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Abstract 

Age-depth models that relateRelating stratigraphic position to time playnumerical time using age-depth models plays an 10 

important role in interpretingdetermining the rate and timing of geologic and environmental change throughout Earth history. 

Astrochronology — usinguses the geologic record of rhythmic astronomicalastronomically derived oscillations in the rock 

record to measure the passage of time— and has proven a valuable technique for generatingdeveloping age-depth models and 

durations of time in rock sequences.with high stratigraphic-temporal resolution. However, in the absence of temporal anchoring 

informationdates, many deep time astrochronologies float in “absolute” numerical time. Alternatively, radioisotopicAnchoring 15 

these chronologies relies on radioisotope geochronology (e.g., U-Pb, 40Ar/39Ar)), which produces point-high-precision (<±1%), 

stratigraphically distributed point estimates of numerical age, usually dispersed randomly throughout stratigraphy, which can 

be used to anchor floating age-depth models. 

In this study, we present a new R package, astroBayes for a Bayesian integration of radioisotopic geochronology and inversion 

of astrochronology intoand radioisotopic geochronology to derive age-depth models. Most existing Bayesian accumulation 20 

models use a stochastic random walk to approximate the variability and uncertainty of sedimentation. Integration of the 

astrochronologic record and radioisotopic datesIntegrating both data types allows reduction ofin uncertainties related to 

interpolation between dated horizons, and capturesthe resolution of subtle changes in sedimentation rate recorded by 

astrochronology., especially when compared to existing Bayesian models that use a stochastic random walk to approximate 

sedimentation variability. The astroBayes simultaneously inverts astrochronologic records and radioisotopic dates, while 25 

incorporatinginversion also incorporates prior information about sedimentation rate, superposition, and the presence/ absence 

of major hiatuses. Resulting anchoredThe resulting age -depth models preserve both the continuityspatial resolution of floating 

astrochronologies, and the precision and accuracy and precision of modern high precision radioisotopic geochronology. 

We test the astroBayes method using two synthetic data sets designed to mimic real-world stratigraphic sections. Model 

uncertainties are relatively constant with depth, primarilypredominantly controlled by the precision of the radioisotopic 30 

agesdates, and are relatively constant with depth while being significantly reduced relative to stochastic“dates-only” random 
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walk models between dated horizons; the uncertainty in accumulation rate was improved by a factor of three. Furthermore, 

since. Since the resulting age-depth models combineleverage both astrochronology and radioisotopic geochronology in a single 

inversion,statistical framework they leverage the strengths of, and naturallycan resolve ambiguities between, the two 

timekeeperschronometers. Finally, we present a case study of the Bridge Creek Limestone Member of the Greenhorn 35 

Formation where we refine the age of the Cenomanian-Turonian Boundary, showing the strength of this approach when applied 

to deep-time chronostratigraphic questions. 

1 Introduction 

Linking the rock record to numerical time is a crucial step when investigating the timing, rate, and duration of geologic, 

climatic, and biotic processes, but constructing chronologies (age-depth modeling) from the rock record is complicated by a 40 

variety of factors. The premier radioisotopic geochronometers enable direct determination of a numerical date from single 

mineral crystals (e.g., sanidine, zircon) to better that 0.1% throughout Earth history (Schmitz and Kuiper, 2013). However, 

rocks amenable to radioisotopic dating, mostly volcanic tuffs, may only occur as a few randomly distributeddispersed horizons 

within a stratigraphic section. This leads to the problem of a small number of high-precision dates scattered throughout 

stratigraphy with limited chronologic information between these horizons. Consequently, chronologies developed using only 45 

radioisotopic dates have widely varying uncertainties throughout a given stratigraphic record, with precise ages near the 

position of the dates and increasing uncertainties with distance from the dated horizons (Blaauw and Christen, 2011; Parnell 

et al., 2011; Trachsel and Telford, 2017; Trayler et al., 2020). 

Adding more chronological information is the best way to improve age-depth model construction (Blaauw et al., 2018). In 

particular, including stratigraphically continuous data can significantly reduce model uncertainties. Astrochronology uses the 50 

geologic record of oscillations in Earth’s climate system (“Milankovitch cycles”) to measure the passage of time in strata 

(Hinnov, 2013; Laskar, 2020). Some of these oscillations can be linked to astronomical physics with well understood periods, 

including changes in the ellipticity of Earth’s orbit (eccentricity; ~0.1 Ma, 0.405 Ma), Earth’s axial tilt (obliquity; ~0.041 Ma), 

and axial precession (precession; ~0.02 Ma) (Laskar, 2020). The manifestation of these astronomical periods in the rock record 

can be leveraged as a metronome that provides a direct link between the rock record and time (either “floating” or “anchored” 55 

astrochronologies”; see reviews of Hinnov (2013) and Meyers (2019)). Unlike radioisotopic dating methods, astrochronology 

produces near-continuous chronologies from stratigraphic records, sometimes at centimeter spatialscale stratigraphic 

resolution and 104-year scale temporal resolution. The encoding of the periodic signal tracks changes in sediment (rock) 

accumulation rate and can be deconvolved through statistical analysis into robust durations of time, a strength that makes 

astrochronology an ideal tool for fine-scale investigations of geologic proxy records. However, perhaps the biggest limitation 60 

of astrochronology is that, in the absence of independent constraints, it typically produces “floating” chronologies that lack 

definitive anchoring to numerical time scales. 
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Combining floating astrochronologies and radioisotopic dates into an integrated model of age is an attractive prospect, as it 

leverages the strengths and overcomes the limitations of both data sources. Here we present a freely available R package 

(astroBayes; Bayesian Astrochronology) for joint Bayesian inversion of astrochronologic records and radioisotopic dates to 65 

develop high-precision age-depth models for stratigraphic sections. Following introduction of the new method, we investigate 

the sensitivity of astroBayes age-depth model construction to a variety of geologic scenarios, including varying the number 

and stratigraphic position of radioisotopic dates and the presence or absence of depositional hiatuses. We also present a case 

study from the Bridge Creek Limestone Member (Greenhorn Formation) of the Western Interior Basin (Meyers et al., 2012), 

where we refine the age of the Cenomanian–Turonian boundary using astroBayes. 70 

The astroBayes method has several strengths over existing “dates only” age-depth models (Blaauw and Christen, 2011; Trayler 

et al., 2020; Haslett and Parnell, 2008; Keller, 2018). The inclusion of astrochronological data allows more densely constrained 

sedimentation models which results in an overall reduction in model uncertainty. Furthermore, these age-depth models are 

anchored in numerical time while simultaneously preserving astrochronologic durations minimizing “tuning” assumptions and 

potential missassignment of Milankovitch frequencies. These properties make the joint inversion ideal for correlating 75 

individual proxy records to other global records, enhancing our ability to constrain phase relationships and mechanisms of 

Earth System evolution. 

2 Theory 

2.1 Astrochronology 

Quasiperiodic variations in Earth’s orbital and rotational parameters impact the spatial and temporal distribution of sunlight 80 

on the planet’s surface, and thus have the potential to alter regional and global climate. Such quasiperiodic climate changes 

can influence sedimentation and be preserved in the geologic archive, providing a dating tool for developing astronomical 

timescales, or astrochronologies. The astronomical variations include orbital eccentricity, with modern periods of 0.405 

MaMyr and ~0.1 MaMyr, axial tilt (obliquity) with a dominant period of ~0.041 MaMyr today, and axial precession (or more 

specifically, “climatic precession”), with multiple periods near ~0.02 MaMyr today (Laskar, 2020). Solar system chaos limits 85 

reliable calculation of the full theoretical eccentricity solution to ~50 Ma, although the ‘long eccentricity’ cycle of 0.405 

MaMyr is the most stable and likely suitable for use throughout the Phanerozoic (Laskar, 2020). Recently, Hoang et al. (2021) 

presented a new probabilistic model that permits estimation of all eccentricity cycle periods and their uncertainties throughout 

Earth history. In addition to Solar system chaos, Earth’s dynamical ellipticity and tidal dissipation influence the temporal 

evolution of the precession and obliquity cycle periods, making them shorter in the geologic past, and there exist models of 90 

varying complexity for their estimation (Berger et al., 19661992; Laskar et al., 2004; Waltham, 2015; Farhat et al., 2022; 

Laskar, 2020). Additional sources of uncertainty in floating astrochronologies include: (1) contamination of the astronomical-

climate signal by other climatic and sedimentary processes, (2) spatial distortion of the astronomical cycles in the stratigraphic 
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record including hiatus, and (3) uncertainties in the temporal calibration/interpretation of the observed spatial rhythms (Meyers, 

2019). The design of the astroBayes approach carefully considers these sources of uncertainty. 95 

2.2 Radioisotope Geochronology 

Radioisotope geochronology utilizes the radioactive decay of a long-lived parent isotope to its daughter product within a closed 

geologic system to the determine its age. Temporal information is quantified in the evolving ratio of daughter to parent, as a 

function of the decay constant(s) of the constitutive nuclear reactions. In the case of sedimentary strata in deep time, these 

geologic systems are either radioisotopes captured in rapidly erupted and deposited igneous mineral grains in discrete 100 

interbedded volcanic tuff horizons (U-Pb in zircon or K-Ar [implemented as the 40Ar/39Ar technique] in feldspar), or 

endogenous sediment-bound radioisotopes that are fractionated during depositional processes at the sediment-water interface 

(Re-Os in organic-matter-bearing sedimentary rocks). The details of application of high-precision radioisotopic dating in the 

stratigraphic record may be found in reviews by Bowring and Schmitz (2003), Jicha et al. (2016), and Schmitz et al. (2020). 

The age interpretation is generally the result of an ensemble of measured ratios and/or dates interpreted as a model age, for 105 

example a weighted mean of numerous single crystal dates (U-Pb and 40Ar/39Ar), a Bayesian estimation of the eruption age 

from the variance of those single crystal dates (Keller et al., 2018), or an isochronous relationship between sample aliquots 

(Re-Os). Radioisotopic model ages have an uncertainty that is usually described by a Gaussian probability function. In the 

case of either volcanic tuffs or endogenous sedimentary dating, the age constraints come from a restricted number of specific 

sampling horizons, which are generally stochastically present, preserved, and/or sampled within a stratigraphic succession. 110 

2.3 Bayesian Statistics 

The Bayesian statistical approach aims to determine the most probable value of unknown parameters given data and prior 

information about those parameters. This is formalized in Bayes’ equation: 

𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎) ∝ 𝑃(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) × 𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)  (1) 

The first term on the righthand side of eq. 1, known as the likelihood, is the conditional probability of the data, given a set of 115 

model parameters. The second term represents any prior beliefs about these model parameters. The left-hand side is the 

posterior probability of the model parameters. Bayes’ equation is often difficult or impossible to solve analytically, and instead 

the posterior distribution is evaluated using Markov Chain Monte Carlo methods (MCMC) to generate a representative sample, 

which assuming a properly tuned MCMC process (Haario et al., 2001), should have the same properties (mean, median, 

dispersion, etc.) as the theoretical posterior distribution (Gelman et al., 1996). 120 

2.4 Bayesian Age-Depth Modeling 

Existing Bayesian methods for age-depth model construction rely on sedimentation models that link stratigraphic position to 

age through mathematical functions that approximate a sedimentation process conditioned through dated horizons throughout 

a stratigraphic section, which are then used to estimate the age and uncertainty at undated points (Blaauw and Heegaard, 2012). 
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A variety of Bayesian approaches have been proposed to construct age-depth models including Bchron (Haslett and Parnell, 125 

2008)), rbacon (Blaauw and Christen, 2011), and Chron.jl (Schoene et al., 2019; Keller, 2018). While these methods vary 

considerably in their mathematical and computational framework, most share two fundamental characteristics. First, they treat 

sediment accumulation as a stochastic process where accumulation rate is allowed to vary randomly and considerably 

throughout a stratigraphic section. Second, they use this stochastic sediment accumulation model in tandem with discrete point-

estimate likelihoods of numerical age, usually in the form of radioisotopic dates (e.g., 40Ar/39Ar, U-Pb, 14C), as the basis for 130 

chronology construction. This leads to “dates-only” chronologies with widely variable uncertainties (Trachsel and Telford, 

2017; Telford et al., 2004; De Vleeschouwer and Parnell, 2014) that are largely a function of data density. That is, modeled 

age errors are lower in areas where there are more point-estimate age determinations, and age errors are higher in areas with 

less data, leading to “sausage” shaped uncertainty envelopes (De Vleeschouwer and Parnell, 2014). 

Previous Bayesian approaches for linking astrochronology and radioisotopic dates have taken numerous approaches, including: 135 

(1) solely focusedfocusing on improving the ages of radioisotopically dated horizons using astrochronology (Meyers et al., 

2012); (2) reliedrelying on post-hoc comparisons of computed astrochronologic and radioisotopic durations to accept or reject 

accumulation models in the Markov Chain Monte Carlo process (De Vleeschouwer and Parnell, 2014) or (3) “transforming” 

astrochronologic durations into age likelihoods via anchoring to other radioisotopically dated horizons (Harrigan et al., 2021). 

Meyers et al. (2012) modified the Bayesian “stacked bed” algorithm of Buck et al. (1991) to incorporate known 140 

astrochronologic durations between dated horizons, allowing for the improvement of Cretaceous radioisotopic age estimates 

using astrochronology, and the age of the Cenomanian/Turonian boundary. Their approach, however, did not explicitly model 

posterior age estimates for intervening strata in the Bayesian inversion. De Vleeschouwer and Parnell (2014) recalibrated the 

Devonian time scale and calculated new stage boundaries using a two-step process. First the authors generated a continuous 

Bayesian age-depth model using the Bchron R package (Haslett and Parnell, 2008) and then performed a post-hoc rejection of 145 

model iterations that violated previously derived astrochronologic stage durations. While these results are consistent with both 

data types, the two-step process does not fully integrate and leverage astrochronology in the age-model construction. Harrigan 

et al. (2021) further refined the Devonian timescale by using a modified version of Bchron (Trayler et al., 2020). The authors 

used a Monte Carlo approach to convert astrochronology derived durations into stage boundary ages which were then included 

as inputs along-side radioisotopic dates for Bayesian modeling. Each of these methods requires external processing and 150 

interpretation of astrochronologic data, either to derive durations or to transform them into a form (i.e., age ± uncertainty) that 

is amenable to inclusion within existing models. In this study we present a new approach designated astroBayes, which fully 

leverages the advantages of radioisotopic ages and astrochronology by explicitly including both in the Bayesian inversion. 



 

6 
 

3 Methods 

3.1 Model Construction 155 

 
Figure 1: Schematic of model parameters. A) A simple five-layer sedimentation model. B) The sedimentation model from panel A) 
transformed and anchored as an age-depth model. See Table 1 for an explanation of each parameter. 

Table 1: Summary of model parameters. 

Parameter Explanation 

r sedimentation rate (m/Ma) 

z layer boundary positions (stratigraphic positions) 

a anchoring age (Ma) 

D, d depth (stratigraphic positions; transformation of z) 

h hiatus duration (Ma) 

T, t age (Ma; transformation of r and z) 

f orbital target frequencies (cycles/Ma) 

data astrochronologic data (value vs stratigraphic position) 

dates radioisotopic dates (Ma) 

The inputs for astroBayes consists of measurements of a cyclostratigraphic record (data) (e.g., δ18O, XRF scans, core 160 

resistivity, etc.), and a set of radioisotopic dates (dates) that share a common stratigraphic scale. The user also specifies a set 

of appropriate target frequencies (f; eccentricity, obliquity, precession) for use in probability calculations. Developing an age-

depth model from these records requires 1) a likelihood function that reflects the probability of both data types; 2) a common 

set of model parameters to be estimated; and 3) in the case of continuous age-depth modeling, a model that reflects the best 
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approximation of sediment accumulation. We focus on estimating the probability of sedimentation rate as the basis for the 165 

astroBayes age-depth model. Since sedimentation rate is expressed as depth-per-time (e.g., m/MaMyr, cm/kykyr) it directly 

links stratigraphic position to relative age to create floating age models, and when combined with radioisotopic dates, generates 

models anchored in numerical time. 

Existing Bayesian age-depth modeling approaches approximate sedimentation as a relatively large number of piecewise linear 

segments. Sedimentation rate can vary substantially between segments, leading to the “sausage-shaped” uncertainty envelopes 170 

that characterize these models (Trachsel and Telford, 2017; De Vleeschouwer and Parnell, 2014; Parnell et al., 2011). However, 

this model of sedimentation is not ideal for the construction of astrochronologies because fluctuations in sedimentation rate 

can be constrained by preserved astronomical frequencies as spatial stretching or compression of the preserved rhythm. WeAs 

our nominal approach, we adopt a sedimentation model with a small number (< 10) of layers of consistent sedimentation rate, 

following a common astrochronologic approach of minimizing fine-scale fluctuations inadjustments to sedimentation rate 175 

(Muller and MacDonald, 2002; Malinverno et al., 2010). However, the general approach can be adapted to include any number 

of layers. 

Malinverno et al. (2010) presented a simple sedimentation model appropriate for astronomical tuning of sedimentary records 

and we use their framework as the starting basis for the joint inversion. The sedimentation model consists of two sets of 

parameters. The first is a vector of sedimentation rates (r), and stratigraphic boundary positions (z) that define regions 180 

(“layers”) of constant sedimentation (Fig. 1A). For example, the model shown in Fig. 1A has 11 parameters, five sedimentation 

rates (r1 – ri) and six layer-boundaries (z1 – zi). This model formulation allows step changes in sedimentation rate at layer 

boundaries (z) but otherwise holds sedimentation rate (r) constant within each layer. 

The selection of layer boundary position-positions is an important user defined step, that is informed by detailed investigation 

of the cycostratigraphiccyclostratigraphic data. Evolutive harmonic analysis (EHA) is a time-frequency method that can 185 

identify changes in accumulation rate by tracking the apparent spatial drift of astronomical frequencies. Expressed as 

cycles/depth, high amplitude cycles may “drift” towards higher or lower spatial frequencies throughout the stratigraphic record. 

Assuming these spatial frequencies reflect relatively stable astronomical periodicities, the most likely explanation of those 

spatial shifts is therefore stratigraphic changes in sedimentation rate (Meyers et al., 2001). That is, stability in spatial 

frequencies reflects stability in sedimentation rate, allowing sedimentation to be approximated by a small number of piecewise 190 

linear segments. 

We visually inspected EHA plots to develop a simple sedimentation modelmodels (e.g., Fig. 1B) for our testing data sets. We 

chosechoose layer boundary -positions (z1 – zi) by identifying regions with visuallyrelatively stable spatial frequencies (see 

Fig. 2). WeFor example, in Fig. 2C, there is a continuous high-amplitude frequency-track between 2-4 cycles/m. Based on 

visual shifts in this frequency, we choose three layer-boundaries, such that this frequency track can be approximated by a 195 

vertical line within each layer. In the computation, we also allow thesethe layer boundary -positions to vary randomly (within 

a user specified stratigraphic range) to account for the stratigraphic uncertainties in boundary position-positions that arise from 
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the fidelity and our inspection of the of the data, similar to the Bayesian cyclostratigraphic approach of Malinverno et al. 

(2010). 

Together r and z can also be transformed to create an age-depth model consisting of piecewise linear segments that form a 200 

floating age-depth model (Fig. 1B). This floating model can be anchored in numerical time by adding a constant age (a) to the 

floating model at every stratigraphic position. Optionally, sedimentary hiatuses can also be included in the model in a similar 

manner by adding the duration of a hiatus (h) at any of the layer boundary positions to all of the points below the stratigraphic 

position of the hiatus. 

3.2 Probability Estimation 205 

Together the vectors of sedimentation rates (r), layer boundaries (z), and anchoring age (a) can be used to calculate an anchored 

age-depth model that consists of a series of piecewise linear segments (Fig. 1B). The slope (m/Ma) and length of these 

segments is controlled by the sedimentation rates (r) and layer boundary positions (z), while the numerical age is controlled 

by the anchoring constant (a). Hiatuses (h) at each layer boundary can offset the age-depth model in time. The anchored age-

depth model now consists of a vector of stratigraphic positions (D) and a corresponding vector of ages (T) that relate 210 

stratigraphic position to numerical age. The probability of this age-depth model can be assessed by calculating the probability 

of the sedimentation rates (r) and anchoring constant (a) given an astrochronologic record (data) and a series of radioisotopic 

dates (dates). 

3.2.1 Probability of an Astronomical Model 

We follow the approach of Malinverno et al. (2010) to calculate the probability of our data given a sedimentation rate and set 215 

of target astronomical frequencies (f). 

𝑃(𝑑𝑎𝑡𝑎|𝑟, 𝑓) ∝ 𝑒𝑥𝑝 4
𝐶!"#"(𝑓)

𝐶$"%&'()*+!(𝑓)
6  (2) 

Where the data is the astrochronologic record, r is a sedimentation rate, and f is an astronomical frequency (e.g., Table 2), Cdata 

is the periodogram of the data, and Cbackground is the red noise background. The probability in eq. 2 is calculated independently 

for each model layer (i.e., between adjacent z’s), and the overall probability is therefore the joint probability of all layers. eq. 2 220 

calculates the concentration of spectral power at specified astronomical frequencies, where a given sedimentation rate is more 

probable if it causes peaks in spectral power that rise above the red noise background to “line up” with astronomical 

frequencies. The red noise background is approximated using a lag-1 autoregressive process (AR(1); Gilman et al., . (1963))) 

which provides a useful stochastic model for climate and cyclostratigraphy (Gilman et al., 1963; Hasselman, 1976). 
Table 2: Astronomical frequencies used for model testing and validation for the two synthetic testing data sets (discussed below). 225 
The precession and obliquity terms are based on the LA04 solution (Laskar et al., 2004), and the eccentricity terms are based on the 
LA10d solution (Laskar et al., 2011). 
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Period (Ma) Frequency (1/Ma) Cycle 

0.40567954057 2.4650004650 eccentricity 

0.13071901307 7.6499976500 eccentricity 

0.12383901238 8.0750010750 eccentricity 

0.09886310989 10.1150011150 eccentricity 

0.09487670949 10.5400005400 eccentricity 

0.04096680410 24.4100004100 obliquity 

0.02362070236 42.3357663358 precession 

0.02231870223 44.8055178055 precession 

0.01899340190 52.6497376497 precession 

0.01906770191 52.4447654448 precession 

3.2.2 Probability of Radioisotopic Dates 

The anchored age-depth model now consists of two paired vectors that relate stratigraphic position (D) to numerical time (T). 

The stratigraphic positions of the radioisotopic dates [d1 … dj] and their corresponding ages [t1 … tj] are a subset of D and T, 230 

respectively. We therefore define the probability of the modeled age (T) at a depth (D), given a set of dates as: 

𝑃(𝑇|𝑑𝑎𝑡𝑒𝑠) =:𝑁
+

,-.

<𝜇, , 𝜎,/?  (3) 

Where 𝑁 is a normal distribution with a mean (μ) and variance (σ2). μj is the weighted mean age and σ2j is the variance of the 

jth radioisotopic date at stratigraphic position dj. Notice that while d and t are continuous over the entire stratigraphic section, 

only the stratigraphic positions that contain radioisotopic dates influence the probability of the age model. In effect, this 235 

probability calculation reflects how well the age model “overlaps” the radioisotope dates, where modeled ages that are closer 

to the radioisotopic dates are more probable (Fig. 1B (Schoene et al., 2019; Keller, 2018). 

3.2.3 Overall Probability and Implementation 

The overall likelihood function of an anchored age-depth model is now the joint probability of eq. 2 and eq. 3. We use a vague 

uniform prior distribution where sedimentation rate may take any value between a specified minimum and maximum value. 240 

astroBayes estimates the most probable values of sedimentation rate, anchoring age, and hiatus duration(s) using a Metropolis-

Hasting algorithm and an adaptive Markov Chain Monte Carlo (MCMC) sampler (Haario et al., 2001) to generate a 

representative posterior sample for each parameter. The complete model is available as an R package called astroBayes 

(Bayesian astrochronology) at github.com/robintrayler/astroBayes. 
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3.3 Testing and Validation 245 

 
Figure 2: Synthetic testing data sets used for model validation. A, D) The synthetic cyclostratigraphic records for TD1 and CIP2. B, 
E) True age-depth models for both data sets. The colored probability distributions are the synthetic radioisotopic dates used for 
model stability testing (Table 3). C, F) Evolutive harmonic analysis of panels A (3 m3m window size, 0.1 m1m step size using 3-2π 
prolate tapers) and D (2 m2m window size, 0.1 m1m step size, using 3-2π prolate tapers). Lighter colors indicate higher spectral 250 
amplitude. The horizontal dashed lines are layer boundary positions (z) chosen by visual inspection of the evolutive harmonic 
analysis results. 

We tested astroBayes using two synthetic data sets that consist of a known age-depth model and a paired cyclostratigraphic 

record. The first dataset (TD1) consists of a simple sedimentation model that was used as an earth system transfer function to 

distort a normalized eccentricity-tilt-precession (ETP; Laskar et al. (2004)) time series (with equal contribution of each 255 

astronomical parameter) to generate a synthetic cyclostratigraphic record (Fig. 2A). This 2 million year ETP signal was 
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translated into a stratigraphic signal using a stable sedimentation rate of 7.5 m/MaMyr for the first 0.500 MaMyr (the oldest 

portion of the record), followed by a linear sedimentation rate increase to 12.5 m/MaMyr until 1.0 MaMyr, then a linear 

sedimentation rate decrease to 10 m/MaMyr until 1.5 MaMyr, and finally a stable sedimentation rate of 10 m/MaMyr for the 

youngest stratigraphic interval. 260 

The second dataset (CIP2) was originally published by Sinnesael et al. (2019) as a testing exercise for the Cyclostratigraphy 

Intercomparison Project which assessed the robustness and reproducibility of different cyclostratigraphic methods. The CIP2 

dataset was designed to mimic a Pleistocene proxy record with multiple complications including nonlinear cyclical patterns 

and a substantial hiatus. For full details on the construction of the CIP2 dataset see Sinnesael et al. (2019) and 

cyclostratigraphy.org. For each of our testing schemes, outlined below, we used the true age-depth model to generate synthetic 265 

radioisotopic dates (with uncertainties) from varying stratigraphic positions. The combination of synthetic cyclostratigraphic 

data and simulated radioisotopic dates form our synthetic model inputs. 

We assessed model performance using two metrics. First, we assessed model accuracy and precision by calculating the 

proportion of the true age-depth model that fell within the 95% credible interval (95% CI) of our model posterior. We assume 

that a well-performing model should contain the true age model in most cases. This method has been used previously to assess 270 

performance of existing Bayesian age-depth models (Parnell et al., 2011; Haslett and Parnell, 2008). Second we monitored the 

variability of the model median (50%) and lower and upper bounds (2.5% and 97.5%) of the credible interval. 

3.3.1 Reproducibility and Stability 

Table 3: Dates used as inputs for reproducibility & stability testing of the synthetic test cases (TD1 and CIP2). 

Data Set Sample Age±1σ (Ma) Position (m) 

TD1 A 0.069±0.01 0.64 

 B 0.520±0.02 5.17 

 C 1.790±0.05 17.48 

CIP2 D 0.062±0.009 1.24 

 E 0.820±0.012 3.49 

 F 1.290±0.019 6.99 

 G 1.460±0.022 9.49 

To assess the reproducibility and stability of astroBayes we generated 1,000 individual age-depth model Bayesian inversions 275 

for each synthetic testing dataset to assess model reproducibility and stability. We used the same input data for the Bayesian 

inversions: the same cyclostratigraphic records (Fig. 2), astronomical frequencies (Table 3) and radioisotopic dates (Table 3). 

Each simulation ran for 10,000 MCMC iterations to allow sufficient exploration of parameter space and posterior convergence 

to the target stationary distribution. The adaptive Metropolis-Hastings proposal algorithm adequately stabilized each Markov 

Chain after an initial discarded “burn-in” period of 1,000 iterations. 280 
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3.3.2 Sensitivity Testing with the Synthetic Models 

We tested the sensitivity of our age-depth model results to both the number and stratigraphic position of radioisotopic dates. 

We randomly generated a set of dates from the underlying sedimentation model using Monte Carlo methods. The uncertainty 

(1σ) was set at 1.5% of the age. These dates and uncertainties were used as radioisotopic age likelihoods along with the 

synthetic astrochronologic records. We repeated this procedure 1,000 times using 2, 4, 6, or 8 dates for a total of 4,000 285 

simulations per testing data set (i.e., 4,000 for CIP2 and TD1). Each simulation ran for 10,000 MCMC iterations with a 1,000 

iteration “burn-in”. 

Since the CIP2 data set includes a significant hiatus (Sinnesael et al., 2019) we also investigated the influence of the number 

and stratigraphic position of radioisotopic dates on the quantification of the hiatus duration. Estimating hiatus duration requires 

at least one date above and below the stratigraphic position of a hiatus. Consequently, we added an additional constraint when 290 

generating synthetic dates from the CIP2 dataset to ensure that the hiatus was always bracketed by at least two dates. For each 

of the sensitivity validation models (2, 4, 6, and 8 dates) we benchmarked the stratigraphic distance between the hiatus and the 

nearest date. 

3.3.3 Sensitivity to Outlier Ages 

We also tested the sensitivity of astroBayes to the inclusion of outlier ages. We repeated the tests from Section 3.3.2, with one 295 

additional step. After the generation of stratigraphically-randomly distributed dates, we used Monte Carlo methods to select 

one date from each testing data set. This date was then randomly adjusted by ±1σ to ±4σ. This creates a date that is either 

broadly comparable with the underlying true age model (e.g., ±1σ to ±2σ), or outlier ages that may introduce stratigraphic 

miss-matches (e.g., ±3σ to ±4σ). We choose to introduce these more subtle outliers, since we feel more extreme outlier ages 

can often be identified and excluded a priori based on inspection of the radioisotopic data (Michel et al., 2016). We repeated 300 

this procedure 1,000 times using either 2, 4, 6, or 8 dates for each data set (as in the section above), so that 1/2, 1/4, 1/6, and 

1/8 dates would be considered an outlier. Each simulation ran for 10,000 MCMC iterations with a 1,000 iteration “burn-in”. 
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4 Results 

4.1 Model Validation 
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Figure 3: Example age-depth models of the synthetic TD1 and CIP2 test data sets with randomly placed dates shown as colored 
Gaussian distributions. Interior tick marks on the vertical axis of each panel indicate the layer boundary positions (see also the 
horizontal dashed lines in Fig. 2C and F). The dates were randomly generated from the true age-depth model (dashed red line). The 
black line and shaded grey region are the astroBayes model median and 95% credible interval. The dark grey solid and dashed lines 
are Bchron models generated using only the radioisotopic dates as model inputs. Panels A - D) 2, 4, 6, and 8 date models for the TD1 310 
synthetic data. Panels E - H) 2, 4, 6, and 8 date models for the CIP2 synthetic data. Note that the left and right columns have different 
vertical and horizontal scales. 

Reproducibility tests indicate that the astroBayes model converges quickly and its parameter estimates remain stable across 

model runs. Individual trace plots for each parameter (sedimentation rates, anchor age, hiatus duration [CIP2 only]) for the 

TD1 and CIP2 synthetic data sets stabilized quickly and appearedappear visually well-mixed indicating adequate exploration 315 

of the parameter space (see supplemental figures Figs. 9, Fig. S1 - S4). Similarly, posterior kernel density estimates of each 

parameter were indistinguishable among the 1,000 simulations. The model median and 95% credible interval were likewise 

stable and varied by no more than ±0.005 MaMyr (2σ) for both testing data sets. 

Model accuracy does not appear to be particularly sensitive to the number or stratigraphic position of dates as the true age-

depth model fell within the 95% credible interval of the astroBayes posterior 99% of the time with no clear bias towards greater 320 

or fewer dates (Fig. 3). Similarly, forFor the CIP2 data set, other than the requirement that there is at least one date above and 

below the hiatus, the stratigraphic position of the dates does not appear to have a strong influence on hiatus quantification and 

in all cases the true hiatus duration (0.203 Ma) was contained within the 95% CI of the hiatus duration parameterposterior (h; 

Fig. 4). Conversely, theastroBayes is somewhat sensitive to the inclusion of subtle outlier radioisotopic dates. The inclusion 

of outlier ages lowered the proportion of the true age-depth models that fell within the 95% credible interval of the astroBayes 325 

to 89% for TD1, and 88% for CIP2. The relative percentage of outlier ages also does not appear to have a strong influence. 

The number of radioisotopic dates appears to have the largeststrongest effect on overall model uncertainty (see also: Blaauw 

et al. (2018)). As the number of dates increase the width of the 95% credible interval shrinks and approaches the input 

uncertainty of the radioisotopic dates (Fig. 3). Crucially however, the uncertainties never “balloon” (e.g., compare astroBayes 

with Bchron results in Fig. 3) and are usually close to the uncertainty of the dates, unlike “dates-only” age-depth models (De 330 

Vleeschouwer and Parnell, 2014). 

5 Discussion 

5.1 Developing Sedimentation Models and Constraining Uncertainty 

Clearly, our choice of a simple sedimentation model for Bayesian inversion influences age-depth model construction. Since 

eq. 2 is calculated layer-by-layer, a limitation of our model is that each layer must contain enough time and astrochronologic 335 

data to resolve the astronomical frequencies (f) of interest. Both the astrochronologic data and radioisotopic dates can inform 

sedimentation model construction. First, the radioisotopic dates can be used to calculate average sedimentation rates which to 

a first approximation can then inform the length of sedimentation model layers needed to capture specific astronomical cycles 

(e.g., eccentricity). For example, Table 3 contains the dates and stratigraphic positions used for inputs for TD1 stability testing 
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(see Section 3.3.1). A time difference of 1.72 MaMyr between the uppermost and lowermost dates separated by 16.84 meters 340 

implies an average sedimentation rate of ~9.8 m/MaMyr or alternatively ~0.1 Ma/m. A sedimentation model with a layer 

thickness of 1 meter would not reliably resolve long (~0.405 Ma) and short (~0.1 Ma) eccentricity cycles and would only 

weakly resolve obliquity (~0.41 Ma) and precession scale cycles (~0.02 Ma) within each layer. The choice of layer thickness 

is therefore dependent on both the average sedimentation rate, the cyclostratigraphic sampling rate, and the dominant 

astronomical signals present in the data. Records dominated by eccentricity scale fluctuations will necessarily require layer 345 

thicknesses that capture longer timescales than records dominated by higher frequency obliquity and precession scale 

variations. Future model development could semi-automate much of this starting model construction, optimizing the number 

and length of layers. However, a critical prerequisite is that the cyclostratigraphic data series has a sampling rate sufficient to 

reliably capture the highest frequency of interest (e.g., precession). 

A potential criticism of our approach is that our choice of a simple Bayesian sedimentation model artificially reduces overall 350 

model uncertainties. Since we do not allow sedimentation rate to vary randomly at all points throughout the stratigraphy, our 

model lacksavoids the inflated (“ballooning”) credible intervals that characterize “dates-only” age-depth models (i.e., Bchron, 

rbacon, Chron.jl). Indeed, Haslett and Parnell (2008) consider this minimum assumption of smoothness as a fundamental 

feature of age-depth modeling as there is “no reason a priori to exclude either almost flat or very steep sections”. Although 

Blaauw and Christen (2011) consider some smoothness desirable, both modeling approaches allow sedimentation rate to vary 355 

randomly and considerably in the absence of other constraints. However, we feel that astrochronology provides a clear, strong 

constraint on the stratigraphic variability in sedimentation rate. Astronomical tuning approaches show that changes in 

sedimentation rate can be unrelated to astronomical forcing yet be preserved in the spatial representation of the astronomical 

cycles (Muller and MacDonald, 2002; Malinverno et al., 2010) and stratigraphic investigation of preserved astronomical 

frequencies often reveals long periods of near constant sedimentation rates (Shen et al., 2022; Sinnesael et al., 2019; Meyers 360 

et al., 2001). Therefore, the addition of cyclostratigraphic data to age-depth model construction allows for the informed 

development of simpler sedimentation models which result in substantially lower uncertainties. 

5.2 Hiatus Duration Estimation 
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Figure 4: Hiatus duration versus the stratigraphic distance between the hiatus and the nearest radioisotope date for the CIP2 data 365 
set. The points are the model median, and the error bars are the 95% credible interval. The red line is the true hiatus duration of 
0.203 Ma. A-D) Models with 2, 4, 6, and 8 ages respectively. 

The ability to estimate hiatus durations is a significant strength of the atroBayes modeling framework. Hiatuses in stratigraphic 

records significantly complicate the interpretation of biologic and geochemical proxy records. Detecting and resolving the 

duration of hiatuses is therefore important to ensuring the accuracy of age-depth models. In principle, hiatuses can be detected 370 

and quantified from cyclostratigraphic records alone (Meyers and Sageman, 2004; Meyers, 2019). However, these approaches 

can be skewed towards minimum hiatus duration and are sensitive to distortions of the astronomical signal from other non-

hiatus sources (Meyers and Sageman, 2004). astroBayes relies on both astrochronology and radioisotopic geochronology to 

estimate the duration of one or more hiatuses with the joint inversion of astrochronology and radioisotopic ages controlling 

the sedimentation rates (slopes) above and below them, while also determining the absolute ages above and below hiatuses. 375 

The primary weakness of this approachHowever, it should be noted that there are two potential weaknesses of this approach 

to estimating hiatus duration. First, since hiatus positions are user defined, the stratigraphic position of a hiatus must be known 

a priori and must be informed by geologic (i.e., a visible unconformity) or cyclostratigraphic data (Meyers and Sageman, 

2004). In both the CIP2 testing data set and the Bridge Creek Limestone Member case study (discussed below), the stratigraphic 

positions of the hiatuses were known in advance. The second weakness is that astroBayes cannot reliably estimate durations 380 

for hiatuses unconstrained by radioisotopic dates. If a hiatus only has radioisotopic dates stratigraphically above or below, the 

undated side is unconstrained and duration estimates tend to wander towards an infinite duration. Likewise, if a model layer is 

bounded by two hiatuses and the layer does not contain any radioisotopic dates, then astroBayes cannot reliably resolve the 

duration of the bounding hiatuses and will tend to “split the difference”. However, when hiatuses are well-constrained by 

radioisotopic dates, astroBayes allows the estimation of robust uncertainties of hiatus duration and is a powerful tool when 385 

there is external sedimentological or astronomical evidence for hiatuses, as shown in the Bridge Creek Limestone Member 

case study below. 
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5.3 6.3 Guarding Against Potential Misuse of astroBayes 

 
Figure 5: Results of astroBayes modeling of the TD1 testing dataset, with the cyclostratigraphic data replaced by randomly generated 390 
AR(1) red-noise. A) Randomly generated AR(1) red-noise B) Age-depth model generated using the correct dates, frequencies, and 
layer boundaries, and the red-noise cyclostratigraphic data C) Evolutive harmonic analysis of A) (3m window size, 0.1m step size 
using 3-2π prolate tapers). The dashed lines indicate the layer boundary positions used for other model testing (see Fig. 2). The 
arrows indicate the uncertainty in layer boundary position reflecting the lack of any stratigraphically stable and continuous 
frequencies in the data. 395 

Because astroBayes is available as an R package, it is straightforward to install and use, assuming familiarity with the R 

programming language (R Core Team, 2023). Given this, we feel we should discuss appropriate and inappropriate use of the 

modeling framework. First, astroBayes is not a method to test for the presence of statistically-significant astronomical signals 

and it does not include any null-hypothesis tests. There are a variety of statistical methods available to test for the presence of 

astronomical signals in the rock record (Huybers and Wunsch, 2005; Meyers and Sageman, 2007; Zeeden et al., 2015; Meyers, 400 

2019) which should be used prior to astroBayes modeling. Instead, astroBayes is intended to be used to develop age-depth 

models after the presence of astronomical signals has been established using other methods. Similarly, astroBayes does not 

include automated outlier rejection for radioisotopic dates (Bronk Ramsey, 2009) and these data should be pre-screened 

following best practices for high precision geochronology (Michel et al., 2016; Schmitz and Kuiper, 2013). 

astroBayes is software, and it is quite possible to generate an age-depth model from data that lacks any astronomical signals 405 

or contains outlier radioisotopic dates. Therefore, astroBayes makes three assumptions about the input data. 1) the 

cyclostratigraphic data has been vetted and has been shown to contain statistically significant astronomical signals using other 

astrochronologic testing approaches. 2) The user-specified layer boundary positions (z) have been informed by either careful 

inspection of the cyclostratigraphic data (e.g., time-frequency analysis such as EHA), and other geologic data (e.g., visible 
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facies changes), or both. 3) The radioisotopic dates have been prescreened and do not contain obvious outlier dates or violations 410 

of fundamental geologic principles (e.g., superposition). 

For a simple example of an inappropriate use of astroBayes, we replaced the cyclostratigraphic data in the TD1 data set with 

randomly generated AR(1) red-noise. All other parameters (dates, layer boundaries, target frequencies) remained the same 

(see: Fig. 2, Table 3 and Table 2). Together, we used these data to generate an astroBayes age-depth model, shown in Fig. 5. 

The resulting age-depth model (Fig. 5B) looks superficially similar to the example models shown in Fig. 3. Since the 415 

radioisotopic dates still offer some limits on sedimentation rate, the median model still appears similar to the true age model. 

While the model credible interval is somewhat wider, it does not “balloon” and the overall uncertainties remain low compared 

to dates-only models (e.g., BChron). However, while this age-depth model looks superficially promising, it violates two of the 

assumptions discussed above. First, the “cyclostratigraphic” data (red-noise) does not contain any statistically significant 

astronomical periods, leading to meaningless probability calculations. Second, because the “cyclostratigraphic” data is 420 

random, it cannot be used to inform the placement of layer boundaries. Indeed the evolutive harmonic analysis shown in 

Fig. 5C shows no stratigraphically stable frequencies, making the layer boundary positions used for this example arbitrary and 

incorrect. The astroBayes modeling framework explicitly assumes a piecewise linear sedimentation model (Fig. 1) where 

sedimentation rate only varies at layer boundaries but is otherwise stable. Since for this example the “cyclostratigrapy” contains 

no astronomical signals, and the layer boundary positions cannot be reliably determined, astroBayes would be an inappropriate 425 

modeling tool. 

5.35.4 Case Study: The Cenomanian-Turonian Bridge Creek Limestone Member 

The Bridge Creek Limestone Member is the uppermost member of the Greenhorn Formation of central Colorado. It is primarily 

composed of hemipelagic marlstone and limestone couplets that extend laterally for over 1,000 km in the Western Interior 

Basin (Elder et al., 1994). These couplets are characterized by alternations from darker organic carbon-rich laminated clay and 430 

mudstones to lighter carbonate-rich, organic carbon-poor limestone facies. Previous work has reported Milankovitch scale 

cyclicity in the Bridge Creek Limestone Member through the application of statistical astrochronologic testing methods 

(Sageman et al., 1997, 1998; Meyers et al., 2001, 2012, 2008). Using U-Pb and 40Ar/39Ar ages from several bentonites 

throughout the section to provide temporal anchoring of the astrochronology, Meyers et al. (2012) previously calibrated the 

age of the Cenomanian-Turonian boundary as 93.90±0.15Ma (mean±95%CI) using an adaptation of the Bayesian “stacked 435 

bed” algorithm (Buck et al., 1991) that respects both stratigraphic superposition and astrochronologic durations between the 

dates and the boundary position. That work used the floating astrochronology of Meyers et al. (2001), based on analysis of a 

high stratigraphic resolution optical densitometry record (i.e., grayscale) of the Bridge Creek Limestone Member. Meyers and 

Sageman (2004) later quantified a brief hiatus in the Bridge Creek Limestone Member near the base of the Neocardioceras 

juddii ammonite biozone, at the top of limestone marker bed LS5, (Elder et al., 1994), with an estimated minimum duration of 440 

0.079 – 0.0254 Ma. Sedimentologic evidence for the hiatus incudes the presence of a calcarenite cap at the top of LS5 at the 

basin center Pueblo, Colorado section (Meyers and Sageman, 2004). 
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Table 4: Astronomical target periods used for the Bridge Creek Limestone Member astroBayes analysis. The precession and 
obliquity terms are based on the reconstruction of Waltham (2015) at 94 Ma, and the eccentricity terms are based on the LA10d 
solution (Laskar et al., 2011) from 0-20 Ma. We used the average of the two ~0.02 Myr and two ~0.018 Myr precession terms. 445 

Period (MaMyr) Frequency (1/MaMyr) Cycle 

0.40567954057 2.46500 eccentricity 

0.09487670940 10.54000 eccentricity 

0.09886310989 10.11500 eccentricity 

0.05044340504 19.82420 obliquity 

0.03910000391 25.57545 obliquity 

0.02791300279 35.82561 obliquity 

0.02241000224 44.62294 precession 

0.0186 53.74899 precession 

We used astroBayes to develop two new age-depth models for the Bridge Creek Limestone Member using the the grayscale 

record of Meyers et al. (2001)), a suite of target astronomical frequencies (Table 4), and two sets of radioisotopic dates to 

develop, resulting in two alternative models. For the first model (Meyers model) we used the 40Ar/39Ar bentonite ages of 

Meyers et al. (2012), and for the second (Updated model) we used the updated 40Ar/39Ar ages of Jones et al. (2021) and Jicha 

et al. (2016). Note that since the A-bentonite has not been reanalyzed, both models use the Meyers et al. (2012) age for this 450 

sample (Table 5). We divided the Bridge Creek Limestone member grayscale record (Fig. 56A) into three layers based on the 

observed shifts in the high spectral amplitude frequency-track (~1.1 cycles/m) delineated about 6.7 meters height and at the 

reported hiatus at 2.7 meters height (Meyers and Sageman, 2004) depth (Fig. 56B). 
Table 5: Radioisotopic dates used used as model inputs for the two Bridge Creek Limestone Member age-depth models shown in 
Fig. 56. 455 

Age Model Sample Age±1σ (Ma) Position (m) Source 

Meyers A-bentonite 94.20±0.140 1.62 Meyers et al. (2012) 

 B-bentonite 94.10±0.135 3.30 Meyers et al. (2012) 

 C-bentonite 93.79±0.130 5.95 Meyers et al. (2012) 

 D-bentonite 93.67±0.155 6.98 Meyers et al. (2012) 

Updated A-bentonite 94.20±0.140 1.62 Meyers et al. (2012) 

 B-bentonite 93.99±0.110 3.30 Jicha et al. (2016) 

 C-bentonite 94.022±0.102 5.95 Jones et al. (2021) 

 D-bentonite 93.799±0.077 6.98 Jones et al. (2021) 
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Figure 56: Results of astroBayes modeling of the Bridge Creek Limestone Member greyscale record showing the modeled age of the 
Cenomanian -Turonian Boundary. A) Bridge Creek Limestone Member grayscale record. B) Evolutive harmonic analysis of panel 
(2 meter window size, 0.05 meter setstep size using 3-2π prolate tapers) A) with superimposed layer boundary positions (horizontal 
dashed white lines). C) Two age-depth modelmodels for the Bridge Creek Limestone Member. The colored probability distributions 460 
are the dates used for the Meyers model and the grey probability distributions are the dates used for the Updated model. The blue 
points and error bars are the modeled ageastroBayes model ages for the Cenomanian Turonian boundary. Note that these points 
have been slightly offset vertically for visual clarity. 

Results for both the Meyers and Updated models are shown in Fig. 56C. Evolutive harmonic analysis of the grayscale record 

after applying the median Meyers age-depth model reveal,reveals stable, eccentricity, eccentricity (~10 cycles/Ma) and 465 

obliquity (~20 cycles/Ma) scale frequencies, suggesting that the astroBayes age-depth modeling has successfully removed the 

distortion of these astronomical frequencies due to varying sedimentation rates (Fig. 67). The Meyers and Updated results are 

broadly similar, and have nearly identical posterior distributions of sedimentation rate (note the parallel model medians in 

Fig. 56). The Meyers model has a wider credible interval compared to the Updated model, likely a result of the somewhat 

more precise radioisotopic dates in the Updated model (Table 5). The Updated model is also systematically older than the 470 

Meyers model, showing the influence that the revised bentonite ages have on age-depth model construction. The estimated 

hiatus durations from both models are similar; the Meyers model has a maximum density at 0.021 Ma023 Myr and the Updated 

model has a maximum density at 0.014 Ma012 Myr. Both durations are comparable to the duration previously reported in 

Meyers and Sageman (2004) (0.017 Ma, with uncertainty spanning 0.079 – 0.0254 Ma). Median hiatus durations from 

astroBayes are somewhat longer (Meyers- 0.104097 Ma; Updated- 0.065069 Ma) suggesting an eccentricity or precession 475 

scale hiatus (Fig. 78). However, the previous estimates of Meyers and Sageman (2004) are explicitly minimum duration 

estimations and fall within the 95% credible interval of the astroBayes modeled duration. 
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Figure 67: A) Periodogram of the Bridge Creek Limestone Member greyscale data after applying the median astroBayes age-depth 
Meyers model. The solid red line is the AR1 red noise background and the dashed red line is the standard 95% confidence level. (not 480 
accounting for multiple-testing). B) Evolutive harmonic analysis of Bridge Creek Limestone Member greyscale data after applying 
the median astroBayes age-depth model (0.75 MaMyr window size, 0.025 MaMyr step size using 3-2π prolate tapers). In both panels 
astronomical frequencies (Table 4) used in model construction are shown as vertical dashed lines. Note that in panel B the distortion 
from variations in sedimentation rate (compared with Fig. 56B) has been removed. 
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Figure 78: astroBayes modeled hiatus duration hiatus for the hiatus at the top of limestone marker bed 5 (LS5) in the Bridge Creek 
Limestone Member. 

Finally, we calculated the age of the Cenomanian-Turonian boundary using both age depth models. The Meyers model age for 

the boundary is 93.87±0.15 Ma (median±95%CI), essentially indistinguishable from the age of 93.90±0.15 Ma reported by 

Meyers et al. (2012), suggesting that astroBayes produces comparable results when using identical data. The Updated model 490 

boundary-age is slightly older (93.98±0.10 Ma; median±95%CI). The age of the Cenomanian-Turonian boundary has been 

revised multiple times over the past few years and has variously been reported as 93.9±0.2 Ma (Gale et al., 2020), 93.95±0.05 

Ma (Jones et al., 2021), 93.69±0.15 or 94.10±0.15 (Batenburg et al., 2016), and as between 94.007 and 94.616 Ma (Renaut et 

al., 2023), with most revisions shifting the boundary age older towards about ~94 Ma, a trend that our Updated model 

continues. Both the Meyers and Updated model-ages are broadly comparable with these previous estimates, although they only 495 

slightly overlap with the range of Renaut et al. (2023) (Fig. 89). Crucially however, both astroBayes age-depth models provide 

a continuous record of age for the Bridge Creek Limestone Member that can be used toevaluateto evaluate geochemical proxy 

data and estimate fluxes, interpret the boundary ages and durations of several ammonite biozones present in the section (Meyers 

et al., 2012, 2001), while also fosteringand foster correlations to other calibrated sections for evaluating mechanisms of Earth 

System evolution (e.g., Oceanic Anoxic Event 2; (Schlanger and Jenkyns, 1976). Accurate and precise determination of the 500 

Cenomanian-Turonian boundary age is important as the boundary serves as an important geochronological marker against 

which other boundary-ages are determined (Gale et al., 2020). 

 
Figure 9: Modeled astroBayes ages and previously reported ages for the Cenomanian-Turonian boundary. 

6 Conclusions 505 

Radioisotopic geochronology and astrochronology underly the development of age-depth models that translate stratigraphic 

position to numerical time. In turn, these models are crucial to the evaluation of climate proxy records and the development of 

the geologic time scale. Existing Bayesian methods for age-depth modeling generally rely only on radioisotopic dates and as 

a consequence, do not explicitly incorporate astronomical constraints on the passage of time. However astrochronology is a 

rich source of chronologic information and its explicit inclusion in the calculation of age-depth models can substantially 510 
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improve model accuracy and precision. Here we have presented a new joint Bayesian inversion approach for radioisotopic and 

astronomical data, astroBayes. The method is freely available as an R package and contains a variety of functions for the 

creation and use of age-depth models including modeling, prediction, and plotting. Our testing shows that astroBayes 

outperforms dates-only age-depth models and produces chronologies that are simultaneously consistent with astrochronology 

and radioisotopic dates with substantially smaller model uncertainties. Reducing the uncertainty associated with 515 

geochronological data, either as discrete dates or age-depth models, allows the testing of cause-and-effect relationships of 

interrelated climatological and biological events over the course of Earth’s history (Burgess and Bowring, 2015; Schmitz and 

Kuiper, 2013) and has the potential to improve the correlation of geologic events among and between basins worldwide. 

7 Code and Data Availability 

The astroBayes R package and installation instructions are available at github.com/robintrayler/astroBayes. All code and data 520 

necessary to reproduce the results of this manuscript (model testing, validation, and case study) are available at 

github.com/robintrayler/astroBayes_manuscript. 
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12 Appendix A 

 
Figure S1: Superimposed MCMC trace plots of sedimentation rate for 50 randomly chosen models for the TD1 synthetic dataset. 
Different colors indicate different model runs. The vertical dashed line indicates the burn-in period of 1,000 iterations. 650 



 

30 
 

 
Figure S2: Superimposed kernel density estimates of the posterior distribution for each model parameter from 50 randomly chosen 
TD1 validation models. Different colors indicate different model runs. 
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Figure S3: Superimposed MCMC trace plots of sedimentation rate for 50 randomly chosen models for the CIP2 synthetic dataset. 655 
Different colors indicate different model runs. The vertical dashed line indicates the burn-in period of 1,000 iterations. 
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Figure S4: Superimposed kernel density estimates of the posterior distribution for each model parameter from 50 randomly chosen 
CIP2 validation models. Different colors indicate different model runs. 


