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Abstract. We measured the *C age of pre-bomb suspension-feeding bivalves of known age from coastal West Africa across
a latitudinal transect extending from 33°N to 15°S. The specimens are from collections belonging to the Muséum National
d’Histoire Naturelle (Paris, France). They were carefully chosen to ensure that the specimens were collected alive or died not
long before collection. From the *C-dating of the known-age bivalves, we calculated the marine reservoir age (as AR and R
values) for each specimen. AR values were calculated relative to the Marine20 calibration curve and the R values relative to
Intcal20 or SHcal20 calibration curves. Except for five outliers, the AR and R values were generally homogenous with a
weighted mean value of -72 + 42 14C yrs (1sd, n = 24), and 406 * 56 “C yrs (1sd, n = 24), respectively. These values are
typical of low-latitude marine reservoir age values. Five suspension-feeding species living in five different ecological habitats
were studied. For localities where several species were available, the results yielded similar results whatever the species
considered, suggesting that in these locations the habitat has only a limited impact on marine reservoir age reconstruction. We
show that our measured marine reservoir ages follow the declining trend of the global marine reservoir age starting ca. 1900
AD, suggesting that the marine reservoir age of coastal West Africa is driven, at least to first order, by the atmospheric CO,
14C ageing due to fossil fuel burning rather than by local effects. Each outlier was discussed. Local upwelling conditions or
sub-fossil specimens may explain the older **C age and thus larger marine reservoir ages for these samples. Bucardium ringens

might not be the best choice for marine reservoir age reconstructions.

1 Introduction

The marine reservoir age (R) at a given calendar date/year (t) is the difference between the radiocarbon age (**C) of the
dissolved inorganic carbon (DIC) of the ocean (**C) and that of atmospheric CO2 (**Cam) (Stuiver et al., 1986; Stuiver and
Braziunas, 1993)( Ascough et al., 2005; Soulet et al., 2016; Skinner and Bard, 2022):

R(t) = 14Cm(t) - 14Catm(t) (1)
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At global scale, the marine reservoir age of the surface mixed layer of the ocean is set by the exchange of “young” CO; at the
atmosphere-ocean interface, plus the exchange of DIC between oceanic surface waters and deep waters that contain large
amounts of “old” DIC (Bard, 1988; Skinner and Bard, 2022). Box models have been used to study the distribution of
radiocarbon in Earth’s system since the 1950s (Craig, 1957; Revelle and Suess, 1957; Arnold and Anderson, 1957;
Siegenthaler, 1983). The 1“C age of the global ocean over time, i.e. the Marine20 calibration curve (Heaton et al., 2020), has
been modelled using the global carbon cycle box model BICYCLE (Kéhler et al., 2006; Kohler and Fischer, 2006, 2004;
Kohler et al., 2005) and the Northern Hemisphere atmospheric 4C calibration curve (IntCal20; Reimer et al., 2020). While the
global marine calibration curve (Marine20) is widely used to derive calibrated ages from C dating of marine samples, it does
not account for local marine “C offsets due to, for instance, continental carbon inputs to the coastal ocean, regional winds, and
changes in the oceanic circulation and climate (Bard, 1988; Alves et al., 2018; Skinner and Bard, 2022; Heaton et al., 2023).
Hence the importance of the metric AR (Stuiver et al., 1986; Stuiver and Braziunas, 1993; Reimer and Reimer, 2017), that is,
the difference between the **C age of any marine sample (}*C) and that of the marine calibration curve (**Cparinezo) at the same
time (t):

AR(t) = "Cpn (1) = “*Cumarinez0 (V) 2)

The local marine reservoir age offset (AR) is known to vary greatly as demonstrated by pre-bomb values ranging between —
500 to + 2000 *#C years (Reimer and Reimer, 2001) depending on the location. Most larger AR values are located at high-
latitudes while values close to AR = 0 *C years are located at low latitudes (Bard, 1988; Bard et al., 1994).

From a geochronological perspective (i.e., calibration of marine **C dates and building age-depth models from marine *C
dates), knowing the AR(t) is of crucial interest to correct marine “C dates for a local **C offset compared to the global marine
calibration curve and hence prerequisite to derive accurate calendar ages. Reconstructing AR(t) values from unstudied areas is
also valuable as it could contribute to deriving regional/local marine calibration curves from the global one using a 3-D large-
scale ocean circulation model (Butzin et al., 2017; Alves et al., 2019).

From a carbon cycle perspective, the R(t) and AR(t) are also important as they reflect **C disequilibria between the ocean and
the atmosphere and hence are key proxies to understand local variations of the global carbon cycle, and its evolution over time
with the changing climate and environment (Skinner et al., 2015, 2010; Lindsay et al., 2016; Soulet et al., 2011; Siani et al.,
2001; Scheful? et al., 2016; Heaton et al., 2021).

The estimation of R(t) and AR(t) values wherever possible is conducive to understanding modern and past carbon cycles, and
the reconstruction of climate and environmental changes based on sedimentary archives.

Pre-bomb R(t) and AR(t) values for coastal West Africa are very sparse. According to the Marine Reservoir Correction
Database (Reimer and Reimer, 2001; http://calib.org/marine/; last seen 15/11/2022), from Oran on the Mediterranean coast of
Algeria (Siani et al., 2000) to Hondelkip Bay on the Atlantic coast of South Africa (Dewar et al., 2012), only a few marine
reservoir ages from Mauritania and Senegal were reported (Ndeye, 2008) (Fig. 1). For Mauritania, the collection sites were
Nouadhibou (formerly Port-Etienne, two samples), and the area of Cape Timiris — EIl Mamghar (three samples). Two samples

were collected from an unknown location from coastal Mauritania. For Senegal, collection sites were restricted to the Dakar
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area (Almadies, Dakar harbour, Gorée Island and Rufisque; five samples). Thirteen additional samples were from unknown
locations from coastal Senegal.

In this study we report new marine reservoir age values (n=30) based on the C dating of bivalves with a known pre-bomb
collection date and collected across a latitudinal transect extending from Mohammedia (Morocco, 33°N) to Mocamedes
(Angola, 15°S). Our suite of samples includes specimens from Mauritania, Senegal, Republic of Guinea, Sierra Leone, Ivory
Coast, Benin, Gabon and Republic of Congo (Fig. 1, Table S1 in the Supplement). We used specimens of five different species:
Senilia senilis, Bucardium ringens, Donax rugosus, Ostrea stentina and Pseudochama gryphina. We briefly discuss our results
in the context of the local environmental setting of the studied bivalves and regional oceanography of the Eastern Atlantic

Ocean.

2 Material and methods
2.1 Material

Bivalve shells were selected from the collections belonging to the Muséum National d’Histoire Naturelle (MNHN) (Paris,
France) (Table 1). We carefully chose pre-bomb specimens of known age and ensured that they were collected alive or very
soon after death. For example, specimens with articulated valves, exhibiting flesh remains inside the shell were clearly
collected alive. For Senilia senilis, the presence of the fragile periostracum provides evidence that the specimen was collected
fresh. For Bucardium ringens, remains of the hinge ligament indicate that the bivalve death occurred not long before collection.
The collection date was also carefully checked. Below, we provide background information for the five different bivalve
species investigated in this study. Additional information for each sample is given in section 3.1.

Senilia senilis (Linnaeus, 1758) can be found from Mauritania to northern Angola. It lives in fine sand, estuaries, creeks or
lagoons with regular tidal influence from the lower intertidal zone to about two metres water depth. This species tolerates
seasonal salinity changes (von Cosel and Gofas, 2019). S. senilis is a suspension feeder that lives in the top 5-10-cm layer of
sediment (Okera, 1976; Catry et al., 2017).

Bucardium ringens (Bruguiére, 1789) is present from Mauritania to southern Angola. It lives in clean, fine sand and mixed
sand on an open coast from shallow (5-10 metres depth) to about 50 metres depth. Shells and valves are commonly cast ashore
on beaches but live-taken specimens are rare (von Cosel and Gofas, 2019). B. ringens is likely a suspension feeder as cardiids
typically are (Herrera et al., 2015).

Donax rugosus (Linnaeus, 1758) is present from Mauritania to Ghana and from northern Angola to southern Angola. It lives
in mixed, coarse sand in the surf zone of open beaches (von Cosel and Gofas, 2019). D. rugosus is a suspension feeder (Smith,
1971).

Ostrea stentina (Payraudeau, 1826) can be found from southern Portugal to Ghana, and from Gabon to northern Angola. It is

common and occurs on various types of hard substrate such as rocks, stones, pebbles and other oysters from 1-to-30-metre
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depths. It can also be found in lagoons, inlets and creeks under marine conditions (von Cosel and Gofas, 2019). O. stentina is
a suspension feeder (Turkmen et al., 2005).

Pseudochama gryphina (Lamarck, 1819) is present from southern Portugal to Mauritania and from Gabon to southern Angola
(von Cosel and Gofas, 2019) and lives on hard substrate such as rocks and stones in clear water offshore in about 10 to 60
metres water depth. P. gryphina is a suspension feeder (Sessa et al., 2013).

A small piece (30-100 mg) of the outermost layers of each shell was cut using a Dremel™ rotary tool fitted with a cut-off
wheel. We focused on the external part of the shell to ensure that we sampled and dated the most recent part (likely the last
few months) of the specimen. The shell carbonate samples were then sonicated and rinsed in deionised water at least five times.

Samples were coarsely crushed and split into a subsample for stable isotopic analysis and a subsample for “C analysis.

2.2 Radiocarbon measurements

Samples were washed with dilute HNO3 (0.01M) for 15 mins then rinsed to neutral pH. Then, the shell carbonate was converted
into CO; following LMC14 laboratory (Laboratoire de Mesure du Radiocarbone, Saclay, France) standard phosphoric acid
hydrolysis procedure (Tisnérat-Laborde et al., 2001; Dumoulin et al., 2017). The CO, was then converted to graphite
(Cottereau et al., 2007; Dumoulin et al., 2017) and analysed for its **C composition by Accelerator Mass Spectrometry (AMS)
using the Artémis “C AMS facility (Moreau et al., 2013). Results are corrected for the *3C/*%C ratio as measured on the AMS
(Santos et al., 2007) and are reported in the F**C notation (Reimer et al., 2004). F“C is identical to the Asn/Aon metric (Stuiver
and Polach, 1977), and the *ay notation (Mook and van der Plicht, 1999). Corresponding conventional *4C ages reported in
14C years Before Present (AD 1950) were calculated according to:

c = —8033In(F'*C) (3)

2.3 Stable carbon isotopes

Stable carbon and oxygen isotopic analyses of the dated samples were performed at the PAle Spectrométrie Océan (PSO,
Plouzané, France) using a MAT-253 (Thermo Scientific) stable isotope ratio mass spectrometer (IRMS) coupled with a
Kiel 1V Carbonate Device (Thermo Scientific). The measurements are reported versus Vienna Pee Dee Belemnite standard
(VPDB) defined with respect to two international carbonate standards: NBS-19 (80 = -2.20 %o and 8'3C = +1.95 %) and
NBS-18 (880 = -23.20 %o and 6*3C = -5.01 %o). The mean external reproducibilities (15), based on repeated measurements of
an in-house standard, were +0.04%o and +0.02%o for 580 and $*3C values, respectively. Note that our samples integrate a
seasonal variability of up 0.5 to 1%o as shown by several investigations of growth layers in shells (e.g. Carré et al., 2005; Jones
et al., 2007, 2010).
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2.4 Marine Reservoir Age calculation

The marine reservoir age R of the selected shells is calculated according to equation (1) where t is the collection year as known
from museum records (Table S1 in the Supplement and section results), “Cy, is the measured shell **C age, and *Cam is the
14C age of the atmosphere. For shells picked from the northern hemisphere, *4Cam is obtained from the IntCal20 calibration
curve (Reimer et al., 2020). For shells from the southern hemisphere, we used the southern hemisphere calibration curve
SHCal20 (Hogg et al., 2020) instead. The uncertainty is calculated (Soulet, 2015) according to:

_ 2 2
IR = \/ Olacn® T 9 m® 4)

Note that mean SHCal20 offset compared to IntCal20 is estimated to be 36 + 27 “C yrs. Thus, the R values calculated with
IntCal20 or SHcal20 are essentially the same if one takes uncertainties into account.

The local marine reservoir offset AR of the selected shells is calculated according to equation (2) where t is the collection year
as known from museum records (Table S1 in the Supplement and section results), *Cr, is the measured shell **C age, and

Y4Charinezo is the *C age of the global marine calibration curve. Uncertainty is calculated as follows:

— 2 2
7aRE) = \[0-14Cm(t) + 0-14CMarine20(t) ®)

Note that Reimer and Reimer (2017) do not propagate the uncertainty of Marine20 calibration curve.

3 Results and Discussion
3.1 Radiocarbon measurement results

The detailed description of samples and results are shown in Table 1 and Table S1 in the Supplement. We classified the samples
by location with corresponding geographic coordinates, then by species. Samples are coded as such “MNHN-1M-2022-xxxx”’
in order to locate the samples in the collections of the MNHN of Paris (France). The code “SacA-xxxxx” is the radiocarbon

laboratory number.

3.2 West African marine reservoir ages

The vast majority of the calculated AR values, with a weighted mean value of -72 + 42 1C yrs (1sd, n = 24), which corresponds
to a weighted mean R value of 406 + 56 “C yrs (1sd, n = 24), are typical of low latitude marine reservoir age values (Bard,
1988; Bard et al., 1994) (Table S1 in the Supplement, Fig. 1). Note that all averaged R and AR values were calculated according
to the methodology recommended in the Marine Reservoir Correction Database (Reimer and Reimer, 2001;
http://calib.org/marine/AverageDeltaR.html; last seen 31/05/2023). Our results agree perfectly with those already obtained
(Ndeye, 2008) from the Nouadhibou-Cansado Bay area (Mauritania; Nh in Fig. 1) and Dakar area (Senegal; DK in Fig. 1); the

only two areas that we can compare our results with.
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No significant interspecific differences were observed. This is best illustrated for the localities where reservoir age values were
obtained from at least two different species for the same calendar time. In the Dakar area (Senegal; Dk in Fig. 1) for years
1908-1909 AD, we present data for five species (Bucardium ringens, Donax rugosus, Mactra glabrata, Ostrea stentina, Senilia
senilis) (Ndeye, 2008; this study) all clustering within a range of [413;546] ([min; max]) with an average AR value of -18
56 “C yrs (1sd, n = 6) (corresponding to an average R value of 465 + 55 1C yrs). This was also the case for Luanda (Angola;
Lu in Fig. 1) in the 1910 AD, with two species (Donax rugosus and Senilia senilis) yielding the same reservoir age values.
This was further supported for the area of Nouadhibou-Cansado Bay (Mauritania) showing the same pattern (Ndeye, 2008;
this study), although one sample out of four was likely an outlier (Bucardium ringens with # MNHN-IM-2022-4599). The fact
that species living in very different ecological habitats (e.g. Senilia senilis in lagoons/semi-enclosed bays and Donax rugosus
on beaches exposed to heavy surf; see also section material) show similar reservoir age values (R or AR) suggests that the
habitat only exerts a minor influence on measured reservoir age in this region. The fact that all investigated species in this
study correspond to suspension feeders further implies that suspension feeders are suitable material for reservoir age
reconstruction.

Unlike semi-isolated basins such as the Baltic Sea (Lougheed et al., 2013) and Black Sea (Soulet et al., 2019), where the
radiocarbon system is closely linked to the local oxygen/carbon stable isotopic system respectively, the open-ocean coastal
region of West Africa is characterized by the lack of any relationship between reservoir age values (R or AR) and stable oxygen

and carbon isotope compositions (r? of 0.02 and 0.001, respectively), as inferred from our results.

3.3 Marine reservoir evolution over time

Local marine reservoir ages were averaged over five-year windows ([1886- 1890 AD]-[1891-1895 AD] and so on), excluding
the five outliers discussed in section 3.5. Sample with radiocarbon lab # AA-70015 (see Table S1 in the Supplement) is a single
value from 1916 AD and was averaged with samples from year 1912 AD. We also calculated global marine reservoir age as
the difference between the Marine20 and IntCal20 calibration curves. The evolution of the marine reservoir age of coastal
West Africa (pink symbols in Fig. 2) shows a similar trend to that of the global marine reservoir age (black line in Fig. 2) with
values declining steadily with time since ca. 1900 AD.

The 14C age evolution of the global ocean (Marine20 calibration curve; Heaton et al., 2020) is constructed using the global
carbon cycle model BICYCLE (Kohler et al., 2006; Kéhler and Fischer, 2006, 2004; Kdhler et al., 2005). This box model
incorporates a globally averaged atmospheric box and modules of the terrestrial (seven boxes) and oceanic (10 boxes)
components of the carbon cycle. It is driven by temporal changes in the boundary conditions mimicking changing climate and
simulates changes in the carbon cycle including *4C. To construct the Marine20 calibration curve, the BICYCLE model was
revised to allow the atmospheric CO, and F**C to be specified externally (Heaton et al., 2020). While the modelled Marine20
(global surface ocean) radiocarbon age suggests constant values between 1900 and 1950 AD, our measured marine reservoir

age R indicates instead a decreasing trend during that period, as a consequence of increasing atmospheric Intcal20 radiocarbon
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age. This observation of decreasing trend for R in West Africa between 1900 and 1950 AD could possibly reflect atmospheric

14C0O; ageing following enhanced fossil fuel emissions to the atmosphere through burning (e.g. Suess, 1955; Tans et al., 1979)

3.4 Marine reservoir age off equatorial Ogooué and Congo rivers

Large rivers draining equatorial Africa such as the Ogooué and the Congo inject massive amounts of freshwater into the
Atlantic Ocean (Lambert et al., 2015; Milliman and Farnsworth, 2011) leading to extensive sea surface salinity negative
anomalies (Martins and Stammer, 2022). The sea surface salinity negative anomalies are associated with net primary
productivity positive anomalies that are likely caused by the nutrient-rich river plumes from the Ogooué and Congo Rivers
(Martins and Stammer, 2022). From a radiocarbon perspective, such net primary productivity positive anomalies should imply
an increased uptake of atmospheric CO; through intensified biological pump. As a result, the reservoir age should be lower
than average. The Congo River represents the second largest supplier of dissolved organic carbon (DOC) to the global ocean
with ~5% of the land to ocean DOC flux (Spencer et al., 2016; Coynel et al., 2005; Richey et al., 2022). The DOC exported
by the Congo river is *C-modern (Marwick et al., 2015; Spencer et al., 2012) and experiments showed that 45% of the Congo
River DOC can potentially be photo-mineralised by sunlight (Spencer et al., 2009; Richey et al., 2022). Dissolved inorganic
carbon (DIC) released from photo-mineralisation of the Congo River DOC should also be **C-modern. Thus, this modern
DOC-derived DIC should impact the marine reservoir age towards values lower compared to average. There is a lack of
available data to estimate the age and flux of dissolved CO, discharged by the Congo river into the ocean (Richey et al., 2022).
Nevertheless, the marine reservoir age value measured at Port-Gentil (Gabon) close to the Ogooué river outlet is lower than
the regional weighted mean value (AR = -106 + 63 “C years, corresponding to R = 329 + 21 “C yrs) (PG in Fig. 1). The
marine reservoir age measured in Pointe-Noire (Republic of Congo) ~150 km north of the Congo river outlet is also lower
than the regional weighted mean value (AR = -156 * 64 “C yrs; R = 289 + 20 *C yrs) (PN in Fig. 1). These values could be
interpreted as having been influenced by Ogooué and Congo River discharges. However, all other localities close to the Congo
River outlet had marine reservoir age close to the regional weighted mean value (Lo, Ca and Lu, in Fig. 1). Instead the lower
values observed in Port-Gentil (Gabon) and Pointe-Noire (Republic of Congo) are from years 1948 and 1937 suggesting that
these lower values are in line with the declining global marine reservoir evolution linked to the atmospheric CO, *C ageing
linked to “C-dead input from fossil fuel burning (Suess effect) (see section 3.3). The impact of African equatorial rivers on

the local/regional coastal marine reservoir age, if any, cannot be inferred from our results.

3.5 Outlier specimens

Mean marine reservoir age values (R and AR) are provided for West Africa based on our data, excluding five samples. These
particular samples display much larger values with AR values ranging from 209 to 454 *C yrs or R values ranging from 701
to 912 4C yrs. Three specimens out of the five outlier samples correspond to Bucardium ringens specimens. We analysed 8
Bucardium ringens specimens. These three outlier specimens display reservoir age (R and AR) values that clearly disagree

with neighbouring data (Nouadhibou-Cansado Bay, Loos Islands and Ivory Coast areas; Nh, LI and IC in Fig. 1). The Museum
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numbers of these specimens are MNHN-IM-2022-4597, MNHN-1M-2022-4599 and MNHN-IM-2022-4601. We do not expect
that these larger values compared to those for neighbouring individuals come from the species feeding practice as they are all
suspension feeders like all other investigated specimens. Similarly, we showed that the difference in the habitat in this region
does not impact the species reservoir ages. Instead Bucardium ringens lives in the open coast from 5-10 metres to about 50
metres depth. Shells are commonly cast ashore on beaches but live-taken specimens are rare (von Cosel and Gofas, 2019). One
of these outliers was collected at low tide (Roume Island in the Loos Islands; Republic of Guinea) and was devoid of flesh and
hinge ligament. It is thus possible that this outlier sample was a transported subfossil sample that died a century or more before
the collection date. The two other outlier samples had small remains of the hinge ligament (Nouadhibou; Mauritania and
Jacqueville; Ivory Coast). It may be that these samples are also subfossil specimens. In this case, the hinge ligament must have
been partially preserved owing to very favourable environmental conditions (Forman et al., 2004; Huntley et al., 2021).
Alternatively, these outliers are not subfossil specimens and unlike the other species studied here, the habitat may exert an
influence on R and AR values measured in B. ringens. Finally, we cannot fully rule out that these higher values represent some
sub-annual variability of up to 200 '*C in the local marine reservoir age as evidenced elsewhere (Jones et al., 2007, 2010).
Nevertheless, five Bucardium ringens samples out of eight displayed reservoir age values in agreement with the neighbouring
reservoir age values, this species might not be the best suited for reservoir age reconstruction or for sediment/archaeological
dating.

The two remaining outliers are Ostrea stentina specimens from the El Jadida area (Morocco; eJ in Fig. 1). The sample from
El Jadida beach was a single valve looking fresh and collected from the beach (museum # MNHN-1M-2022-4609). Based on
the older 1“C age of this specimen, we cannot rule out that this sample could actually be a subfossil specimen. The specimen
with museum code number # MNHN-IM-2022-4608 collected in the Sidi Moussa lagoon (south of El Jadida) was a specimen
with articulated valves and remains of flesh inside the shell, meaning the specimen was still alive when collected. Variations
in the reservoir age could be explained by coastal upwelling that impacts some regions of the Atlantic coast of Morocco and
Western Sahara (Freudenthal et al., 2001; Barton et al., 1998). Upwelled waters are depleted in 1“C relative to the sea surface
potentially causing larger reservoir age values (R or AR) like off Portugal (Monge Soares, 1993; Monge Soares and Alveirinho
Dias, 2006), California (Kennett et al., 1997), Peru (Kennett et al., 2002; Fontugne et al., 2004; Jones et al., 2007, 2010) or
Southern Arabian coast (Southon et al., 2002). Conversely, upwelled waters can also be nutrient-rich causing intensified ocean
CO; uptake through enhanced primary production and biological pump (Williams and Follows, 2011), in which case, one
could expect low-latitude average or decreased reservoir age values (R or AR). Off Morocco and the Western Sahara, the
second hypothesis is most likely coastal upwelling which is known in this area to bring nutrient-rich waters to the surface
ocean (Barton et al., 1998; Freudenthal et al., 2001), although to our knowledge no direct measurement of the “C content of
coastal waters in this region has been published to date. However, according to recent studies, the El Jadida area is only weakly
impacted by upwelling (Lourenco et al., 2020; Cropper et al., 2014), suggesting average reservoir age values instead of larger
ones. Another explanation could be linked to the local hydrology of the Sidi Moussa lagoon. Despite the lagoon being

permanently connected to the ocean, it receives waters from rainfall and resurgences that can have an impact on the salinity in
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the upstream section of the lagoon (Cheggour et al., 2001). As the surrounding rocks are calcareous sandstones (Manaan,
2003), one could hypothesise that freshwaters feeding the lagoon might be depleted in “C due to carbonate dissolution in the
lagoon watershed causing a hardwater effect and thus a larger reservoir age. A last explanation could be an imperfect cleaning
of the shell. For Ostrea stentina, sediment can be trapped between the growing layers of the shell. If this sediment contains
old detrital carbonates, which were not perfectly removed before **C measurement, the **C age of the shell will appear older,
and the reservoir age larger. Additional reservoir age reconstructions from this region on different species would be required
to validate the larger reservoir age values reconstructed from the El Jadida area.

4 Conclusion

The analysis of pre-bomb suspension-feeding bivalves collected along coastal West Africa from 33°N to 15°S provides marine
reservoir ages that are relatively homogenous, with a mean AR value of -72 + 42 1C yrs (1sd, n = 24) and a mean R value of
406 + 56 C yrs (1sd, n = 24). When including the robust dataset from Ndeye (2008), the resulting mean AR and R values for
coastal West Africa are -54 + 51 *4C years (1sd, n = 32) and 411 + 61 *C years (1sd, n = 32), respectively. We show that the
marine reservoir age of coastal West Africa is mainly driven by the global carbon cycle and atmospheric **C changes rather
that by local effects.

Our results for different species yield similar marine reservoir age values, indicating that the ecological habitat only has a
second-order impact on the reservoir age reconstruction, if any. Nevertheless, we suspect that Bucardium ringens might not
be best suited for marine reservoir age reconstruction as corresponding shells are typically not found alive on sample collecting
sites. Additionally, ages obtained on Ostrea stentina could be possibly influenced by the presence of sediment within the
growing shell layers if not fully removed after the cleaning process.

Despite these new data, large portions of the West African coast still remain to be investigated for reservoir age reconstructions,

in particular off Western Sahara and Canarias Islands, Sierra Leone-Liberia, Nigeria and Namibia.
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Figure 1: The geographic distribution of marine reservoir age values along the West African coast. A. AR values. B. R values. Data
shown in black are from this study. Others are selected results from previous studies discussed in the text, converted from their
original format (conventional 14C ages and collection dates) to AR and R values using the latest calibration curves Marine20 (Heaton
et al., 2020) and Intcal20 or SHcal20 (Reimer et al., 2020; Hogg et al., 2020), respectively. Data in blue are from Ndeye (2008), data
in green are from (Reimer and McCormac, 2002), data in purple are from (Siani et al., 2000) and data in pink are from (Dewar et
al., 2012). eJ, Nh, Dk, LI, IC, PG, Lo, PN, Ca and Lu stand for el Jadida (Morocco), Nouadhibou (Mauritania), Dakar (Senegal),
Loos Islands (Republic of Guinea), Ivory Coast, Port-Gentil (Gabon), Loango (Republic of Congo), Pointe Noire (Republic of

Congo), Cabinda (Angola) and Luanda (Angola). The map was drawn using Ocean Data View (Schlitzer, Reiner, Ocean Data View,
https://odv.awi.de, 2022).

17



Calendar time (years AD)

1850 1870 1850 1910 1930 1950
200 " L L L :
A
700 4
_H_
GO0
A
el
£ 500
500 4
g
S
z, 400 4
=]
g
£
o 300
2
=
=]
=
200 4
100 4
04
- 600
5
T 5.
L 500 @
&
1]
2
L 00 S
=
=}
U=
T
L300
9!
B >
T T T T T 00 T
1850 1870 1890 1910 1930 1950
Calendar time {vears AD)

515

Figure 2: A: The radiocarbon-age evolution of the atmosphere (IntCal20; green curve with its light green 1-¢ envelope) and of the

global ocean (Marine20; blue curve with its light blue 1-c envelope) between 1850 and 1950 AD. B: The global marine reservoir age

(black curve with its grey 1-c envelope) calculated as the difference between Marine20 and Intcal20 curves. Pink symbols are the

coastal West African marine reservoir age calculated by averaging data over 5-yr windows. The reported error bars are the
520 maximum of the standard deviation of the averaged data and the individual uncertainty of the averaged data.
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