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Abstract. Radiocarbon may serve as a powerful dating tool in palaeoceanography, but its accuracy is limited by the need to 

calibrate radiocarbon dates to calendar ages. A key problem is that marine radiocarbon dates must be corrected for past offsets 

from either the contemporary atmosphere (i.e. ‘reservoir age’ offsets) or a modelled estimate of the global average surface 10 

ocean (i.e. delta-R offsets). This presents a challenge because the spatial distribution of reservoir ages and delta-R offsets can 

vary significantly, particularly over periods of major marine hydrographic and/or carbon cycle change such as the last 

deglaciation. Modern reservoir age/delta-R estimates therefore have limited applicability.  While forward modelling of past 

R-age variability has been proposed as a means of resolving this problem, this requires accurate a priori knowledge of past 

global radiocarbon budget closure (i.e. production, and cycling), which currently we lack. In this context, the construction of 15 

empirical regional marine calibration curves could provide a way forward. However, the spatial reach of such calibrations, and 

their robustness subject to (uncertain) temporal changes in climate and ocean circulation would need to be tested. Here, we 

use unsupervised machine learning techniques to define distinct regions of the surface ocean that exhibit coherent behaviour 

in terms of their radiocarbon age offsets from the contemporary atmosphere (R-ages), regardless of the causes of R-age 

variability. We apply multiple algorithms (K-Means, K-Medoids, hierarchical clustering) to outputs from 2 different numerical 20 

models, spanning a range of climate states, forcing, and timescales of adjustment. Comparisons between the cluster 

assignments across model runs confirm some robust regional patterns that likely stem from constraints imposed by large-scale 

ocean and atmospheric physics. At the coarsest scale, regions of coherent R-age variability correspond to the major ocean 

basins. By further dividing basin-scale shape-based clusters into amplitude-based subclusters, we recover regional associations, 

such as increased high latitude R-ages, or the propagation of R-age anomalies from regions of deep mixing in the Southern 25 

Ocean to upwelling sites in the Eastern Equatorial Pacific, which cohere with known modern oceanographic processes. We 

show that the medoids (i.e. the most representative locations) for these regional sub-clusters provide significantly better 

approximations of simulated local R-age variability than constant offsets from the global surface average. This remains true 

when cluster assignments obtained from one model simulation are applied to simulated R-age time series from another. Further, 

model-based clusters are found to be broadly consistent with existing reservoir age reconstructions that span the last ~30 ka. 30 
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We therefore propose that machine learning provides a promising approach to the problem of defining regions for which 

empirical marine radiocarbon calibration curves may eventually be generated. 

1 Introduction 

Radiocarbon was initially developed primarily as a dating tool (Libby, 1955); however, the conditions under which radiocarbon 

can be used to provide accurate calendar age dates turn out to be quite restricted.  Due to past changes in the production rate 35 

of radiocarbon in the atmosphere, the total inventory of radiocarbon has changed over time. Furthermore, changes in the global 

carbon cycle have also caused changes in the distribution of radiocarbon amongst the various Earth system carbon reservoirs. 

Both of these factors have caused the radiocarbon concentrations of the various Earth system carbon reservoirs to change over 

time. The conversion of a radiocarbon measurement into a calendar age estimate requires knowledge of both the radiocarbon 

decay rate, or half-life, and the initial radiocarbon concentration of the fossil entity. Therefore, radiocarbon ages must be 40 

‘calibrated’ to calendar ages using a reservoir-specific calibration curve that lists calendar ages and corresponding radiocarbon 

ages, derived from that reservoir’s history of radiocarbon concentration change. Currently, the atmosphere is the only Earth 

system reservoir for which we possess a robust observation-based calibration curve (Reimer et al., 2020; Hogg et al., 2020).  

Even in the case of the relatively well-mixed atmosphere, subtle differences in the evolving radiocarbon concentrations of the 

northern and southern hemisphere atmosphere require the use of hemisphere-specific calibration curves (Reimer et al., 2020; 45 

Hogg et al., 2020).   

 

The calibration of marine radiocarbon dates presents further challenges (Skinner and Bard, 2022). On the one hand, this is 

because the processes responsible for the exchange of radiocarbon between the ocean and atmosphere (where radiocarbon is 

produced), and the processes responsible for the redistribution of radiocarbon throughout the ocean, are relatively slow.  This 50 

results in spatially heterogeneous patterns of radiocarbon concentration throughout the ocean, including in the ‘surface’ ocean 

(upper few 100m). Figure 1a shows the distribution of ‘background’ (bomb-corrected) radiocarbon in the surface ocean (Key 

et al., 2004), expressed in terms of radiocarbon age offsets between the ocean at a given location and the mean atmosphere 

(i.e. ‘reservoir age’ or R-age offsets).  The patterns of radiocarbon concentration that are visible in Figure 1a are directly 

related to the oceanographic phenomena that control the ocean-atmosphere exchange of radiocarbon and its transport through 55 

the ocean (Key et al., 2004; Koeve et al., 2015).   

 

From a calibration perspective, the problem that arises from this spatial heterogeneity is that the radiocarbon concentration at 

a given location cannot necessarily be estimated from e.g. the mean surface ocean radiocarbon concentration (or the mean 

offset from the atmosphere, R-age).  One way to address this problem has been to apply a constant location-specific correction, 60 

referred to as a ‘delta-R’ correction (i.e. 𝑑𝑅(𝑗), for location j) (Reimer and Reimer, 2001; Stuiver et al., 1986). Such delta-R 
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corrections represent the difference between the local R-age a location j and time t (i.e. 𝑅!"#(𝑡, 𝑗)) and the mean surface ocean 

R-age at time t (i.e. 𝑅!"#(𝑡)((((((((((): 

 

𝑅!"#(𝑡, 𝑗) = 	𝑅!"#(𝑡)(((((((((( + 𝑑𝑅(𝑗) 65 

 

A marine radiocarbon date from location j and time t ( 𝐶$(𝑡, 𝑗)	
&' ) might therefore be expressed as: 

 

𝐶$(𝑡, 𝑗)	
&' = 𝐶!()(𝑡) +	

&' 𝑅!"#(𝑡, 𝑗) = 	 𝐶!()(𝑡) +	
&' 𝑅!"#(𝑡)(((((((((( + 𝑑𝑅(𝑗) 

 70 

Or equivalently, in terms of the mean surface ocean radiocarbon age ( 𝐶*+$(𝑡)	
&'((((((((((((): 

 

𝐶$(𝑡, 𝑗)	
&' =	 𝐶*+$(𝑡)	

&'(((((((((((( + 𝑑𝑅(𝑗) 

 

 75 
 

Figure 1. Radiocarbon ‘reservoir age’ (R-age) offsets and their potential variability. Plot a, modern ‘background’ (bomb-

corrected) R-ages averaged over the upper 300m, based on the GLODAP dataset (Key et al., 2004). Plot b, example of 

maximum changes in delta-R values (i.e. deviations between local R-ages and the global mean R-age) associated with ocean 

circulation changes simulated by the UVic Earth system model of intermediate complexity (Menviel et al., 2015) – see Table 80 

1. 
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Therefore, assuming an invariant spatial distribution of R-ages (hence an invariant ocean state), one approach has been to 

apply a constant location-specific delta-R correction (usually based on modern pre-bomb estimates) to measured radiocarbon 

dates, and calibrate these corrected dates using a mean surface ocean calibration curve, such as Marine20 (Heaton et al., 2020). 85 

The latter has been derived from the atmospheric calibration curve, by modelling the ocean’s response to evolving atmospheric 

radiocarbon concentrations (Heaton et al., 2020). One major drawback of this approach is that it requires assumptions (or faith 

in forward modelled outcomes) regarding past changes in key environmental parameters (such as sea ice 

distribution/seasonality, ocean circulation, global carbon cycling, etc.) that are actually the focus of intense debate and ongoing 

research efforts.   90 

 

While the estimation of an appropriate mean surface ocean radiocarbon history (e.g. Marine20) presents significant challenges 

in itself, a further difficulty arises from the fact that local deviations from the global mean R-age (i.e. delta-R values) need not 

remain constant. Thus, a more accurate description of surface R-ages is: 

 95 

𝑅!"#(𝑡, 𝑗) = 	𝑅!"#(𝑡)(((((((((( + 𝑑𝑅(𝑡, 𝑗) 

 

This additional challenge was already identified when the use of delta-R corrections was first proposed (Stuiver et al., 1986), 

at which time it was emphasized that their use was likely only justified over the last ~9000 years when the global carbon cycle 

and ocean state were thought to have remained ‘more or less’ constant.  Indeed, it is now apparent that local R-age values have 100 

changed by order 100% over the last ~20,000 years at some surface ocean locations, and more importantly that such changes 

have followed different trajectories depending on their location (Skinner et al., 2019).  Furthermore, as illustrated in Figure 

1b, Earth system modelling results indicate that significant and spatially heterogeneous changes in delta-R values are expected 

to have occurred as a result of past ocean circulation perturbations (Menviel et al., 2015). 

 105 

In order to circumvent these non-trivial and persistent challenges for marine radiocarbon dating, one approach would be to 

directly estimate past surface ocean radiocarbon variability, and thus reconstruct marine calibration curves, for key locations 

in the surface ocean (Skinner et al., 2019).  This would circumvent the need to make assumptions regarding past ocean states 

and therefore substantially ‘liberate’ radiocarbon as a carbon cycle tracer as well as a dating tool.  Already, the identification 

of regionally coherent patterns of R-age variability across the last deglaciation suggests that the construction of regional 110 

calibrations could be successful (Skinner et al., 2019).  However, several questions arise in this context: how would ‘regions’ 

of coherent radiocarbon variability be defined; how robust and stable would such regions be, subject to major climate/ocean 

circulation change; what gain in calibration accuracy (if any) would be possible through their use?  This study aims to address 

these questions.  More specifically, we investigate the potential for regional marine radiocarbon calibrations using 

unsupervised machine learning techniques to define distinct regions of coherent R-age variability in the surface ocean. We 115 
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apply our analysis to a suite of numerical model outputs representing a range of different climate- and ocean circulation states 

and compare our model-based results with currently available marine R-age reconstructions.  Note that our goal is not to 

simulate past R-age variability, as has been proposed previously (Alves et al., 2019; Heaton et al., 2023). Instead, we assess 

the regional coherence of R-age variability, using a diverse set of physically plausible R-age scenarios drawn from different 

numerical models and spanning a range of different drivers and timescales of variability. We aim to determine if there is robust 120 

regional coherence in R-age variability regardless of how and why R-ages have changed. Only if such robust regional 

coherence exists, should it be possible to generate observationally constrained regional calibration curves and apply them to a 

reasonably well-defined area of the globe.  

 

2. Methods 125 

We apply unsupervised machine learning (ML) techniques to outputs from 2 different Earth System models (section 2.1, Table 

1). Our aim is to identify surface ocean locations that exhibit similar R-age variability, in terms of both their signal (or ‘shape’) 

and their amplitude.  We make use of three different techniques for clustering (K-means, K-medoids and hierarchical 

clustering), in addition to a suite of methods for assessing their robustness.  These are described below in section 2.2.   

 130 

Table 1: Summary of model outputs used. 

Model Description Runs used Time interval 
Grid resolution 

(lon x lat) 

CM2Mc.v2 

Coupled ocean-atmosphere-ice-

biogeochemistry general circulation model, 

forced by  CO2, orbital configuration, ice 

sheet size (Galbraith and De Lavergne, 2019). 

• Glacial-like equilibrium state 

• Interglacial/pre-industrial-like 

equilibrium state. 

1 year (12 time steps, 1 

month each) 
120 x 80 

UVic Earth 

System Model 

v2.9 (Menviel 

et al., 2015). 

Transient simulations of MIS3 millennial-

scale climate variability, with freshwater 

forcing periodically applied to the North 

Atlantic region to simulate Dansgaard-

Oeschger events. 

• U-Tr (UVic transient) 

• U-TrS (additional transient experiment 

imposing a salt flux in the Southern 

Ocean and the Eastern Equatorial 

Pacific to correct for model limitations 

in representing the hydrological cycle). 

154 time steps (100 years 

each) spanning the 

interval from  ~50 ka to 

~34 ka. 

100 x 100 

 

2.1 Model outputs 

In order to explore regional associations in R-age variability, we make use of outputs from two different numerical models: 

CM2MC and UVic (Table 1). For the CM2Mc simulations, we use annual cycles drawn from an equilibrium interglacial-like 135 

state and from an equilibrium glacial-like state (Galbraith and De Lavergne, 2019). The UVic outputs consist of annual 

averages (at 100 year resolution) from two sets of transient simulations performed under ‘mid-glacial’ boundary conditions 

equivalent to Marine Isotope Stage (MIS) 3 (Menviel et al., 2015).  One of these simulations (U-Tr) involved variable buoyancy 



6 
 

forcing applied to the North Atlantic, resulting in changes in the strength of the Atlantic Meridional Overturning Circulation 

(AMOC). A second set of UVic simulations (U-TrS) involved in addition variable buoyancy forcing applied to the Indian and 140 

Pacific sectors of the Southern Ocean, as well as the Eastern Equatorial Pacific (EEP), resulting in additional changes in the 

strength of deep convection near Antarctica and in the North Pacific (Menviel et al., 2015).  The Uvic simulations consist of 

two consecutive runs, hence four ocean circulation perturbations, for each of the UTr and UTrS simulations. The start of the 

second run was initialised far from equilibrium for radiocarbon, and therefore includes a global spike in marine radiocarbon 

activity.  This has been retained in our analyses to permit an assessment of our ability to identify regional clusters both with 145 

and without the occurrence of a large background global anomaly, such as would be produced by the a large geomagnetic 

excursion for example (Heaton et al., 2021).  

 

The dissolved inorganic carbon (DIC) and the dissolved inorganic radiocarbon (DI14C) to compute surface ocean Δ14C: 

 150 

Δ 𝐶	&' =	.
𝐷𝐼 𝐶	&'

𝐷𝐼𝐶 − 13 × 1000 

 

R-age offsets are then calculated, taking into account the atmospheric Δ14Catm: 

	

R,-. =	−8267 × ln =.
Δ 𝐶	&' $/#!0

1000 + 13 .
Δ 𝐶	&' !()

1000 + 13> ? 155 

 

Here we use the ‘true’ mean lifetime of radiocarbon (8267 years) based on the ‘Cambridge half-life’ of 5730 years (Godwin, 

1962). However, we note that if a direct quantitative comparison with measurements was to be performed, then the 

conventional ‘Libby half-life’ of 5648 years should be used instead. The atmospheric Δ14C in the CM2Mc runs is held constant 

at 0 per mil, and in the UVic runs at 393 per mil. 160 

 

2.2 Unsupervised machine learning 

2.2.1 K-means 

The K-means algorithm (see Ahmed et al. (2020) for a recent review) divides data into a number K of clusters, defining the 

partitions such that each data point is as close as possible to the mean of its assigned cluster. For our purposes, the R-age time 165 

series of each ocean location on the model grid constitutes one data point for K-Means, letting us map out which grid points 

are assigned to which cluster. We feed no prior geographical information to the algorithm; therefore, regions delineated by the 

algorithm are based on the similarity of their R-age histories alone. 

 

2.2.2 K-Medoids 170 
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The K-Medoids algorithm is similar to K-Means, but, instead of converging on abstract cluster centroids, it identifies cluster 

medoids, i.e. actual data points that best represent each cluster. K-Medoids is more robust to noise and outliers in the data 

(Arora et al., 2016); furthermore, working with concrete data points as cluster centres, we can pinpoint their locations on the 

model grid. In the implementation we used, K-Medoids was slower than K-Means, so although most of the results and 

discussion sections focus on K-Medoids and hierarchical clustering, much of the exploratory analysis involved K-Means. 175 

 

2.2.3 Selecting K for K-means and K-medoids 

The main drawback of both K-Means and K-Medoids is that they require a priori knowledge of the number of clusters, K, to 

divide data into. We employ 4 methods (Table 2) to evaluate clustering performance as a function of the number of clusters 

over the range 2 ≤ K ≤ 10. The Caliński-Harabasz (CH) index and the silhouette score penalize different aspects of cluster 180 

shape: CH generally increases with K, because it favours splitting the data into many small clusters to minimize intra-cluster 

distances; the silhouette score generally decreases with K, because it favours a few large, well-separated clusters.  

 

Table 2: Methods to pinpoint the optimal number of clusters. 
Method name Description Reference 

The elbow/knee method This heuristic technique simply considers as optimal 

the number of clusters for which the sum of squared 

errors (distances), SSE, between cluster members 

and their respective cluster centres is no longer 

significantly reduced by increasing K (i.e. we have 

‘diminishing returns’ in error reduction as K 

increases). 

Satopaa et al. (2011) 

Caliński-Harabasz index Captures intra-cluster cohesion and inter-cluster 

separation. 

Caliński and Harabasz (1974) 

Davies-Bouldin index Davies and Bouldin (1979) 

Silhouette score Rousseeuw (1987) 

 185 

2.2.4 Time series normalisation and subclusters 

We run K-Means and K-Medoids clustering on both unnormalised (‘raw’) and normalised time series. In the first case, 

clustering captures differences in both the amplitudes and shapes of the time series. In the latter case, only shape information 

is considered. 

 190 

Because clustering on normalised time series disregards amplitude information, we perform a first round of clustering using 

normalised data to identify time-series that share the same patterns of variability, regardless of amplitude.  A second round of 

clustering, using un-normalised data, is then performed on each of these ‘shape based’ clusters. This allows us to identify 

amplitude-based ‘subclusters’ within the shape-based clusters. The ‘optimal’ number of subclusters within each cluster is 

chosen at runtime using the elbow method (see section 2.2, Table 2). 195 
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Figure 2. Illustration of the basic operation of the hierarchical clustering algorithm, on synthetic data defined along two 

component axes. Note how points which plot closer together in the right-hand plot are recovered as more closely related in 

the dendrogram on the left. 

 200 

2.2.5 Hierarchical clustering 

Hierarchical clustering tells us how closely related data points are to each other, like phylogenetic trees. This requires the 

definition of an appropriate relatedness metric (or conversely, a distance metric). Using the Pearson correlation coefficient 

between the R-age histories of sites A and B in the ocean (𝜌12), we may define a distance metric, 𝑑 = A1 − 𝜌12 .  This 

distance metric provides a measure of the similarity of two time-series: d = 0 when ρAB = 1 (the distance between perfectly 205 

correlated time series is zero); d = 1 when ρAB = 0 (uncorrelated time-series are farther apart). The square root ensures that the 

triangle inequality is obeyed (Solo, 2019), avoiding misleading results (for example, when we fail to enforce the triangle 

inequality, we may obtain that time series A is similar to B, and B is similar to C, but A and C are dissimilar). 

 

Given a matrix of distances between data points, there exist numerous methods to form a hierarchy/dendrogram (Figure 2). 210 

We opt for the Ward method, which outperforms other common linkage methods where clusters overlap (Vijaya et al., 2019), 

as expected for our data. The resulting dendrogram illustrates cluster relatedness and has the advantage (over K-Means and K-

Medoids) of not requiring prior information on the number of clusters. The dendrogram can be split (‘flattened’) into an 

arbitrary number of clusters, by cutting the tree at any height. 

 215 

2.2.6 Cluster analysis 

The numerical cluster labels generated by the clustering algorithms are assigned randomly, hampering comparison between 

applications. To bypass this limitation, we: 1) re-order cluster labels such that clusters with higher mean R-ages are assigned 

smaller numbers; 2) define a re-labelling routine that takes in two sets of clustering results and attempts to permute the labels 

to maximise geographic overlap in cluster assignment between the two maps. Cluster maps with different grid sizes are re-220 
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gridded using a nearest-neighbour algorithm, and invalid data points (e.g. re-gridded onto land) are dropped from the analysis. 

As discussed below in section 3, a 1-to-1 matching between the two sets of labels is not always possible. 

 

Given a set of subclusters, we investigate to what extent the R-age time series belonging to each subcluster are described: 1) 

by the subcluster medoid; 2) by the ‘parent’ shape-based cluster medoid; and 3) by the running mean R-age of the surface 225 

ocean. We take the difference between each of these 3 ‘benchmark’ R-age time series and the subcluster member time series 

at each point in time, obtaining a distribution of R-age anomalies for each of the three cases. We compare the three anomaly 

distributions graphically as density plots, and numerically in terms of their means. 

 
Figure 3.  Clustering performance of K-means (left) and K-medoids (right) on un-normalised data, as a function of the number 230 

of clusters over the range 2 ≤ K ≤ 10, for the CM2Mc runs using unnormalized data (solid line for interglacial data; dotted 

line for glacial data). Vertical lines mark the elbow points. Note how, for the interglacial case, the elbow method and all three 

scores recover K=4 as a peak in clustering performance with K-means, K=6 with K-medoids.  

 

3. Results 235 

3.1 Equilibrium annual cycle for interglacial- and glacial-like states 

Figure 3 summarises the K-means and K-medoids clustering performance for different numbers of clusters (K), between K=2 

and K=10. The clustering is applied to one annual cycle of un-normalised (raw) data from an interglacial-like climate state 

(solid lines in Figure 3) and a glacial-like climate state (dashed lines in Figure 3) simulated by the CM2Mc model (Galbraith 

and De Lavergne, 2019). Note that the ‘Davies-Bouldin’ index has been multiplied by -1 to match the ‘Caliński-Harabasz’ 240 
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index and the silhouette score, such that lower values indicate diminishing explanatory power. For K-Means, the 4 methods 

suggest K=4 as a particularly suitable number of clusters; it is pinpointed by the ‘elbow method’ (vertical solid line, top left 

panel) and rises above the background trends in the silhouette score, the CH index (slightly) and the DB index. A similar result 

is obtained for the glacial like climate state using K-means (Figure 3, left hand plots, dashed lines). There is less agreement 

among the methods using K-Medoids for the interglacial-like climate state (Figure 3, right hand plots, solid lines), with an 245 

elbow apparent at K=4, and peaks in silhouette scores, the CH index and the DB index at K=6. When applied to raw data from 

the glacial-like climate state, K-medoids also yields an elbow at K = 4 (as well as a strong peak in the CH index (Figure 3 left 

hand plots, dashed lines). Overall therefore, for both K-means and K-medoids, no clear optimum value for K emerges for K>2 

when using normalised data (Figure 3), and this remains true when applied to normalised data (not shown). 

 250 

In this context, where we are interested in the eventual construction of regional radiocarbon calibration curves, an optimal 

value of K will be the minimum value that provides a sufficient degree of explanatory power.  Here, explanatory power reflects 

the degree to which the cluster centroid/medoid is able to represent the R-age history at a given location with sufficient 

accuracy and precision. Encouragingly, Figure 3 suggests that, for two very different equilibrium climate states, the bulk of 

R-age variability can be captured with a relatively small number of clusters, e.g. K=4, and with little sensitivity to clustering 255 

method (e.g. K-means or K-medoids) 

.  

Figure 4. Clustering results using K-medoids on un-normalised data from the CM2Mc interglacial run, using K=4. 

 

Figure 4 shows the clustering results for K-Medoids applied to un-normalised CM2Mc interglacial data, using K=4. The 260 

cluster map in Figure 4a illustrates the ocean regions corresponding to each cluster (landmasses in white); Figure 4b shows 

Figure 4all the R-age time-series colour-coded by cluster membership, Figure 4c and the time-series associated with each 

cluster along with their respective centroids. Cluster #1 forms a longitudinal band in the Southern Ocean, featuring the highest 



11 
 

mean R-ages and the strongest annual variation in R-age. Clusters #2 and #3 cover lower-latitude band within the Southern 

Ocean, but also outcrop in the Eastern Equatorial Pacific (EEP), the Eastern Central Atlantic, the North Atlantic, the North 265 

Pacific and the North Indian Ocean. The rest of the ocean is assigned to Cluster #4, which dominates the tropical/subtropical 

gyre regions and exhibits the lowest R-ages and the least variability over the annual cycle.  Increasing the number of clusters 

to K=9 further subdivides the ocean (Figure S1), but with only a modest gain in explanatory power, producing the same broad 

patterns as for K=4.   

 270 
Figure 5. Hierarchical clustering results for the CM2Mc interglacial run, based on Pearson distances between the R-age time 

series at each location. Bottom panels show the same cluster dendrogram but sliced at two different heights (cophenetic 

distances) to produce four and two clusters on the left and right, respectively. Top panels show the resulting cluster 

geographies, with landmasses in grey. 

 275 

Clustering on normalised data, to extract clusters based on time series shape alone (without amplitude information), produces 

highly geographically disconnected clusters for both K-Means and K-Medoids when K>2 (not shown). Nevertheless, a north-

south divide is apparent in the clustering results for normalised data using K=4, reflecting an annual signal that is dominated 

by high-latitude seasonal convection and ocean-atmosphere gas-exchange (also apparent in the centroid time-series shown in 

Figure 4c).  The emergence of this north-south divide is further illustrated by hierarchical clustering on Pearson distances, 280 

which is also less sensitive to time-series amplitude and recovers similar regions to the shape-based clustering (Figure 5). The 

resulting dendrogram confirms that the north-south divide emerges at the highest branching level (Figure 5, right panels). 

 

Applying K-medoids to the glacial-like climate state simulated by CM2Mc, again using K=4, yields very similar (though not 

identical) results.  This is shown in Figure 6, which compares the clusters obtained for the glacial- and interglacial states 285 

simulated using CM2Mc, demonstrating ~80% overlap. The similarity of the clusters obtained for the two simulations suggests 
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minor differences in the overall impact of the annual cycle on the distribution of R-ages between two contrasting climate states. 

However, it is notable that the regions of non-overlap tend to occur at the margins of the clusters, suggesting an inherent 

ambiguity at the junctures of cluster regions (hatched areas in Figure 6).  

 290 

 
Figure 6. Comparison of clustering results between the two CM2Mc runs (left: interglacial; right: glacial), using K-medoids 

on un-normalised data. The colour-coded Venn diagrams quantify overlap between the two maps. For example, cluster #3 

(green) is assigned substantially more area in the interglacial run on the left, while cluster #4 (yellow) covers roughly the 

same geographic region in both runs. 295 

 

 
Figure 7. Clustering performance of K-medoids on un-normalised (left) and normalised (right) data, as a function of the 

number of clusters over the range 2 ≤ K ≤ 10, for the UVic runs (solid line – U-Tr data; dotted line – U-TrS data). Vertical 

lines mark the elbow points. 300 
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3.3 Transient freshwater ‘hosing’ experiments 

Figure 7 illustrates K-Medoids clustering metrics for raw and normalised data (mean annual, in 100 year time steps) from the 

U-Tr and U-TrS simulations, which involved transient buoyancy forcing applied in the North Atlantic, as well as the Southern 

Ocean and EEP, against a ‘mid-glacial’ background climate state equivalent to Marine Isotope Stage (MIS) 3 (Menviel et al., 305 

2015) (see Table 1).  Similar to the CM2Mc results, optimal values of K for the UVIC outputs appear to lie at 4, 8 or 9. For 

comparison with the CM2Mc clustering results on un-normalised data, we choose to cluster the U-Tr and U-TrS data using 

K=4.  

 

The U-Tr clustering results using K-Medoids on normalised data (K=4) are shown in Figure 8. Broadly similar results are 310 

obtained when using K-means instead (not shown).  The regional clusters that emerge from the U-Tr data broadly correspond 

to the major ocean basins (Figure 8a): The Arctic Ocean (Cluster #2) shows strong R-age variability; the Atlantic Ocean (#3) 

has smaller R-age peaks; the R-age time series of the Southern Ocean (#1) are rather flat compared to the others, while the 

Indo-Pacific cluster (#4) features broader and less accentuated maxima (Figure 8c).  Again, increasing the number of clusters 

to K=8 results in further splitting of the ocean basins (e.g. isolating the North Atlantic and the southern half of the Pacific), but 315 

with broadly the same basin-wide divisions as for K=4 (Figure S2). 

 
Figure 8. Clustering results using K-Medoids on UVic (U-Tr run) normalised data. Layout same as for Figure 4. Note how 

clustering on normalised data groups together similarly shaped R-age histories, regardless of their amplitudes. 

 320 
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Figure 9. Clustering results using K-Medoids on UVic (U-Tr run) data, in two stages, whereby the shape-based clusters 

from Figure 8 are further subdivided by re-applying K-Medoids to un-normalised data. Left plot: R-age time-series grouped 

by cluster 1-4, with sub-clusters identified by shading and sub-cluster medoids shown by heavy green lines. Right plot: Map 

of R-age clusters (identified by colours) and sub-clusters (identified by shades of each colour). Note how the subclusters are 325 

distinguished by their mean R-ages. 

 
To explore the possibility of identifying sub-regions of similar amplitude variability, within each shape-based cluster, we 

perform a second round of clustering on un-normalised data from within each of the four shape-based clusters shown in Figure 

8. The results are shown in Figure 9, demonstrating a decrease in the amplitude of R-age variability with decreasing latitude 330 

in the Southern Ocean, the Arctic Ocean, and the North Atlantic, despite distinct patterns of variability in each of these regions. 

Similarly, there is a decrease in R-age amplitude away from some ocean margins, e.g. in the EEP, the Eastern Central Atlantic, 

the North Pacific, and the northern Indian Ocean. 

 

Like with the CM2Mc data, hierarchical clustering of the U-Tr data based on Pearson correlations (Figure 10, left side) 335 

produces similar geographic patterns to K-Medoids clustering on normalised data. The Arctic Ocean is most closely related to 

the North Atlantic on the dendrogram. Meanwhile, the Central Atlantic is more related to the Southern Ocean than to the North 

Atlantic, marking a north-south divide high up on the dendrogram highlighted in Figure 10 (right side). The North Pacific 

stands out from the rest of the Pacific, but overall the Pacific appears to be more closely related to the central Atlantic and 

Southern Ocean than to the Arctic and North Atlantic. 340 
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Figure 10. Hierarchical clustering results for the UVic U-Tr run. Bottom panels show the same cluster dendrogram but sliced 

at two different heights (cophenetic distances) to produce seven and two clusters on the left and right, respectively. Top panels 

show the resulting cluster geographies, with landmasses in grey. 345 

 

A comparison of results obtained for normalised data from U-Tr (North Atlantic ‘hosing’) and U-TrS (North Atlantic ‘hosing’ 

with Southern Ocean buoyancy forcing) indicates cluster overlap ~95% (Figure S3), with differences primarily occurring 

along the northern margin of the Southern Ocean. The difference between the two UVIC simulations is smaller than the 

difference between the two CM2Mc simulations. Most significantly, a comparison of clusters obtained using K-medoids 350 

applied to un-normalised data from the U-Tr simulation (transient annual averages) and the glacial CM2Mc simulation 

(equilibrium annual cycle) yields an overlap of ~70% (Figure 11). Here the main difference arises from the identification of a 

region of distinct annual variability in the sub-polar Southern Ocean in the glacial CM2Mc simulation, which is not present in 

the transient U-Tr simulation.  Overall therefore, the regional clusters that are obtained in the three different sets of model runs 

exhibit a good degree of coherence, and it is particularly encouraging that similar regional clusters are obtained for model runs 355 

with completely different boundary conditions and time-scales of variability (Figure 11).  This would suggest that the regional 

clustering of R-age variability may be broadly independent of how and why R-ages have changed, and therefore that the 

regional clusters would apply to a wide range of possible R-age scenarios (including those realised in the past). 
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 360 
Figure 11. Comparison of clustering results between the UVic U-Tr run (left) and the CM2Mc glacial run (right), using K-

medoids on un-normalised data. The colour-coded Venn diagrams quantify overlap between the two maps. Part of the 

mismatch is attributable to differences in coastal boundaries and model resolutions (here UVic results are re-gridded to permit 

comparison to CM2Mc). 

 365 

4. Discussion 

The broad similarity of the clustering results obtained across the suite of equilibrium- and transient simulations (Figures 6, 11 

and S3) suggests that the regional R-age associations arise to a large extent from fundamental aspects of global ocean/climate 

dynamics. For example, the hemispheric partitioning in normalised annual cycle data from both glacial and interglacial climate 

states clearly reflects the dominant influence of the annual cycle. Similarly, the regional clusters obtained in un-normalised 370 

annual cycle data (Figure 4), and especially in transient annual average data (Figure 8), appear to reflect provinces of distinct 

hydrographic variability that are defined by fundamental oceanographic characteristics such as the presence/absence/variability 

of e.g. sea-ice, deep mixing, or upwelling.  Such features are typically geographically ‘locked’, despite being time-variant in 

their intensity/expression. It was an appreciation of such regional specificity in the mechanisms that control R-age variability 

that provided an initial justification for using constant corrections to the global mean R-age (i.e. delta-R values) as an 375 
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approximation of past local R-age variability (Stuiver et al., 1986). R-ages in regions with extensive sea ice cover, deep mixing 

or upwelling will always be offset to higher values as compared to the global mean for example. In the UTr and UTrS 

simulations, the Arctic and Antarctic R-age clusters broadly coincide with regions of similarly coherent sea-ice variability (not 

shown), though the overlap is not perfect suggesting that a more complex array of processes controls the regionalism in R-age 

variability.  The clustering results for the CM2M2 simulations suggest that regional seasonality (in sea ice, mixed layer depth 380 

etc.) may play a contributing role. Here, our primary interest is in the viability of the clustering approach when applied to 

realistic (i.e. modelled) R-age variability, rather than the precise reasons for the variability itself.  Nevertheless, some regional 

associations appear not to have any plausible physical link at all, e.g. as for the grouping of the Arctic and sub-Antarctic in 

Figure 4.  Although the regional calibration curves for these two regions might look very similar, it seems sensible to suggest 

that any given regional calibration curve should probably only be applied to a single geographically contiguous area. In any 385 

event, a detailed analysis of the controls on regional R-age variability in model simulations that aim specifically to reproduce 

R-age reconstructions represents an important target for future work, which we do not address in this study.  Here too, 

clustering may yield useful insights.  

 

 390 
Figure 12. The variance (a.) and mean (b.) of the distribution of R-age offsets in the UVic U-Tr data, when computed relative 

to three different references: the running mean of the global surface ocean, analogous to e.g. Marine20 (column 1); the medoid 

of the shape-based cluster to which the subcluster belongs (column 2); and the subcluster’s own medoid (column 3). The 

decreasing magnitudes left-to-right suggest an increase in the accuracy with which we describe the reference describes R-age 
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histories in each subcluster, when moving from a mean ocean reference to the sub-cluster’s medoid. This suggests that regional 395 

calibrations, e.g. for cluster or sub-cluster regions, could provide more accurate calibrations than constant delta-R values 

applied to a global mean estimate such as Marine20. 

 

In addition to stable ‘regionality’ of R-age behaviour, the use of delta-R values over long spans of time further requires that 

regional R-ages follow the same temporal trends as the global mean. As noted when the delta-R approach to marine radiocarbon 400 

calibration was formulated (Stuiver et al., 1986), and as illustrated by the U-Tr and U-TrS simulations (e.g. Figures 8 and 9), 

such global coherence cannot necessarily be expected when the ocean-climate system undergoes significant change (see also 

Figure 1b). Changes in sea ice cover, mixed layer depth, upwelling strength, etc., will change the difference between a local 

R-age and the global mean (i.e. delta-R). Therefore, a key question for radiocarbon calibration is whether regional clusters 

(and sub-clusters), as identified here, can provide more accurate estimates of past R-age variability at a given location than is 405 

provided by e.g. the global mean (± a constant correction, delta-R).  

 

Here, this question can be answered for the model outputs by comparing the magnitude, and in particular the variance, of 

offsets between local R-ages and: 1) the global mean R-age; 2) the associated (shape-based) cluster centroid; and 3) the 

(amplitude-based) sub-cluster centroid. The variance in these offsets is important because it reflects the degree to which a 410 

constant correction, e.g. applied to a global average calibration curve (a delta-R value), would be wrong on average. Figure 

12 illustrates the spatial distributions for each of these offsets and their variance, based on the U-Tr outputs.  In Figure 12, the 

largest R-age offsets and the greatest variance in R-age offsets occur when referencing to the global mean surface R-age (305 

± 208 14Cyrs). The smallest magnitude and variance occur when referencing to the centroid of the relevant amplitude-based 

sub-cluster (54 ± 29 14Cyrs), and an intermediate gain in accuracy is achieved when referencing to the centroid of the wider 415 

shape-based cluster (189 ± 93 14Cyrs). Encouragingly, a similar stepwise improvement in accuracy is found when shape-based 

clusters or amplitude-based sub-clusters from the U-Tr simulation are used to assess R-age offsets in the glacial CM2Mc 

simulation (e.g. average offsets of 259 ± 227 14Cyrs for the global mean versus 79 ± 36 14Cyrs for sub-cluster centroids; Figure 

S4).  

 420 

The above discussion would suggest that radiocarbon calibrations performed using a regional calibration curve, particularly 

one derived at an appropriate sub-cluster centroid location, could be more accurate than calibrations performed using a global 

mean calibration curve in conjunction with a constant delta-R value. By way of illustration, a R-age (or delta-R) uncertainty 

of 200 (versus 30) 14C yrs would result in a calibrated age uncertainty of ~540 (versus ~170), when calibrating a radiocarbon 

date of 20,000 ± 150 14C yrs.  Similarly, a delta-R error/bias of up to ~1000 14C years, as is observed at high southern latitudes 425 

in the UVic simulations (Figure 1b), would result in a calibrated age error/bias of ~1000 years.  Notably, the above analysis 

likely underestimates the uncertainty associated with using a global mean calibration curve and constant delta-R value in 

practice, since it assumes perfect knowledge of the evolving global mean R-age (i.e. a global mean radiocarbon calibration).  
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As noted above, our best estimate of the mean ocean R-age history is currently based on modelling and therefore assumptions 

regarding past ocean circulation and climate change (Heaton et al., 2020).  430 

 

While our analysis provides an illustration of the viability and the utility of defining regions for which local calibrations might 

be constructed, it only does so theoretically, using model outputs.  However, the fact that regional clusters can successfully be 

identified in model outputs is in itself consistent with the observation of distinct regional patterns in R-age reconstructions, 

e.g. from the Northeast Atlantic, Iberian Margin, South Atlantic, and Southern Ocean (Skinner et al., 2019).  The further 435 

observation of similar but lower amplitude R-age trends on the Iberian Margin versus the northern Northeast Atlantic, and in 

the South Atlantic versus the Southern Ocean, also resonates with the sub-cluster results obtained from the U-Tr and U-TrS 

outputs, as does the observation of an apparent link between the high Southern latitudes and the eastern equatorial Pacific (De 

La Fuente et al., 2015) (Figure 11). 

   440 

 

 
Figure 13. Tentative hierarchical clustering of available R-age reconstructions spanning the last deglaciation (Skinner et al., 

2023), compared with grouping of proxy observations according to location and corresponding model-based clusters. Left 

panel: R-age time-series locations and proxy-based cluster membership (coloured circles) superposed on a map of model-445 

derived shape-based hierarchical clusters (numbered 1 to 4) for the UTrS simulation; green filled circles indicate proxy 

observation cluster 1, blue filled circles indicate proxy observation cluster 2, and red/blue outlines indicate low/high amplitude 
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sub-cluster membership. Two clusters and sub-clusters were employed for the proxy-based clustering due to the sparsity of 

available time-series. Right panel: Greenland NGRIP and Antarctic EDC ice-core temperature proxy records (heavy black 

line is 3-point running mean) compared with R-age data grouped according to model-based clusters (4 shape-based clusters 450 

and 2 amplitude-based sub-clusters). Dashed lines indicate R-age data (binned and interpolated – see text); thick solid lines 

indicate means of the time-series that belong to each model-based sub-cluster. Direct clustering of the proxy observations is 

shown to be broadly consistent with the model-based clustering. 

 

The regional patterns picked out by clustering of model outputs are further confirmed by a tentative hierarchical clustering 455 

performed on 23 available shallow sub-surface R-age reconstructions from <500m water depth, or <1000m in the Southern 

Ocean. For this analysis, time-series were selected that include at least 6 data points from the 5 – 21 ka BP interval, which 

were binned and interpolated onto 500 yr intervals. Using normalised data and K = 2 (given the lack of data from e.g. the 

Arctic, Indian, or North Pacific), hierarchical clustering of the proxy data identifies a dominant signal in the North Atlantic 

(Figure 13, blue circles) that is distinct from the primary signal observed in the Southern Ocean and Pacific (Figure 13, green 460 

circles). Amplitude-based sub-clusters from within these regional shape-based clusters (again with K = 2), generally also 

manage to isolate higher amplitude high-latitude and eastern equatorial upwelling signals (Figure 13, blue outlined 

circlesFigure 13) from lower amplitude low-latitude signals (Figure 13, red outlined circles). These proxy observation-based 

clusters are generally consistent with the model-based hierarchical clusters (UTrS, 4 clusters and 2 sub-clusters) that 

correspond to the proxy time-series locations (right panel of Figure 13). Thus, the model-based clustering correctly predicts 465 

higher amplitude signals in the eastern equatorial upwelling region, the Southern Ocean, and the high-latitude North Atlantic. 

Furthermore, when grouping the R-age data using either direct hierarchical clustering or model-based cluster membership, the 

dominant signals that emerge appear to track Greenland and Antarctic temperature variability, as observed for example by 

Skinner et al. (2019).  Although the similarities between proxy observation- and model-based regional clustering are 

encouraging, it should be noted that the clustering of proxy data Figure 13is not especially robust and is highly sensitive to 470 

data selection and parameter selection (e.g. K, minimum time-series length).  A far larger number of better-resolved surface 

reservoir age data, spanning a greater geographical range, will be needed to improve upon the highly tentative data-based 

regional clusters shown in Figure 13. Nevertheless, the results are encouraging and suggest that the generation of regional 

marine radiocarbon calibration curves for the high latitude Northeast Atlantic and the mid-latitude Northeast Atlantic (i.e. 

Iberian Margin) is already a viable prospect.   475 

5. Conclusions 

K-Means, K-Medoids and hierarchical clustering reveal distinct regions of coherent R-age behaviour in the surface ocean, 

subject to a range of perturbations, from seasonal to millennial timescales. In this context, the optimal value of K (the number 

of clusters) is difficult to define robustly a priori and appears to depend on the method and the input data selected. The regional 

clusters that are obtained, across the range of modelled oceanographic perturbations investigated, tend to cohere in a broadly 480 
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consistent manner with specific geographic domains, which in turn appear to reflect fundamental oceanographic and/or 

seasonal controls on relevant processes such as sea ice variability, upwelling/mass divergence, etc. Clustering thus confirms 

geographic controls on the variability in R-ages and their offset from the global mean surface ocean R-age (Stuiver et al., 

1986).  At larger spatial scales, clustering reveals broadly basin-scale associations in the ‘character’ (shape) of R-age 

variability. These large-scale ‘shape based’ clusters may be further sub-divided into regional amplitude-based sub-clusters. 485 

Comparisons within and between different model simulations, different time scales, and different models, indicate that 

calibration curves constructed at appropriate locations, representative of the regional sub-cluster medoids/centroids, would 

yield significantly more accurate calibrated radiocarbon dates than provided by the standard approach that assumes constant 

delta-R values. Furthermore, a tentative application of these methods to existing R-age data identifies similar regional 

associations as compared to the numerical model outputs. Substantially more, and better resolved, R-age reconstructions, 490 

covering more of the worlds’ ocean basins will be needed before robust regional radiocarbon calibrations can be fully tested 

and applied. Nevertheless, based on our results, machine learning appears to be a promising approach to the problem of 

defining regional marine radiocarbon calibration curves. The generation of such observation-based regional calibration curves 

(along with well-defined regions of applicability) would represent an alternative and complementary approach to that already 

proposed for marine radiocarbon age calibration at high-latitudes based on forward modelling (Alves et al., 2019; Heaton et 495 

al., 2023). One advantage of the approach advocated here is that it does not require explicit modelling of past R-age variability 

and therefore does not assume a priori knowledge of past ocean circulation, sea-ice, carbon cycling etc.. While the paucity of 

existing R-age reconstructions currently restricts our ability to deploy regional marine radiocarbon calibrations across the 

globe, the mid- and high-latitude sectors of the northeast Atlantic emerge as the most promising regions for initial progress in 

this regard.  500 
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