by comparing the means,
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heights, widths, and modes of peaks in detrital zircon age spectra using similarity/dissimilarity metrics. One factor
that may limit the resolution of these peaks is Pb-loss which can smear zircon age populations toward younger apparent
U-Pb dates. This issue may not bias data in which Pb-loss is a recent phenomenon provided that the 2’Pb/?°Pb date
is used for zircon crystallization. However, protracted or complicated histories of Pb-loss can make it difficult to
interpret 2’Pb/2°°Pb dates (Nemchin and Cawood, 2005) and many labs only use this system to constrain a zircon
crystallization date if it is concordant. The precision of the 2’Pb/?%Pb chronometer also typically limits its use to
Mesoproterozoic and older zircon. The most precise date for Neoproterozoic or younger zircon is generally obtained

with the 2°°Pb/>**U chronometer and these dates are more susceptible to open-system behavior. Zircon age populations

that are affected by Pb-loss in this age range can be difficult to identify since Pb-loss trajectories closely follow
Concordia and may result in analyses that are concordant within analytical uncertainty but have spuriously young

206pp/238 dates. This is especially problematic for the estimation of maximum depositional ages (MDAS) in detrital

zircon datasets where age estimationstilize low-n clusters of the youngestgzircon ages (Dickinson and Gehrels, 2009;

Herriott et al., 2019; Coutts et al., 2019; Sharman et al., 2020: Vermeesch, 2021). The effect of Pb-loss on detrital

zircon analyses is consequently two-fold. It reduces the number of concordant Mesoproterozoic and older zircons,
making populations in this age range more difficult to identify, and it will cryptically smear Neoproterozoic and
Phanerozoic zircon age populations along concordia toward spuriously young dates, making it difficult to resolve
differences between distinct but similarly aged populations.

While high temperature metamorphism may lead to zircon recrystallization and partial, or total, resetting of

the U-Pb system, most Pb-loss in zircon that is hosted in sedimentary strata represents a low temperature process.

Damage to the zircon crystal lattice occurs during each alpha emission along the U, 25U, and **Th decay chains as

the heavy nucleus recoils (Bateman, 1910; Dickin, 2005; Nasdala et al., 2005; Reiners, 2005). At temperatures below

200°C this damage cannot.anneal and begins to accumulate (Marsellos and Garver, 2010; Ginster et al., 2019), Areas

where high levels of damage have accumulated are then susceptible to Pb-loss {Chakoumakos et al., 1987; Mattinson
etal., 1994; Garver and Kamp, 2002; Widmann et al., 2019; McKanna et al., 2023). The mechanisms through which
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Pb becomes mobile in metamict zircon grains remain, understudied, but likely include, mobility in low-temperature

aqueous fluids{Goldich and Mudrey, 1972: Black, 1987; Kramers et al., 2009; Keller et al., 2019), which allows water

: (Deleted: s

o CDeleted: s

‘ .. (Deleted:

to penetrate highly radiation damaged zircon and mobilize radiogenic Pb by changing its redox state (Kramers et al.,

2009), Thus, the zircons that are most susceptible to Pb-loss at low temperatures are those that spend long durations
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at shallow crustal levels and encounter low-temperature aqueous fluids, both of which are conditions seen by detrital
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zircon hosted in sedimentary basins.

The chemical abrasion method, in which thermally annealed zircon is partially dissolved in hydrofluoric acid

(HF) prior to analysis has been shown to successfully mitigate low-temperature Pb-loss {e.g., Mundil et al., 2004;

Mattinson, 2005; Widmann et al., 2019; Sharman and Malkowski, 2023) and is widely used in isotope dilution-thermal
ionization-mass spectrometry (ID-TIMS) U-Pb zircon geochronology (see reviews in Schoene, 2014; Schaltegger et
al., 2015). The technique likely benefits analyses in two ways. First, it selectively dissolves zones of the zircon crystal

that have experienced extensive radiation damage and possible Pb-loss (Widmann et al., 2019; McKanna et al., 2023).

Second, the partial dissolution process dissolves inclusions that may harbor non-radiogenic Pb, leading to a higher
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proportion of zircon-hosted radiogenic Pb (Pb*) in the measured analysis. Over the last decade, several groups have
analyzed chemically abraded zircon by LA-ICP-MS and shown that this approach can successfully mitigate Pb-loss,

and results in jncreased concordance, precision, and, presumably, accuracy of U-Pb dates (Crowley et al., 2014; Von

Quadt et al., 2014). These results suggest that chemical abrasion prior to large-n detrital zircon analyses may also be
useful when the resolution of closely spaced Neoproterozoic and Phanerozoic peak age populations is desired or when
high degrees of discordance obscure the interpretation of Mesoproterozoic and older age populations. Here, we assess
the benefits and drawbacks of this pre-treatment with a particular focus on whether the resolution of younger zircon
age populations is increased, whether it improves concordance for Precambrian detrital zircon populations, and/or

whether the selective removal of metamict zircon will bias age populations.

A4
2. U-Pb Zircon Geochronology Approach and Methods

We have divided our study into three distinct parts. First, we compare chemically abraded and untreated
zircon from 13 zircon reference materials (Table 1) to test whether chemical abrasion systematically biases U-Pb dates

analyzed by LA-ICP-MS. Crowley et al. (2014) demonstrated that chemically abraded zircon ablate more slowly and

experience greater down-hole fractionation than untreated zircon. These differences are likely related to changes in,

the ability of the laser to couple with zircon that has been etched by the chemical abrasion process. While no negative
effects of chemical abrasion were seen in Crowley et al. (2014) or von Quadt et al. (2014), provided that chemically

abraded reference materials were used for instrument calibration, we have expanded the age range of reference zircon

analyzed to encompass 28.5 — 3467 Ma. This increased age range of the tested reference materials provides a more
complete understanding of LA-ICP-MS U-Pb systematics on chemically abraded zircon and whether a single primary

yeference material can be used to calibrate the instrument for a wide range of zircon dates, Second, we assess the

ability of chemical abrasion to mitigate Pb-loss in an igneous sample that has experienced substantial radiation damage
by comparing chemically abraded and non-chemically abraded 2°°Pb/?¥U LA-ICP-MS zircon analyses to a newly

produced CA-ID-TIMS reference date fora Mesoproterozoic granite. Finally, we assess how CA affects detrital zircon

(DZ) age spectra by comparing chemically abraded and untreated aliquots of two detrital samples. One sample is
Cenozoic in age and contains both Phanerozoic (100-300 Ma) and Precambrian (1000-1200 Ma) zircon age

populations, whereas the second sample is Proterozoic and contains zircon age populations between 2000-3500 Ma.
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Table 1. Zircon reference materials for U-Pb isotopic analyses

Name ID-TIMS age | 20 References Host lithology Quantity
(Ma)
Fish Canyon 28.476 0.029 | Schmitz and Bowring Dacite Unlimited
Tuff (2001)b-¢
GHR1 48.106 0.023 | Eddy etal. (2019)® Rapakivi Granite Unlimited
49127 136.6 Gehrels et al. (2008)® Uncertain
Plesovice 337.13 0.37 Slama et al. (2008)* Potassic Granulite Unlimited
Temora 2 418.37 0.14 Mattinson (2010)* Gabbro Unlimited
R33 420.53 0.16 Mattinson (2010)* Monzodiorite Unlimited
SLM 563.5 3.2 Gehrels et al. (2008)® Single Crystal Limited
SLF 555.86 0.68 | Wang et al. (2022)° Single Crystal Limited
91500 1065.4 0.3 Wiedenbeck et al. Single Crystal Limited
(1995)
FC1 1098.47 0.16 Mattinson (2010)* Gabbro Unlimited
Oracle 1434 8 Gehrels et al. (2008)® Granite Unlimited
QGNG 1851.6 0.6 Black et al. (2004)" Quartz gabbro Uncertain
gneiss
0G1 3467.05 0.63 Stern et al. (2009)* Diorite Unlimited

* Chemical abrasion CA-ID-TIMS

b Traditional ID-TIMS

<CA-ID-TIMS analyses by Wotzlaw et al. (2013) show significant age dispersion in Fish Canyon Tuff relative to
original U-Pb ID-TIMS date of Schmitz and Bowring (2001).

2.1 Methods for Thermal Annealing and Chemical Abrasion
All chemically abraded zircon aliquots were treated at Purdue University following methods modified from

Mattinson (2005) and similar to those described in Eddy et al. (2019). Zircon separates were first thermally annealed

in quartz crucibles for 60 hours at 900°C in a muffle furnace and then loaded in 3 mL savillex hex beakers with ~1
mL of 28M HF and 0.1 mL of 8M HNO; for bulk chemical abrasion. Four hex beakers were then stacked in the PTFE
liner for a 125 mL Parr acid dissolution vessel. To ensure vapor exchange during partial dissolution a small hole was
drilled through each beaker cap. The fully assembled Parr acid dissolution vessel was then held at 210°C for 12 hours.
Once the chemical abrasion process was completed, the leachate was removed from each beaker using a pipette and
the zircons were rinsed three times with H2O. Chemically abraded aliquots were then sent to the University of Arizona
LaserChron Center (ALC) for mounting and LA-ICP-MS analyses. Methods for chemical abrasion of zircon prior to
the ID-TIMS analyses reported in this paper are similar to those described above, except individual zircon were
chemically abraded in 200 nL Ludwig style microcapsules and repeatedly rinsed in distilled 7M HCI and ultrapure

H2O prior to spiking and complete dissolution.

2.2 LA-ICP-MS Zircon U-Pb Geochronology

Zircon aliquots were mounted in 2.5-cm-diameter epoxy plugs, polished, and imaged by
cathodoluminescence using a Hitachi 3400N SEM and a Gatan Chroma CL system prior to analysis by LA-ICP-MS.
Chemically abraded zircon were only mounted with chemically abraded zircon reference materials, while untreated
zircon aliquots were mounted with untreated reference materials. U-Pb isotopic analyses were obtained via LA-ICP-

MS using a Thermo Element2 single-collector ICP-MS coupled with a Teledyne Photon Machines Analyte G2
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Table 1. Zircon reference materials for U-Pt

Name ID-TIMS age 20
(Ma)
Fish Canyon 28.476 0.0
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GHRI1 48.106 0.0
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excimer laser at the ALC. The diameter of the laser spot was set to 30 microns. Elemental- and mass-dependent
instrumental fractionation were corrected by bracketing unknown analyses with analyses of primary reference material
FC1 following the methods described in Pullen et al. (2018). Please see supplementary Table S23 for tuning

parameters for the laser and mass spectrometer. Only chemically abraded primary yeference materials were used for .

calibration of chemically abraded samples and only untreated primary reference materials, were used for untreated

samples following the recommendations of Crowley et al. (2014). Bracketing_of secondary and tertiary reference

materials occurred every 10-11 analyses with primary reference materials (FC1, SLE/SLM, R33) for the round-robin

comparison of zircon reference materials, every 2-3 analyses for igneous zircon analyses, and every 5 analyses for
detrital zircon samples. Data reduction was completed using an in-house Matlab script, AgeCalcML v.1.42 (Sundell
et al., 2021). This program allows the user to filter data by maximum 2°°Pb/?*U and/or 2*’Pb/?*°Pb uncertainty
(typically set to 10%), reverse discordance (typically 5%), and normal discordance (typically 20%). For the purposes
of this study, we de-activated all uncertainty and discordance filters in AgeCalcML and all isotopic data measured via
LA-ICP-MS that is clearly from ablated zircon are reported in Tables S1-S13. However, age interpretations of igneous
and detrital zircon data use filtered data (Tables S16-S21).

Uranium_concentrations (ppm) jeported from routine U-Pb LA-ICP-MS zircon analyses at ALC are

semiquantitative and calibrated by bracketing unknowns with analyses of reference materials with a known average /

U concentration. However, since chemical abrasion selectively dissolves high-uranium zones, and thus modifies the

average U concentration of reference materials by an unquantified amount, the yeported U concentration values for

reference materials analyzed by traditional (non-CA) ID-TIMS may no longer be valid. We found that the primary

reference material SLF had homogenous >**U cps (counts per second) within individual sessions (Figs. S15-S17) for

both the CA and non-CA runs. We interpret this to mean that SLF has a homogenous U concentration (and radiation

damage) and that any differences in **U cps for SLF between different analytical sessions are related to changes in

the instrument’s sensitivity. As such, we normalize the >**U cps for all other grains analyzed in each session to the

average 2*8U cps of SLF across all sessions. Given the potential difference between chemically abraded and untreated

SLF U concentrations, we did this correction independently for treated and untreated grains. Since we do not have U

concentration values for treated and untreated SLF, we center our discussions on relative differences in U

concentration as estimated using the,intensity (in cps) of the **%U beam, rather than guantifying U concentrations.

We used Saylor and Sundell (2016) DZstats program to complete a quantitative assessment of the similarity

between treated and untreated aliquots. This program implements five fests to compare large-n geochronologic or

thermochronologic datasets. The tests used in this study are similarity, likeness, and cross-correlation. Results from

all five tests are shown in Supplemental Table S22 for both detrital zircon samples. The similarity coefficient measures

if two samples have similar modal sub-intervals as well as similar proportions of components in each one of those

modes. A value for similarity equal to 1 indicates the samples are jdentical in both peak modes and proportions

whereas 0 indicates there is no match between modes and proportions (Saylor and Sundell, 2016). This test is useful

in assessing the number of peak age populations (similar mode intervals) and how peak heights (proportion of

components in each mode) change between two samples. The cross-correlation coefficient is also sensitive to the

presence or absence of peak ages, but also changes due to the relative magnitude and shape of peaks. If a sample
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shared the same peak ages, peak shapes, and magnitude of peaks, it would have a R2value of 1. If no peak ages, peak

shapes, and magnitude of peaks are shared, the R? value would be 0 (Saylor and Sundell, 2016). Likeness is the

complement of the area of mismatch between two detrital zircon spectra, or more simply put the degree of “sameness”

between detrital zircon age populations (Satkoski et al., 2013). Thus, the likeness test compares the degree of overlap

between pairs of PDPs and is a measure of resemblance between proportions of two populations with overlapping

ages (Gehrels, 2009; Satkoski et al., 2013). Values of likeness that approach 1 indicate that two detrital zircon spectra
have a high degree of overlap (Satkoski et al., 2013; Saylor and Sundell, 2016).

2.3 Zircon Optical Profilometry

To evaluate the effect of CA on laser ablation excavation rates in zircons, we compared the average depth at

increasing ablation times on a series of laser pits on treated and untreated reference materials. This was accomplished

by generating ten laser ablation pits with excavation times that increased by three seconds (starting at three and

increasing to thirty seconds) in single crystals of treated and untreated grains of zircon reference materials FC1, R33

and SL. ,The resulting pits were imaged using a Veeco Wyko NT9800 Optical Profilometer and depth maps, 3-D

images, and crosscut profiles were created using the Vison software produced by Veeco. The images and profiles

allowed for the estimation of pit depths and can be used to calculate excavation rates when combined with the known

ablation periods, (Fig. 2). Laser ablation pits were also imaged and measured on three treated and five untreated )

unknowns from sample MIGU-02.

2.4,CA-ID-TIMS Zircon U-Pb Geochronology

Deleted: Laser pit depths produced during data acquisition
on unknowns from sample MIGU-02 were also studied. Ten
laser ablation pits with excavation times increasing by three
seconds (starting at three and increasing to thirty seconds)
were made in single crystals of treated and untreated
reference materials FC1, R33, and SL.
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Sample MIGU-02, a granitoid from the Guyana Shield, was analyzed by CA-ID-TIMS at Purdue University
to provide a reference date to compare the chemically abraded and untreated LA-ICP-MS analyses. Following the
chemical abrasion methods described above, individual zircons were spiked with the EARTHTIME 2%°Pb-?33U-2U
isotopic tracer (Condon et al., 2015; McLean et al., 2015) and loaded into a Parr acid digestion vessel with 28M HF.
The vessel was then held at 210°C for 60 hours for zircon dissolution. After dissolution, the samples were dried down

and converted to chloride form, by adding 75 ul 7M HCI, reassembling the Parr acid digestion vessel, and holding it

at 180°C for 12 hours. After conversion to chloride form, the solution was converted to 3M HCI in preparation for
anion exchange chromatography. Pb and U were purified from these solutions using AG-1x8 anion exchange resin
following procedures modified from Krogh (1973). The resulting aliquots were dried down to a chloride salt before
being dissolved in silica gel, dried onto rhenium filaments, and loaded into an IsotopX Phoenix TIMS for analysis. Pb
isotopic measurements were made by peak hopping on a Daly detector and corrected for mass dependent isotopic
fractionation using an a= 0.147 + 0.028 (%amu) and deadtime = 29.9 ns, derived from repeat measurements of the
NBS981 Pb reference material. We assume that all 2%Pb is from laboratory contamination and correct for it using a
laboratory Pb isotopic composition of 2%Pb/2Pb = 18.82 + 0.74 (25), 2’Pb/**™Pb = 15.52 + 0.63 (20), 2%®Pb/*™Pb =
37.93 + 1.60 (20) derived from repeat total procedural blank measurements run during 2022. Uranium was run as an
oxide (UO2) and isotopic measurements were made statically using Faraday detectors and corrected for fractionation
using the known ratio of 23U/?**U in the EARTHTIME 2%Pb-2**U-3U isotopic tracer (Condon et al., 2015; McLean
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et al., 2015) and assuming a zircon 3U/?°U value of 137.818 = 0.045 (Hiess et al., 2012). Data reduction was done
using the ET_Redux software package (Bowring et al., 2011) and the decay constants of Jaffey et al. (1971). All
isotopic data measured via CA-ID-TIMS are presented in Supplemental Table S17.

3. Results
3.1 CA-LA-ICP-MS U-Pb Geochronology of Zircon Reference Materials

Treated and untreated aliquots of thirteen different zircon U-Pb reference materials (Table 1) were analyzed

in this study to further assess whether chemical abrasion systematically biases U-Pb dates. The reference materials

were analyzed during two round-robin runs using the approach described above. The first run targeted 15 zircon grains
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from treated and untreated aliquot of reference materials. During the second run, 30 zircon grains were targeted.
Because FC1 was used as a primary reference material for calibration of the LA-ICP-MS, approximately 30 FC-1

zircons were analyzed during run one and 87 were analyzed during run two jn both treated and untreated aliquots.
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This led to 117 FC1 grains analyzed per treated and untreated aliquots of reference material, The total number of

zircons analyzed was 653 in each of the chemically abraded and untreated aliquots of reference materials. Of the 653

grains in the chemically abraded aliquots, $31 analyses (96.6%) were retained following filtering for discordance,
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whereas 608 analyses (93,5%) were retained in the untreated aliquot. These results further confirm that CA helps
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mitigate Pb-loss and improve ghe percentage of retained concordant LA-ICP-MS analyses (e.g., Crowley et al., 2014;

von Quadt et al., 2014). The most extreme change in concordance and data retention occurred between treated and

untreated FC-1 zircon (1098.4 Ma). Of the 117 grains analyzed jn both the treated and untreated aliquots, 99.1% of /
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analyses were retained in the chemically abraded aliquot versus 82,2% in the untreated aliquot. Discordance criteria |

used for filtering the above data were reverse discordance larger than 5%.,,2°°Pb/?**U errors larger than 10%, and/or
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Despite the overall similarity in bias between treated and untreated reference materials, the behavior of some

reference materials warrants further discussion, The CA-LA-ICP-MS weighted mean 2°°Pb/**U_dates for two

Cenozoic reference materials were older than the CA-ID-TIMS reference date. Chemical abrasion of GHR1 zircon

led to an increased proportion of concordant grains, but an older *°°Pb/?**U weighted mean date (Fig. S2). We attribute

this difference to the presence of slightly older xenocrysts within the sample (e.g., Eddy et al., 2019). We see a similar

result for Fish Canyon tuff zircon where the CA aliquot showed increased concordance, but the calculated mean age

was offset more from the reference age than the no-CA aliquot (Fig. S1). This sample contains significant antecrysts

that might bias its results (e.g., Wotzlaw et al., 2013). Indeed, increased precision and accuracy in analyses of young

suites of igneous zircon routinely find overdispersion that can be related to protracted zircon growth or the presence

of xenocrysts/antecrysts. Thus, the slight variability in weighted mean dates for GHR1 and Fish Canyon samples in

CA-LA-ICP-MS analyses is not entirely unexpected and therefore unlikely to reflect of a systematic bias of the CA-

LA-ICP-MS method. Additionally, the 91500 reference material has shown substantial negative age offset in other

studies (Gehrels et al., 2008; Schoene et al., 2014), but the origin of these offsets has remained enigmatic, and the

offset in this study is not surprising.
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Variations in laser ablation behavior between primary reference materials used for standardization and

samples is a direct result of differences in zircon matrices and are known as ‘matrix effects’ (Marillo-Sialer et al.,

including presence/absence of trace elements (Black et al., 2004), the amount of radiation damage (Allen and

Campbell, 2012), and the degree of crystallinity (Steely et al., 2014). These factors all impact the laser’s ability to

couple with the surface of the zircon, directly impacting laser ablation rates and the rates of down-hole fractionation, .-

As a result, matrix-effects can lead to systematic shifts in LA-ICP-MS data and may be a contributor in observed shifts

in treated and untreated aliquots of reference materials in this study (Fig. 1). In order to constrain how CA impacts

laser coupling and ablation rates between treated and untreated reference materials, we ablated 10 spots on a single

treated and untreated zircon crystal of FC1, SL, and R33 (n=60; Table S14). For each individual spot 1-10 on a

reference material, we incrementally raised the ablation duration by 3 seconds (i.e., by 21 individual laser pulses at 7

linearly with time (0.43 to 0.46 um/sec) and were similar for treated and untreated aliquots of all primary reference

materials (Fig. 2). Similar ablation rates were observed across all three different treated and untreated aliquots of

primary reference materials. This suggests 1) the primary reference materials have similar zircon matrix densities and

ablate at similar rates (Marillo-Sialer et al., 2014; 2016), and 2) chemical abrasion does not change the zircon matrix

density or alter the zircon surface of primary reference materials in a way that drastically alters laser coupling or

ablation rates.
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Figure 2, A. Line graphs showing pit depths (um) versus time (seconds) for unabraded and abraded aliquots of primary<-

reference materials. Each data point represents an individual pit. Untreated reference materials have slightly deeper

pit depths and ablate at marginally faster rates, but overall, rates of ablation for treated and untreated reference
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untreated zircon of FC1. Pits are labeled with the duration in seconds of ablation. See Supplemental Table S14 for all

pit depth data from abraded and unabraded reference materials.

3.2 Untreated and CA- U-Pb Zircon LA-ICP-MS Analyses of Metamict Zircon
A Precambrian granite sample from the Parguaza Complex in the North Guyana Shield (MIGU-02; N 5° 21'

3.70"; W 67° 41' 33.41") that has experienced substantial radiation damage was analyzed to assess the effects of
chemical abrasion on grains with significant Pb-loss. Untreated (n = 35) and treated aliquots (n = 23) of MIGU-02

were analyzed at the ALC and compared to a reference age determined by CA-ID-TIMS (n=6) at Purdue University,

(Fig. 3; Tables S14 and S15). During the bulk chemical abrasion process, 80-85% of MIGU-02 grains fully dissolved,

leaving only a small fraction of the original aliquot to be used for analyses.
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Figure 3, Rank order plots of calculated *’Pb/??Pb and 2°°Pb/>38U ages for treated and untreated MIGU-02 aliquots

and of the reference age for MIGU-02 obtained using CA-ID-TIMS. A. Untreated samples of MIGU-02 show large
degree of scatter in dates and substantial deviation from the reference age. B. Treated zircons show a significant
increase in precision and accuracy of ages relative to the reference age. C. Reference age for MIGU-02 determined

using the weighted mean of six grains. See text for discordance criteria,,
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is correlated to radiation damage in old zircon, this result reinforces the observation that CA is an effective tool for

removing damaged zones of the zircon (Nasdala et al., 2005; Widmann et al., 2019). Pit depths were measured on five

untreated and three treated zircons from MIGU-02 (Table S15). The average pit depth for untreated grains of MIGU-

02 is ~10.34 um, whereas it is ~8.1 um for the treated aliquot. This indicates that the pit depths of the untreated aliquot

of MIGU-02 are ~25% deeper than the treated aliquot and that CA does has an impact on the laser ablation rate in

highly metamict samples,,

We acknowledge that for samples with significant radiation damage, there is always the possibility that the

entire sample will dissolve during chemical abrasion, and it is up to the researcher to determine if this technique is

appropriate for their objectives. Running a high-n data acquisition on highly damaged zircon might ultimately yield

enough concordant analyses to make a confident age determination, but analyses of MIGU-02 that passed typical

discordance filters were inaccurate by up to -11% for the 2’Pb/2%Pb dates and -21% for the 2°°Pb/**U dates (Fig. 3) .

suggesting that even filtered data may be inaccurate for metamict zircon. In contrast, the chemically abraded aliquot

did not have these issues, despite the significant loss of zircon grains during the HF chemical attack.
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cooling history. The restricted range of low 2**U gps in the CA-treated grains suggests that CA was effective at

dissolving high U zircon that was more likely to have Pb-loss.

3.3 Untreated and CA- U-Pb Zircon LA-ICP-MS Analyses of Detrital Zircon

One Phanerozoic (NM8A) and one Precambrian sample (Rora Med) were analyzed o determine how detrital -~ ‘

zircon age distributions compare between chemically abraded and untreated aliquots. We followed the ‘Large-n’

approach of Pullen et al. (2014), for both treated and untreated aliquots, to obtain a more robust distribution of ages, .

their modes, peak widths, and abundances, For NM8A, we analyzed 512 individual zircons in the treated aliquot and -

896 zircons in the untreated aliquot. In Rora Med, we analyzed 1035 zircons in the treated aliquot and 920 zircons in

the untreated aliquot. We used Saylor and Sundell (2016) DZstats program to complete a quantitative assessment of
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and distribution of apparent peak age populations in both DZ samples compared to the non-CA age spectra (Figs. 6,

and 7). Most notably, the Phanerozoic age peaks in sample NM8A narrowed, became more defined, and, in some
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cases, shifted to slightly older dates.
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Figure 6, Comparison

cross-correlation, likeness, and similarity values. All quantitative comparison analytics are reported in Table S20. The

percentages above the peaks represent the percentage the peak age population represents out of the total grains. We

aimed for n=1000 for each aliquot because Pullen et al (2014) shows the distribution of analyzed zircon ages is thought

to approach the ‘true’ age distribution of the sample.

In the Precambrian sample (Rora Med), there are subtle changes in the DZ age spectra between the treated

and untreated aliquots. Overall, the CA treated aliquot shows a higher percentage of, concordant grains, (Fig. ) -

Jarrower, better defined. peak age populations, changes in the number of peaks present, and a slight but noticeable ‘
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There are also subtle changes in the number of peaks and peak shapes between the treated and untreated

aliquots of NM8A.. The most significant changes observed are increased resolution and definition of Phanerozoic peak

age populations jn the treated aliquot (Fig. 7). For example, between 200-300 Ma, two broad peaks in the untreated . CDeleted: between 0 and 300 Ma for

aliquot sharpen and narrow to two well-defined peak age populations in the treated aliquot (Fig. 7b). Additionally, a ‘ ‘CDeleted: 6

distinct 190 Ma peak is present in the treated aliquot compared to a broad range of populations between 160,and 210,

~ ( Deleted: (230-250 and 250-275 Ma)

Ma in the untreated aliquot. ,We also see a zone of two broadly defined peaks at 68 and 72 Ma in the untreated aliquot "(Deleted: 6

sharpen to a singular peak at 69 Ma in the treated aliquot. In the untreated aliquot. the 68-72 Ma age populations make . " ‘CDeleted: 50
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represents ~1.3% of total grains. There is also an older shift from the 93 Ma peak in the untreated aliquot to ~98 Ma

in the treated aliquot. However, due to the low number of grains within these peak age populations, it is possible these treated aliquot.
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process. For example, the peak height change jn the 93 Ma population (3 grains; untreated aliquot) to the 98-100 Ma . CDeleted: Most certainly
(4 grains; treated aliquot) represents the addition of a single grain (Fig. 7c). Other shifts and changes in peak age ‘ 'CDeleted: from
populations that are <120 Ma (Fig. 7¢) cannot be confidently constrained due to the low number of analyses that define . CDeleted: 6
those populations (1-2 grains). The fraction of concordant grains, is indistinguishable between treated and untreated . CDeleted: percent
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the large range Phanerozoic to Precambrian ages.

4. Discussion
Our study shows that chemical abrasion prior to LA-ICP-MS analysis does not negatively affect resulting U-

Pb dates provided chemically abraded reference materials are used as the primary reference material for calibration,

(e.g., Crowley et al., 2014; von Quadt et al., 2014). We also show that chemical abrasion is extremely effective in
mitigating the effects of Pb-loss in LA-ICP-MS U-Pb dating of zircon that has experienced substantial radiation

damage. Significant improvement was observed in both 2°°Pb/?*¥U and 2*"Pb/2’Ph, dates of MIGU-02 zircon relative

to ID-TIMS results, and also the efficiency of the analyses was dramatically improved by focusing LA-ICP-MS
analyses on only those grains/fragments that survived the chemical abrasion process and had not sustained significant
radiation damage. These results reinforce the observations of previous studies that used this approach (Crowley et al.,
2014; von Quadt et al., 2014) and suggested that the CA-LA-ICP-MS method can be valuable for studies that need
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increased precision and accuracy in LA-ICP-MS U-Pb zircon analyses, Although, care must be taken to ensure data ..

is not biased when this pre-treatment is applied,,

One important consideration is whether chemical abrasion negatively affects the laser ablation process.

Variations in laser ablation pit depths have been directly correlated to the density of the zircon matrix (Marillo-Sialer

et al., 2014: 2016) and changes in ablation rate change down-hole fractionation. Previous research has indicted that

annealing leads to lower ablation rates compared to unannealed zircon and more homogenous rates across annealed

zircon with variable initial degrees of radiation damage (Marillo-Sialer et al., 2016)..These observationgsupportresults .

Y

from Campbell and Allen (2012) that thermal annealing zircon samples prior to LA-ICP-MS will reduce matrix-related

bias and improve accuracy and precision. However, the impact of CA on laser coupling and ablation rates is 1ot as 4

well characterized, Crowley et al. (2014) found that treated zircons had pit depths that were 25% gshallower than

untreated aliquots of zircons that experienced extensive Pb-loss. This is identical to the results for the metamict MIGU-

02 sample in this study jn which chemically abraded zircon also had ~25% shallower ablation pits than yntreated ‘%

gircon (Table S15). The shallower pit depths could be driven by less effective laser coupling in treated aliquots due to

| Deleted: . Lower laser ablation rates in annealed zircons
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have been observed compared to unannealed zircons due to
the increase in density of the crystal structure during the
thermal annealing process (850° C for 48 h; Marillo-Sialer et
al., 2014). This difference in laser ablation rates impacts the
down-hole fractionation rate, making it imperative to
compare annealed samples to reference materials treated the
same way. Additional research shows that annealing samples
at temperatures over 950° C for 36 hrs results in equivalent
ablation rates between different zircon matrices, regardless
of their initial crystal structure (crystalline to metamict;
Marillo-Sialer et al., 2016).

small-scale etching and creation of a 3-D porous texture by partial dissolution (Crowley et al., 2014). In comparison

laser ablation rates and pit depths in treated and untreated aliquots of primary reference materials were nearly identical

:can

(Fig. 2). This supports conclusions drawn by Crowley et al. (2014) that the extent to which zircon is impacted by CA

is dependent on U concentration and the presence of physical defects and highlights the importance of incorporating

a wide range chemically abraded reference materials in each analytical session,

Our data, and the data of Crowley et al. (2014) and von Quadt et al. (2014), indicate that provided care is

taken to use chemically abraded reference materials, the pre-treatment will mitigates Pb-loss and lead to increased

accuracy in LA-ICP-MS U-Pb zircon analyses. Given jhis apparent benefit, it is natural to extend the technique to

Y
detrital zircon and test the advantages and disadvantages afforded by this method. Crowley et al. (2014) first used this *
approach on an Archean graywacke and showed that it did not significantly bias their results. However, this technique

has not been widely used over the last decade. We report similar results to previous studies in that chemical abrasion

does not significantly bias results or negatively affect LA-ICP-MS dates. This is supported byguantitative comparison
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tests of the treated and untreated aliquots of both detrital zircon samples that show high degrees of similarity between

aliquots. Minor changes in cross-correlation and likeness values are a result of minor changes in the number of and

magnitude of specific peak age populations between treated and untreated aliquots (Fig. 6 and 7). Our results indicate
that a chemical abrasion pre-treatment may help resolve finer scale features in detrital zircon spectra from the Cenozoic
to the Archean. We attribute this increased resolution mainly to the mitigation of Pb-loss leading to increased accuracy
of the resulting LA-ICP-MS U-Pb dates.

The mitigation of Pb-loss is most clearly observed in the sharpening of Neoproterozoic through Cenozoic /

age populations pecause **°Pb/2**U dates provide the most precise estimate for zircon crystallization in this age range, ;-

Pb-loss can significantly affect the accuracy of dates in this age range since Pb-loss trajectories closely follow

concordia and can result in dates that have apparent concordance despite being inaccuratezThese effects can be seen

most clearly in sample NM8A where age peaks narrowed and became more defined (e.g., 250-300 Ma peak age

populations) following chemical abrasion and some peak age populations shifted to slightly older dates (Fig. 7).
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Assuming that the zircons that form these populations cooled below the temperature at which radiation damage is
effectively annealed at a similar time, then U content can be used as a proxy for radiation damage (Nasdala et al.,
2005; Widmann et al., 2019; McKanna et al., 2023). This is clearly observed for the treated and untreated aliquots of

igneous sample MIGU-02, where the treated aliquot has substantially lower »**U beam intensities and increased

concordance and accuracy jn 2°°Pb/**U dates (Figs. 3, 4, and 5). However, the thermal history is not known a priori

for detrital zircon datasets, meaning this same assessment applied to NM8A and Rora Med is more uncertain.
To examine whether the reduced Pb-loss we observed in the chemically abraded aliquot reflects the selective

dissolution of zircon with radiation damage, we compared zircon 22U beam intensity from a particular age range (250- ;

320 Ma) in NM8A as a first-order approximation (Fig. 9). We assume that the populations in this range likely have

the same low-T history, although this assumption cannot be tested with our data. We also note that these populations

showed the most significant sharpening following chemical abrasion (Fig. 7B). Figure 9,shows that the average >**U

beam intensity of treated grains in this age range is similar, but there is a distinct proportion of treated grains that have

lower P*U jntensities. JThis supports our interpretation that CA is likely mitigating Pb-loss by dissolving zircon with _

s (Deleted: cps

high U concentrations and ghat this process £an be observed by the changes in the number of peaks, fheir shape, and

Jheir magnitude between treated and untreated aliquots. These changes are, especially apparent when comparing the
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the magnitude of peak heights suggests preferential dissolution of some age populations associated with Pb-loss. This

feature may be unique to Precambrian samples with overall low zircon U concentrations and/or recent exhumation of

the sedimentary rocks to the temperature conditions where radiation damage can accumulate and Pb-loss occurs.

Regardless, both NM8A and Rora Med have similarity values of >0.9 (Figs. 6 and &), indicating that similar peak age

populations and proportions are present in both treated and untreated aliquots. Therefore, it is unlikely that chemical

abrasion would impact detrital zircon spectra in a way that would make aliquots look as though they were sampling

different source terranes.

A. NM8A Uranium vs. Age

Figure 10, Scatter plot of U cps
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(Ma) for both treated and untreated aliquots
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The nature of sediment transport may also work to remove metamict zircon prior to deposition in certain
environments. Hydraulic sorting, mechanical abrasion, and weathering, can naturally bias detrital zircon populations
present in a different lithologies (Malusa et al., 2013; Ibafnez-Mejia et al., 2018). For example, Ewing et al. (2003)
noted that metamictization leads to structural damage of the zircon crystal structure and that this can be correlated to
a decrease in density and hardness. These changes lead metamict zircon to be more prone to destruction during river
transport (Fedo et al., 2003; Hay and Dempster, 2009a). In particular, Hay and Dempster (2009a) argue that inclusion-
rich and metamict zircon are broken during sediment transport, and that these fragments do not survive being
incorporated into clastic sandstone deposits. Instead, these smaller fragments can be swept out to more distal
depositional environments. Small zircon are also typically lost during sample preparation (Hietpas et al., 2011; Slama
and Kosler, 2012), meaning that both natural and laboratory processes may preferentially lead to a high proportion of

undamaged zircon in sandstone samples. Thus, while we did not observe the removal of specific age populations
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following chemical abrasion in the two detrital zircon samples that were analyzed in this study. and there are reasons
to suspect that natural and laboratory processes will favor the analysis of undamaged zircon anyway, we recognize
that other samples may behave differently. Future users of this technique should carefully consider this possibility in
their datasets.

Another potential benefit of chemical abrasion is the preferential dissolution of inclusions within zircon
during the partial dissolution step (McKanna et al., 2023). Inclusions harbor Pb. that can be incorporated into the
analyzed volume during laser ablation, reducing the Pb*/Pb. and limiting measurement precision and accuracy. When

comparing the Pb*/Pb. ratios of treated and untreated aliquots of MIGU-02, we see a clear distinction that treated

zircons have a much higher Pb*/Pb. ratio for similar ranges in;**U peam intensity (Fig. 11). We note that the overall -

28U peam intensities for the treated aliquot of MIGU-02 are low compared to the untreated aliquot, as we have already
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shown that CA for metamict zircon effectively removes high-U zones where Pb-loss is most likely to have occurred

X, ; (Deleted: cps
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(see above discussion; Fig. 5). Regardless, the increased Pb*/Pby ratio for the treated aliquot of MIGU-02 shows that

this method is also efficient in removing inclusions with high Pbc content and/or highly damaged domains where Pbc

might have been introduced by fluids. These two effects are correlated with an increased fraction of concordant grains,

and increased precision,and accuracy jn 2°°Pb/?*8U zircon dates jn the chemically abraded aliquot. These observations,

support, the benefits of utilizing CA prior to LA-ICP-MS measurements in metamict igneous zircon suites. A

comparison of the Pb*/Pby ratios n treated and untreated aliquots ofdetrital samples (Fig. S18) shows,similar behavior

in Rora Med with slightly higher Pb*/Pbc in the treated aliquot and no change in the Pb*/Pbc ratios in NM8A. We

conclude that it is likely that CA is removing inclusions prior to analysis of detrital zircons as well. However, it is
difficult to isolate this effect since detrital zircons are sourced from various terranes and we cannot confidently '\\

compare the Pb*/Pbc of zircon with the same age, U concentration, and thermal history.

MIGU-02 Uranium vs. Pb*/Pbc

100000 v
90000 Figure 11, Pb*/Pbc ratios are plotted
soone against U cps_for MIGU-02. The
:T:} °e Pb*/Pbc ratios in the treated aliquot of

g 50000 MIGU-02 are significantly higher than

& 40000 o the untreated aliquot for similar
s . concentrations of U. Higher Pb*/Pbc

L ratios in the treated aliquot of MIGU-
%0 . N E wo) 02 can be attributed to reduction of Pbc

Uranium (238 cps)

+ CA aliquot +No CA aliquot by removal of inclusions.

6, Conclusions and Recommended Applications
Chemical abrasion is a widely used tool in the zircon U-Pb ID-TIMS community (see reviews in Schoene,

2014; Schaltegger et al., 2015), where it has been repeatedly shown to mitigate the negative effects on age accuracy
introduced by Pb-loss (Mundil et al., 2004; Mattinson, 2005; Widmann et al., 2019). Recent efforts to extend chemical

abrasion to LA-ICP-MS analyses have also shown that this pre-treatment can be beneficial (Crowley et al., 2014; Von
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Quadt et al., 2014; McKanna et al., 2023; Sharman and Malkowski, 2023). The extension of this pre-treatment to
large-n detrital zircon analyses is a natural outgrowth of these efforts. Our results indicate no negative effects from

chemical abrasion prior to LA-ICP-MS analyses and that the technique results in improved percentages of concordant

grains, yeduced uncertainty, and, at least for the highly radiation damaged igneous sample we studied here, accuracy

of measured U-Pb dates. For DZ samples, these benefits appear to translate to more defined and slightly older
206ph/238Y age peaks for Phanerozoic zircon, and more concordant analyses, and in some cases slightly older

207pb/2%Ph dates, for Precambrian zircon. One potential drawback of this pre-treatment is the possibility that age

populations characterized by high-U zircon may be selectively dissolved during chemical abrasion. We did not observe
this effect in either of our tested samples. However, we remain wary of its possibility in other samples with highly
damaged Precambrian zircon populations, and so future practitioners are advised caution. The differences between
age distributions in our analyzed detrital zircon spectra are slight and indicate that the Pb-loss present in typical
untreated analyses would not significantly alter the interpretation of sediment source terranes at a broad scale.
However, chemical abrasion did sharpen several Phanerozoic peak ages and led to an increased percentage of

concordant grains, in Precambrian zircon populations. This, indicates, that the pre-treatment may be useful in certain

scenarios in which researchers may require increased resolution of detrital zircon age spectra to distinguish fine-scale

variations in provenance, sediment source terranes, or source characteristics. Ongoing research aims to test this

method’s impact on improving the precision and accuracy of maximum depositional age (MDA) estimations.
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