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Abstract. Data plots of daughter against parent concentration (D-P plots) are a potential tool for analyzing low-temperature 

thermochronology, similar to isochron plots in radioisotopic geochronology. Their purposes are to visualize the main term of 

the radiometric age equation – the daughter-parent ratio – and to inspect the daughter-parent relationship for anomalies 

indicating influences of geological processes or analytical bias. The main advantages of D-P plots over other data-analysis  

tools are: (1) their ability to detect systematic offsets in D and P concentrations, (2) their unambiguous representation of 

radiation damage dependent daughter retention, and (3) the possibility to analyze potential age outliers.

Despite these benefits, the D-P plot is currently not used for analyzing low-temperature thermochronology data, e.g. from 

fission track, (U-Th)/He or zircon Raman dating. We present a simple, decision-tree-based classification for daughter-parent  

relationships based on the D-P plot that places a dataset into one of seven classes: linear relationship with zero intercept,  

cluster, linear relationship with systematic offset, non-linear relationship, several age populations, scattered data, and inverse 

relationship. Assigning a class to a dataset enables to choose further data-analysis steps and how to report a sample age, e.g.  

as pooled, central or isochron age, or a range of ages. This classification scheme aims at facilitating thermochronological  

data  analysis  and making decisions  more  transparent.  We demonstrate  the  proposed procedure  by analyzing published 

datasets from a variety of geological settings and thermochronometers and introduce Incaplot, a graphical-user-interface 

software, that we developed to facilitate D-P plotting of thermochronology data.

1 Introduction

The  isochron  plot  is  a  universal  tool  for  analyzing  geochronological  results,  e.g.,  U-Pb,  Ar-Ar  or  Rb-Sr  data  (e.g., 

Nicolaysen, 1961). The main reason for its use is that the ratio of the isotope ratios (e.g., 87Sr/86Sr vs. 87Rb/86Sr) on the plot’s 

axes is the essential term of the radiometric age equation. The slope and intercept of an isochron fitted to a dataset convey  

information about the age and initial isotopic composition of a sample. Furthermore, the isochron plot enables us to visualize 

anomalous features in the data, such as outliers or excess of radiogenic daughters.

The isochron plot’s equivalent for low-temperature thermochronology is the radiogenic daughter (D) vs. radioactive parent 

(P)  plot (D-P plot), which several authors suggest for analyzing fission-track (FT), (U-Th)/He (He), and zircon Raman (ZR) 

data (e.g., Fanale and Kulp, 1962; Green, 1981; Wernicke and Lippolt, 1993; Dunkl, 2002; Vermeesch, 2008; He et al.,  

2021; Härtel  et  al.,  2022a).  This plot  allows to:  (1) detect  systematic offsets in daughter or parent concentration (e.g.,  

Vermeesch, 2008); (2) analyze the influence of radiation-damage on daughter retention while avoiding spurious associations  

(Härtel  et  al.,  2022a);  and (3) evaluate single-grain ages in terms of a two-dimensional distribution (e.g.,  for detecting  

outliers),  or selecting a sample age (e.g.,  as a mean, pooled, central,  or isochron age).  The D-P plot thus occupies the 

interface between the analytical results and more specific data-analysis tools such as radial, kernel-density-estimate (KDE),  

or  age-grain  size  plots.  It  is  therefore  surprising  that the  D-P  plot  is  not  considered  a  standard  tool  for  analyzing 

thermochronological data (e.g., Flowers et al., 2022; Kohn et al., 2024).

Our aim is  to fill  this  gap and provide guidance to users of  low-temperature thermochronology.  We envision the D-P  

relationship as a tool that helps to decide which data-analysis techniques are applicable or not to a given dataset. 
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We first provide theoretical background of the D-P plot, its differences to the classic isochron plot, and give examples of  

commonly observed daughter-parent relationships. Then, we present a workflow for analyzing daughter-parent relationships,  

suggest further data-analysis tools for each type of relationship and, if applicable, provide calculation algorithms to derive a  

sample age. We introduce Incaplot, a free graphical-user-interface software dedicated to create D-P plots that allows an easy  

implementation of our proposed analysis to any FT, He, or ZR data. 

2 Background

2.1 Deriving the D-P plot

Using a plot of daughter (D) against parent (P) concentration rests upon the general age equation:

t=
1
λ

ln(1+c
D
P ) (1),

where t is the age, λ is the decay constant, and c is a constant to balance out the units of D and P. It is evident from (1) that 

the age has a one-to-one relationship with D/P. Therefore, the position of a data point in a plot of D vs. P indicates the  

single-grain  age  by  the  slope  of  a  tie  line  connecting  it  to  the  origin  of  the  plot.  The  D-P  plot  is  thus  a  graphical  

representation of the age equation.

The relationship of the D-P plot to the age equation is the same as that of the classic isochron plot, but there are two  

significant differences: (1) the isochron plot represents parent and daughter concentrations as isotope ratios with a non-

radiogenic sister isotope as the common denominator. This creates error correlation between the two axes of the plot, which 

is not present in the D-P plot as it relies on independently measured daughters and parents. (2) The isochron plot assumes the 

initial  presence  of  the  radiogenic  daughter  isotope,  which  makes  isochron  fitting  indispensable  for  age  calculation.  In  

contrast, for the D-P plot no initial daughters are assumed, enabling the analyst to examine the D-P relationship for patterns 

without the need for an isochron. To honour these differences, we prefer the generic term D-P plot over isochron plot for this 

type of diagram for FT, He, and ZR data.

The actual quantities of D and P depend on the dating method. For FT dating, the daughters are the number or areal density  

of spontaneous tracks and the parents are either that of induced tracks (external detector method) or U concentration (LA-

ICP-MS-based dating). The daughters for (U-Th)/He and zircon Raman dating are the α-ejection corrected He concentration 

and the radiation-damage density, respectively. However, defining a parent concentration for these methods is difficult,  

because several α-emitting nuclides – 238U, 235U, 232Th (and 147Sm) – have to be considered. One solution is to express the 

parents as an effective uranium concentration (eU) – the sum of the parent concentrations weighted by their relative α-

production rate and thereby reduce the number of parents to one. Appendix A discusses the calculation of eU as a parent  

concentration in (U-Th)/He and zircon Raman dating and the differences between existing eU equations (e.g., Cooperdock et 

al., 2019; Härtel et al., 2023). Appendix B provides additional discussion on the choice of daughter and parent concentration 

units for different dating methods.
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Figure 1. Synthetic data showing different daughter-parent relationships. Sect. 2.2 discusses the possible causes for data falling 
into each of these classes. Note, that the mean D/P ratio for each panel is 2.

2.2 Data patterns for multi-grain samples

In practice, the analyst acquires multiple single-grain data to extract information about a sample’s thermal history. The  

number of these single-grain analyses varies between methods and analytical protocol – from about 20–30 grains per sample  

for FT and ZR dating to only 3–5 grains per sample for whole-grain He dating. The D-P plot allows us to analyze such multi-

grain samples. In the ideal case data pairs from same-age grains plot on a line through the origin (Fig. 1a). However, real  

data  deviate  from  this  ideal  trend.  Figure  1b-h  show  synthetic  data  as  examples  for  these  deviations,  which  can  be 

summarized into seven classes. Their patterns may point to geological processes that influence rock cooling and heating,  

analytical  biases,  or  simply  statistical  outliers  that  need  to  be  addressed  during  data  analysis.  Summarizing 

thermochronological ages by a mean age without examining the daughter-parent relationship thus does injustice to the data 

and may neglect important information. To illustrate that, the mean D/P ratio for the data in all the panels shown in Figure 1  

is 2 and hence the mean age is the same – however, their appearance varies drastically. In the following, we give a short  

overview of the shown classes of typical deviations from the ideal proportional D-P relationship.

Fig. 1b presents a positive linear D-P relationship with a zero intercept, including random variation about the trend. This is  

similar to the proportional case with uncertainty on the D and P measurements. Additional variation may be the consequence  

of varying grain sizes or inaccurate α-ejection correction for He dating, inter-grain chemical differences for FT or ZR dating,  

and parent-concentration-zoning for all three methods. The D-P plot in Figure 2a shows an example of a linear relationship  

with a zero intercept for laser-ablation apatite He data from Fish Canyon Tuff (Pickering et al., 2020).
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Fig. 2. Examples of linear and clustered D-P relationships. (a) D-P plot of laser-ablation apatite He data  
showing a linear trend with a zero intercept (Fish Canyon Tuff apatite, Pickering et al., 2020). The colored 
line is a robust isochron; the grey line is a tangent through the origin and the mean D and P values  
representing the pooled age. (b) D-P plot of apatite fission-track data forming a cluster (FC-1 apatite,  
Härtel et al., 2022a). (c) D-P plot of whole-grain zircon He data forming a linear trend with a negative  
offset (green) and data points from the same grains with adjustment for zoning (black) with isochrons 
(calculated from least-squares regression; data from Orme et al., 2015). (d) D-P plot of multi-grain-aliquot 
apatite He data forming a linear trend with a positive offset (green) and data points from abraded grains  
from the same samples (black) with isochrons (calculated from robust regression; data from DSDP Leg 
43, Spiegel et al., 2009). All reported uncertainties are 2s.

Fig. 1c shows clustering of D-P data. This pattern is typical for data from samples with limited inter-grain differences in 

parent  (and daughter)  concentrations,  and usually their  uncertainty intervals  overlap strongly.  In this  case,  the positive  

relationship between daughters and parents may be obscured by the uncertainty. Figure 2b shows a D-P plot with clustered  

apatite FT data from sample FC-1 from the Duluth Complex, Minnesota (Härtel et al.,  2022a). Despite relatively large  

differences in track density, the uncertainties in D and P of most grains overlap.

In Fig. 1d, the data form a linear trend as in Figs. 1a and b, but are offset from the origin. In He dating, such an offset may  

result  from  (1)  ‘parentless  helium’  implanted  by  inclusions  (Vermeesch  et  al.,  2007),  eU-bearing  grain-boundary  or 

neighboring phases (e.g., Murray et al., 2014) or (2) a consistent style of zoning across grains affecting α-ejection correction  

(e.g., Orme et al., 2015). In FT dating, it may also be due to a bias towards higher or lower track counts (see Green, 1981). In  

ZR dating, systematic offsets may result from damage-calibration issues, asymmetric Raman bands, or composition-related 

Raman-band broadening (Kempe et al., 2018; Troch et al., 2018; Härtel et al., 2022b). Note that an over- or underestimation  

of P causes an apparent offset of opposite sign in D. Figure 2c is a D-P plot showing an example of negative offset in whole-

grain zircon He data from a set of four closely spaced samples of Miocene leucogranite from the Greater Himalaya sequence  

(Orme et al., 2015). The single-grain ages range from 9.9–14.7 Ma (weighted means: 10–12 Ma), whereas Orme et al. (2015) 
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expected an age range of 14–17 Ma due to host-rock stratigraphy and other thermochronological data. They explained this  

by the zircon grains consistently showing compositional zoning with low-eU cores and high-eU rims: this causes more He to  

be lost by α-ejection than accounted for by conventional Ft-correction (e.g., Hourigan et al., 2005) and leads to the negative  

offset.  They tested this  assumption by adjusting Ft  of  some grains using zoning information from laser-ablation depth 

drilling (black circles in Fig. 2c). The ages range from 14.8 to 17.0 Ma (weighted mean: 15.6±0.2 Ma). In the D-P plot, these  

data points fall above the main trend and show insignificant offset from the origin. The isochron ages for both, unadjusted  

(14±1 Ma) and adjusted data (16±2 Ma) overlap with each other and fall into the expected age range.

Figure 2d shows a D-P plot of multi-grain-aliquot apatite He data from a volcano-sedimentary succession from DSDP Leg  

43 (Spiegel et al., 2009) with a positive offset. Their aliquot ages range from 25 to 80 Ma, with half the aliquots giving ages  

above 30 Ma. Spiegel et al. (2009) expected the ages to fall in a range of 26.5–29.5 Ma based on stratigraphic and micro-

paleontological evidence. These authors argued that the apatite grains experienced He implantation from neighboring high-

eU phases. To test this assumption they carried out additional analyses on abraded grains from the same sample to eliminate  

the implantation effect  (black circles in Figure 2d).  Data from these aliquots span an age range of 22–42 Ma and the  

regression line fitted to them does not show a significant offset. This confirms that the surplus helium causing the positive 

offset was in the outer parts of the apatite grains. Using the D-P plot we show that the isochron ages for unabraded (27±5  

Ma) and abraded grains (27±2 Ma) are identical within uncertainties and are both within the expected age range.

Figure 1e showcases a non-linear D-P relationship. This may be due to the daughter retention depending on the degree of  

lattice damage from α-decay of U, Th, and their daughters. The production of radiation-damage is roughly proportional to 

the parent (eU) concentration. Its effect on daughter retention causes D and P to form either a concave (Fig. 1e, damage-

enhanced loss) or a convex (damage-enhanced retention) relationship (Härtel et al., 2022a). Figure 3a shows an example for  

a non-linear D-P relationship due to radiation-damage-enhanced helium loss in zircon He dating. The shown dataset from the  

Minnesota River Valley (Miltich, 2005) consists of several samples assumed to have shared the same thermal history since 

~1.8  Ga  based  on  earlier  thermochronological  data  (see  references  in  Miltich,  2005).  The  He  concentration  increases 

approximately linearly with eU increasing up to 500 µg/g and falls at higher eU concentrations in response to radiation 

damage facilitating He loss from the zircon crystals. Guenthner et al. (2013) suggested a thermal history for these samples  

based on the zircon radiation-damage accumulation and annealing model (ZRDAAM, black line), consistent with the D-P 

relationship.

The D-P plot in Figure 3b gives an example for damage-enhanced loss in titanite He data from several Archean samples  

from the Kaapvaal craton (Baughman et al.,  2017) assumed to share the same thermal history since ~1.2 Ga based on  

thermochronological constraints. Like Figure 3a, He and eU show a linear relationship for eU concentrations ≤80 µg/g and 

turn into a falling trend at higher eU, levelling off at eU >200 µg/g. In this case, not only the D-P plot, but also radiation-

damage measurements by Raman spectroscopy on selected titanite grains support the influence of radiation damage on the  

titanite He age.

The data in Fig. 1f form two different trends, indicating different age components within the sample. This relationship may 

occur if a sample contains groups of grains with a high contrast in kinetic properties. Figure 3c shows a D-P plot for an 

example of different age populations found in apatite FT data for a fully reset sedimentary sample from the Mackenzie  

Basin,  Northwest  Territory (Issler  et  al.,  2005).  It  displays two roughly linear trends in the data corresponding to two  

different ages. Color-coding the data by chlorine shows a slight compositional difference between the two age populations, 

suggesting a chemical influence on FT annealing properties (e.g., Barbarand et al., 2003).
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Fig. 3.  Examples of non-linear and several-population D-P relationships. (a) D-P 
plot  of  whole-grain zircon He data showing a  non-linear,  concave relationship 
(samples from Miltich, 2005).  The line represents the predicted D-P trend of a 
zircon radiation-damage and annealing model (ZRDAAM) from Guenthner et al. 
(2013). The dotted line segment on the left connects the ZRDAAM estimate with 
the  origin.  (b)  D-P  plot  of  whole-grain  titanite  He  data  showing  a  non-linear, 
concave relationship (samples from Baughman et al., 2017). (c) D-P plot of apatite 
fission-track data showing two populations (sample I-77 from Issler et al., 2005). 
The  data  are  color-coded  by  chlorine  content  (in  atoms  per  formula-unit  for 
Ca10(PO4)6(F, OH, Cl)2). The dashed lines represent ages determined from finite-
mixture modelling by Issler et al. (2005). All uncertainties are 2s.

In Fig. 1g, random scatter obscures the relationship of D and P. Such a pattern can arise due to multiple reasons, e.g.,  

heterogeneous daughter retention within the sample,  e.g.  a broad range of grain sizes or chemical compositions.  Other 
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reasons for scattered data might be the occurrence of micro-cracks, deformation, or parent zoning. In addition, scatter may 

arise from analytical factors, such as variably biased α-ejection correction, counting bias, or a combination of these factors.

Figure 4.  Examples of scattered and inverse D-P relationships. (a) D-P 
plot  of  multi-grain-aliquot  apatite  He  data  showing  a  scattered 
relationship (data from Reiners and Farley, 2001). The data are color-
coded  by  grain  size  expressed  as  mass-weighted  average  radius 
(MWAR).  (b)  D-P  plot  of  whole-grain  zircon  He  data  showing  a 
scattered  relationship  (data  from  Guenthner  et  al.,  2017).  The  line 
represents the predicted D-P trend from ZRDAAM, and the dotted line 
segment on the left connects to the origin. (c) D-P plot of whole-grain 
zircon He data showing an inverse relationship (sample A10-42 from 
Ault  et  al.,  2018 and Armstrong et  al.,  2024).  Color-coding indicates 
radiation-damage measurements using a Raman microprobe. The line 
represents the predicted D-P trend from ZRDAAM, and the dotted line 
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segment on the left connects to the origin.  All uncertainties are 2s.

An example of a scattered D-P plot can be found in the multi-grain-aliquot apatite He data from the Bighorn Mountains,  

Wyoming (Reiners and Farley, 2001). The data show no relationship between He and eU (Fig. 4a). However, color-coding  

the different aliquots by the mass-weighted average radius (MWAR) reveals an age (i.e., D/P ratio) increase with increasing  

grain size. This indicates a continuous age distribution due to different sensitivity of differently sized grains to volume  

diffusion of helium. Figure 4b shows another example of a scattered D-P relationship in whole-grain zircon He data. It uses a  

set of borehole samples from the Fennoscandian Shield and color-codes the data by sampling depth (Guenthner et al., 2017).  

The black line represents the ZRDAAM from the original publication. However, neither the depth of each sample – and thus  

their current temperature – nor the radiation-damage model explain the scatter in the data. In this case, an unknown factor  

underlies the age variation.

Figure 1h shows an inverse relationship between daughters and parents. This pattern may occur due to (1) a small sample 

size causing a spurious relationship (Ketcham et al., 2018), (2) bias from over- or under-correcting the He concentration for 

α-ejection,  or  (3)  the data representing a falling segment of  a  non-linear trend caused by radiation damage.  Figure 4c  

provides an example for a negative D-P trend from whole-grain zircon He data.  Ault  et  al.  (2018) interpreted the age  

variation in this dataset as due to radiation-damage enhanced He loss, as the ZRDAAM (black line) in Figure 4c shows.  

Armstrong et al. (2024) provided Raman data on selected grains, showing that some of the zircon grains with eU ≥ 1000 

µg/g were metamict, explaining their low He concentration compared to the lower-eU grains.

2.3 Unique benefits of D-P plots

Figures 1–4 show the variation of thermochronological data in terms of D-P patterns. Each of these relationships requires 

different considerations for data analysis. This includes the questions if reporting a single sample age is appropriate, and if  

yes, which type of sample age to report. Some of the factors causing age variation can be traced by commonly used data-

analysis tools such radial plots, KDE, or age-grainsize plots, but there are unique benefits to analyzing data in the D-P plot.

First, the D-P plot is the only thermochronological data plot that enables us to detect systematic offset in daughter or parent 

concentrations (Figs. 1d, 2c, 2d). Systematically offset data pose a serious problem to many standard data analysis tools and 

should therefore be treated with caution: (1) single-grain ages calculated from offset data are biased towards higher or lower 

ages depending on the sign of the offset. This bias propagates into calculated central tendencies (Härtel et al., 2022a) and  

into plots displaying the age as a variable, such as radial, KDE, age-grainsize, and age-(e)U plots. Figure 5a shows a radial 

plot for the systematically offset zircon He data from Figure 2c. Both, the single-grain ages (9.9–14.7 Ma) and the central 

age (12.0   0.7 Ma) are substantially younger than the age range of 14–17 Ma, which Orme et al. (2015) expected from  

stratigraphic and thermochronological constraints. However, the isochron age (14±1 Ma for conventionally analyzed grains, 

Figure 2c; Appendix C2) fits well with this scenario and agrees with the zoning-corrected ages of 14.8–17 Ma (Orme et al.,  

2015). The positively offset apatite He data in Figure 2d show a similar good fit of the isochron age (27±5 Ma) with the age  

range that Spiegel et al. (2009) expected (26.5–29.5 Ma). In contrast, the central age for these data is biased towards older  

ages  (37±4  Ma  for  unabraded  grains).   (2)  Offset  data  appear  over-dispersed  (and  fail  the  χ2 test)  because  the  data 

uncertainties do not explain the spread in age. This further complicates the use of radial plots, as the spread in single-grain  

ages may give way to a misinterpretation of ages as a mixture of discrete age components (see discussion in Vermeesch,  

2019). The data in Figure 5a falling out of the 2 standard-deviation envelope showcase this problem. (3) The over-dispersion  

by systematic offset hampers inverse thermal-history modeling, as the modeling algorithm will have to reconcile a large 

spread in ages without the uncertainties accounting for it (e.g., Vermeesch and Tian, 2014). As the offset affects each data  

point differently, this problem cannot be solved by expanding the uncertainties in D and P (Flowers et al.,  2022a).  (4) 
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Systematic offset also compromises the Helioplot (Vermeesch, 2010), which determines the age from log-ratios, because it  

disturbs all ratios derived from the D and P concentrations.

Figure 5. Examples for the unique benefits of the D-P plot. (a) Radial plot of data from Orme et al. (2015) shown in 
Figure 2c that illustrate the bias caused by systematic offset. The center of the y-axis is the central age calculated from  
conventionally  alpha  corrected  data.  The  purple  area  represents  the  expected  age  range  from  stratigraphic  and 
thermochronological constraints. (b)-(d) Age-eU plots showing negative associations for: (b) data from Miltich (2005) 
with a non-linear D-P relationship (Figure 3a); (c) data from Guenthner et al. (2017) with a scattered D-P relationship 
(Figure 4b); (d) data from unabraded grains of Spiegel et al. (2009) with a linear, systematically offset D-P relationship 
(Figure 2d). All uncertainties are 2s.

Second, the D-P plot provides an unbiased indication if daughter retention in a sample depends on radiation damage: the D-

P plot shows unambiguous linear relationships for well-documented cases of radiation-damage-dependent daughter retention 

(e.g., Figs. 3b, 4c; Baughman et al., 2017; Armstrong et al., 2024); in contrast, not all associations observed in the commonly  

used  age-eU plot  reflect  actual  radiation-damage  effects  (e.g.,  Carter,  1990;  Härtel  et  al.,  2022a):  Figures  5b-d  show 

examples of age-eU plots with negative relationships drawn from the datasets shown in Figs. 2–4. However, the D-P plots  

provide a more nuanced view, showing that only the data in Fig. 5b form a non-linear relationship indicative of radiation-

damage effects (Figure 3a); the data in Figs. 5c and 5d also show age-eU associations, while their D-P relationships (Figs.  

4b, 2d) do not support an explanation based on radiation damage.

Third, the D-P plot allows to detect age outliers in two-dimensional space, not only from single-grain ages (e.g., He et al.,  

2021). It thus  allows to identify the relative position of outliers with respect to the rest of the data, showing if its main  

deviation occurs in D or P.

3 Proposed workflow based on D-P plot analysis

As shown above, the D-P plot allows to interpret a range of age patterns in thermochronological data (Figs. 1–4) and has the  

unique ability to detect a systematic offset or radiation-damage influence, two possible causes for age variation that are not  
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covered well by other data-analysis tools. We therefore suggest the D-P plot as the first step for thermochronological data 

analysis,  before moving on to more specific data-analysis tools such as radial, KDE, or age-grainsize plots, or thermal-

history modelling. We propose a decision-tree approach to classify the daughter-parent relationship (Fig. 6). Depending on 

the class of the relationship, we then suggest further steps of data analysis. The following sections outline the use of the  

decision  tree  to  systematically  classify  the  data  and  find  an  appropriate  description  of  the  contained  thermal-history 

information.

3.1 Preliminary considerations

Before using the classification scheme in Fig. 6, it is essential to assure that the analytical procedures and samples meet 

certain quality criteria established for each method, e.g., that suitable grains were selected for He dating, that data with  

asymmetric Raman bands were excluded from ZR dating, that track counting was conducted on prismatic grain surfaces, etc.  

Also, the number of analyses in the dataset is important, as fitting a regression line or splitting a dataset into age populations 

is not appropriate for small datasets (see sect. 4). Another criterion to be considered is the geological background of the 

sample. For example, a crystalline bedrock sample with a simple cooling history will  likely give a single age, while a  

metasedimentary rock may show different age populations due to chemical variation between grains, and a volcanic rock 

recording its eruption is expected to give a near-ideal linear trend.

Figure 6. Decision tree for classifying the daughter-parent relationship in a sample (classes named as in Fig. 1). The blue boxes  
provide suggestions on how to treat data belonging to the respective class.

Radiation-damage effects and accompanying non-linear relationships are expected for old rocks with protracted or complex  

cooling  histories,  but  not  for  young  rocks  that  did  not  spend  time  in  the  temperature  regime  of  radiation-damage 
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accumulation. The interpretation of a sample that strongly deviates from the geological expectations needs to be carried out  

with care.

3.2 The classification procedure

For analyzing the data, we calculate the daughter and parent concentrations according to the thermochronological method 

used (see Appendix B) and plot daughters against parents. The analysis proceeds by following the decision tree in Fig. 6 to 

classify the daughter-parent relationship. The first step separates datasets showing a positive D-P relationship from those that 

do not (A in Fig. 6). We expect a positive association between D and P from the radioactive production equation, but this 

association may be obscured by factors discussed in sect. 2.2. In the case of data, for which the D-P relationship is not clear,  

it is usually safe to assume that there is no positive relationship – a decision that may be revised in later steps. Data, for  

which D and P are  not  positively  associated,  are  then classified  as  either  clustered,  scattered or  following an inverse  

relationship (B in Fig. 6). 

For data with a positive D-P relationship, it is then essential to distinguish datasets containing a single age population from  

those with several populations (C in Fig. 6). As in Figs. 1f and 4a, multiple age populations form linear arrays with different  

slopes or clusters in the dataset with gaps between them. A KDE plot may reveal the presence of different populations for  

cases that are not clear-cut.

For single-population data, the next step is filtering the dataset for outliers (D in Fig. 6). Outliers stick out by a difference in  

single-grain age to the other data beyond their uncertainty. However, this is not sufficient evidence to mark a data pair as 

anomalous: other factors such as systematic offset may also cause single grains to be significantly older or younger than the  

others  (Fig.  1d).  In  the  D-P plot,  outliers  show up as  removed from the  main  trend  or  group of  data  points.  Before  

considering such a measurement as anomalous, other properties should be examined, e.g. grain size or mineral chemistry. If  

anomalous data are excluded from further analysis, this should be reported, e.g. by marking the excluded data point as empty  

symbol in the D-P plot. For ambiguous cases, it may be advantageous to carry out the further steps with and without the 

concerned data point. For He dating, Flowers et al. (2022) provide further strategies for treating outliers (their sect. 3.1).

Figure 7. D-P plots for testing for a non-linear relationship. (a) Regression line fit to a synthetic  
non-linear D-P relationship. (b) Fitting residuals (difference between measured and fitted D).

After examining the outliers, we test the data for a linear D-P association (E in Fig. 6). If it is not clear whether the data show 

a linear or a non-linear trend from visual inspection alone, this can be verified by fitting a regression line to the data and  

examining the residuals, i.e. the deviation of the data points from the line. For a linear relationship, the residuals scatter  

randomly around zero while in the case of a non-linear relationship, there is an association between residual and parent  

11

220

225

230

235

240

245



concentration. Fig. 7a shows the linear fit to a synthetic dataset in a D-P plot. Figure 7b plots the fitting residuals against P,  

revealing a boomerang-shaped trend that points to a non-linear D-P relationship.

If the D-P relationship is linear, it is necessary to test the data for a systematic offset (F in Fig. 6). This is achieved by fitting  

a regression line to the data and examining its intercept. If the intercept includes zero in its uncertainty envelope, the offset is  

not significant and the data may be treated as having a zero intercept. If the uncertainty envelope does not include zero, this  

is a sign for a potential offset. However, this uncertainty on the intercept may be an underestimate if the variation of the data  

strongly exceeds that expected from the uncertainties (e.g., high MSWD; Wendt and Carl, 1991; see Appendix C). Another 

simple test for an intercept is the comparison of the isochron age and the pooled age: if the data form a trend through the  

origin, the two ages should be indistinguishable because the pooled age assumes a zero intercept (see sect. 3.4).

3.3 Sample-age calculation

Once arrived at a certain class of D-P relationships, the goal is to assign an age to the sample. This can either be a central  

tendency, such as a mean or pooled age, or an isochron age for a sample with a single age population, or a number of ages or  

a range of single-grain age depending on the D-P relationship (Fig. 4, Table 1). If the given ages can be described by a single 

sample age, the simplest solution is to report a central tendency. Despite its simplicity, the (arithmetic) mean age does  

usually not provide a reliable sample age (e.g., Vermeesch, 2008; Härtel et al., 2022a; see Appendix C). A more robust 

alternative is the pooled age, which uses the ratio of the summed D and P concentrations (see Figs. 2a, b).

If the intra-sample age variation can be related to a certain grain property affecting radiogenic daughter retention, the ages  

may represent a continuous mixture of ages, with each grain recording a different age due to its individual properties. Figure 

4a shows an example with He data varying with respect to grain size. Such a mixture is best described by the central age 

(e.g. Galbraith, 2005; Vermeesch, 2019).

Datasets, that are systematically offset, require a different approach, that of the isochron age, which rests on the slope of a  

fitted regression line through the D-P data (see Fig. 2c, d). If several discrete age components exist in a dataset, these can be  

separated by mixture modeling (e.g., Galbraith and Laslett, 1993; Vermeesch, 2019), or by treating each age component as a 

single sample. If the data cannot be described by a single age or multiple ages, nor by a continuous mixture related to grain  

properties,  it  is  still  possible to report  the range of single-grain ages,  which does not  rely on any model  assumptions.  

Appendix C provides a more detailed discussion about mean and isochron ages, and discrete and continuous age mixtures.  

The following sections provide suggestions for how to treat data falling into each of the D-P classes of Fig. 6.

3.4 Classes of daughter-parent relationship

3.4.1 Linear relationship with zero intercept

If the daughter-parent relationship is linear and the intercept of its regression line is close to zero (F in Fig. 6), the pooled and 

the isochron age are similar (Fig. 2a). In this case, it is advantageous to report the pooled age, which is more robust and does  

not require the intercept as additional parameter. As all single-grain ages along the linear trend are roughly the same, the 

potential bias of the pooled age is negligible (see Appendix C).

If the MSWD or spine factor of the fitted regression line (F in Fig. 6) are outside the upper confidence limit, the data are  

over-dispersed. This points to two possible scenarios: (1) Analytical dispersion due to the uncertainties not reflecting the 

actual measurement error. This is especially a problem for He and laser-ablation FT dating (e.g., Fitzgerald et al., 2006; 

Ketcham et al., 2018; Cogné and Gallagher, 2021). In this case, the uncertainty on the pooled age may be expanded to  

account  for  the  variation  of  the  individual  analyses  (see  Eq.  (C6)  in  Appendix  C).  (2)  Geological  dispersion  due  to  

heterogeneous grain properties affecting daughter  retention,  such as grain size,  composition etc.  This can be tested by  

plotting the age against these properties, or by using them for color-coding the D-P plot (Fig. 4a). If the data are dispersed  

due to a continuous range of grain properties, the central age describes the age distribution best (Appendix C).
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3.4.2 Cluster

Clustered data are best summarized by the pooled age (Fig. 2b). To make sure that there is no bias towards the oldest or  

highest-D-P grains, the data should be screened for outliers (D in Fig. 6). If the data are over-dispersed, e.g., failing the χ 2 

test (e.g., Galbraith, 2005), the uncertainty of the pooled age may be expanded to reflect the actual inter-grain age variation  

(see Eq. (C6) in Appendix C) or the data may be treated as scattered (sect. 3.4.6). If there exists a relationship between age 

and grain properties, e.g. by plotting the age against these grain properties or to color-coding the D-P plot (e.g., Fig. 4a), the  

age distribution may be described by a central age.

3.4.3 Linear relationship with systematic offset

Systematically offset data must be treated with caution as such data pose problems for many common data-analysis tools  

(see sect. 2.3). The only sample age that may appropriately describe systematically offset data is the isochron age determined 

from the slope of a regression line (see Figs. 2c, d; section 2.3; Appendix C2). Another option is to verify the reason of the  

intercept, such as zoning, ‘parentless helium’, or a counting bias (section 2.2) and finding a strategy to eliminate it (e.g., 

Spiegel et al., 2009; Orme et al., 2015). The intercept of the regression line provides a first-order estimate for the amount of  

offset. If the intercept is large, close to the mean daughter concentration, or if the data allow for a horizontal or vertical line 

fit, they could also be treated as a cluster (sect. 3.4.2) or as scattered data (sect. 3.4.6). If the data are over-dispersed, e.g.,  

showing  an  MSWD  outside  its  confidence  interval,  it  is  possible  to  expand  the  uncertainty  on  the  isochron  age  by 

multiplying it  with  √ (MSWD ) (e.g.,  Ludwig, 2012). For a strong overdispersion (e.g.,  MSWD>10), the data should be 

treated as scattered (see sect. 3.4.6).

3.4.4 Non-linear relationship

A non-linear relationship in the D-P plot points to radiation-damage-dependent daughter retention. This assumption can be 

tested against independent radiation-damage measurements. Raman and infrared spectroscopy, or X-ray diffraction provide 

radiation-damage estimates for zircon or titanite (e.g., Nasdala et al., 1995; Deliens et al., 1977; Holland and Gottfried, 1955;  

Heller et al., 2019), while optical absorption or Raman spectroscopy are potential tools to measure radiation damage in 

apatite (e.g., Ritter and Märk, 1984; Liu et al., 2008). 

Alternatively, a non-linear D-P relationship could result from daughter retention depending on other grain properties and the  

different grains recording the same thermal history differently. This effect can be examined by plotting the age against these  

parameters or by color-coding the D-P plot (Fig. 4a). If such a relationship exists, the dataset may be described by a central  

age (see Appendix C).

If the decision for a non-linear versus a linear relationship with an offset is not clear (E in Fig. 6; Fig. 7a, b), the less  

complex linear model should be preferred over a non-linear model (sect. 3.4.3) in the absence of independent radiation-

damage measurements.

For a non-linear trend caused by radiation-damage-dependent daughter retention, forward modeling of daughter retention 

and radiation-damage accumulation and annealing provides further insights into a sample‘s thermal history (e.g., Flowers et  

al., 2009; Willett et al., 2017; Guenthner et al., 2013). In this case, the D-P plot allows to compare the data to the D-P  

relationship predicted by the model, especially in the low-eU region, where the model prediction connects to the origin  

(Härtel et al., 2022a).  Figures 3a and 4c show thermal-history forward models for zircon He dating plotted as lines in 

comparison to the measured data.
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3.4.5 Several populations

If the D-P plot suggests that several discrete age components are present in the sample, the KDE or radial plot are the  

standard tools to examine the data. The occurrence of different components should also be tested for consistency, e.g., if a  

mixture of populations makes sense in the geological context (sect. 3.1) or by color-coding according to a variable that may  

underlie the different populations (see Fig. 3c). The age distribution can either be described by a finite-mixture model (e.g.,  

Galbraith and Laslett, 1993; Galbraith, 2005; Vermeesch, 2019) or by separating the data into age populations to be analyzed 

individually according to the procedure in Fig. 6.

3.4.6 Scattered data

Data that vary strongly in age and are scattered in the D-P plot may result from several scenarios: First, they may be a  

consequence of underestimating the uncertainties with respect to the variation in the single-grain data (e.g., for He dating,  

Fitzgerald et  al.,  2006;  Brown et  al.,  2013).  Martin  et  al.  (2023) and Zeigler  et  al.  (2023) showed that  especially  the 

uncertainty related to α-ejection correction in whole-grain He dating is difficult to estimate, while the correction contributes 

significantly to the age error. Data with limited scatter, for which the uncertainties may be underestimated may be treated as  

a cluster (sect. 3.4.2). A second explanation for scatter is the occurrence of different age populations, which can be verified  

in a KDE plot (sect. 3.4.5). Third, the scatter may also be due to each grain having slightly different daughter-retention  

properties and recording a different age.  Plotting the age against these parameters or color-coding the D-P plot (Fig. 4a) 

allows to assess this relationship; a central age may be used to describe such a continuous mixture (sect. 3.4.2; Appendix C).

If the scatter cannot be explained by one of these scenarios (e.g., Fig. 4b), the range of the single-grain ages should be  

reported. Scattered data also pose a serious problem to inverse time-temperature (t-T) modeling, as the age difference may 

not allow for a single t-T path to reconcile the spread in ages.

3.4.7 Inverse relationship

An inverse  daughter-parent  relationship  runs  contrary  to  the  relationship  expected from the  age equation (Fig.  4c).  In  

general, two scenarios can account for this relationship without pointing to an analytical problem. If the dataset is small (e.g.,  

n≤5), a spurious inverse trend could arise randomly (Ketcham et al., 2018) and the dataset should be treated as scattered 

(sect. 3.4.6). However, the interpretation of small datasets should be carried out with caution (see sect. 4). Alternatively, the 

inverse relationship may represent an inverse segment of a non-linear trend if radiation damage controls daughter retention  

(sect. 3.4.4; Fig. 4c). If there is no clear explanation for the inverse daughter-parent relationship, it is best to report the range 

of single-grain ages (Table 1; Appendix C).

3.5 D-P plotting in Incaplot

This section briefly describes Incaplot (Härtel, 2024), a simple, Python-based graphical-user-interface software dedicated to  

producing D-P plots. Existing softwares (e.g., Trackkey, Isoplot Excel, IsoplotR) already provide the tools for D-P plotting,  

but these are often buried between other functions or are available for certain dating methods only. Incaplot is available for  

free  at  https://zenodo.org/records/8233941 as  a  one-file  executable  for  Mac (MacOS 10.15  Catalina  and  younger)  and 

Windows operation systems (Windows 8 and younger). 

14

325

330

335

340

345

350

355



Figure 8. Main window of the Incaplot software (left), the table inspection tool (upper right) and an output D-P plot (lower right).

Incaplot allows to create D-P plots and calculating low-temperature themochronometric ages. It also provides a range of  

visualization and customization options. Figure 8 shows Incaplot’s main window (left), its data inspection tool (upper right)  

and its graphical output (lower right). The main window consists of three frames dedicated to (1) loading data files, (2) the  

input data and calculation algorithms to be used, and (3) modifying the plots and calculations.

Incaplot requires the input files to be Excel spreadsheet files in .xls, or .xlsx format or comma-separated (.csv) text files. The  

plotting variables need to be organized as columns with the variable names in the first row. A user manual for the current 

Incaplot version and an example file displaying the input data format are available in Incaplot’s zenodo repository.

Incaplot provides a range of plot-customization options, which include customizing markers, axes and ticks, adding line 

segments to plots, and color-coding plots by discrete and continuous variables. While Incaplot was set up to handle mainly  

He, ZR and FT data, it can also be used for other dating systems or generic scatterplots. The output plots are exportable in  

different raster (.jpg, .png, .tif) and vector formats (.svg, .pdf, .eps).

Besides D-P plotting, Incaplot contains functions for sample-age calculation as pooled age, isochron fitting with different  

algorithms (see Appendix C2), calculation of single-grain ages and effective uranium concentrations (see equation (1) and 

Appendix A).

15

360

365

370



Table 1. Example for reporting data-analysis results based on the D-P plots in Figs. 2–4. 

Sample name(s) Method D-P relationship Age reported Age (Ma) n Comment Reference Figure

FCT AHe (LA) Linear, zero intercept Pooled age 28.3±0.6 42 - Pickering et al., 2020 2a

FC1 AFT (EDM) Cluster Pooled age 850±30 50 - Härtel et al., 2022a 2b

Multiple samples,
list in reference

ZHe (WG) Linear, offset Isochron age 14±1 24 Conventional Ft correction,
Intercept: -40±23

Orme et al., 2015 2c

Multiple samples,
43-2 to 43-8

AHe (MG) Linear, offset Isochron age 27±5 23 Unabraded grains,
Intercept: 0.11±0.06

Spiegel et al., 2009 2d

Multiple samples,
list in Fig. 3a

ZHe (WG) Non-linear Central age 284±125 23 Dispersion: 108 ± 31 %
Interpretation from 

radiation-damage model

Miltich, 2005 3a

Multiple samples, 
list in Fig. 3b

THe (WG) Non-linear Central age 476±141 48 Dispersion: 105 ± 21 %
Interpretation by radiation-

damage-dependent retention

Baughman et al., 2017 3b

I-77 AFT (EDM) Several populations Finite mixture ages 220±45
90±12

31 Interpretation by retention 
depending on chlorine 

content

Issler et al., 2005 3c

Multiple samples,
list in reference

AHe (MG) Scattered Central age 162±27 17 Dispersion: 35 ± 12 %
Interpretation from grain-

size model

Reiners and Farley, 
2001

4a

Multiple samples,
list in reference

ZHe (WG) Scattered Single-grain age range 102-820 24 - Guenthner et al., 2017 4b

A10-42 AHe (whole 
grain)

Inverse Central age 331±126 11 Dispersion: 64 ± 27 %
Interpretation from 

radiation-damage model

Ault et al., 2018; 
Armstrong et al., 2024

4c

Note: LA – laser-ablation, EDM – external-detector method, WG – whole-grain method, MG – multi-grain aliquot method, AHe – apatite He, AFT – apatite FT, ZHe – zircon He,  

THe – titanite He. The age uncertainties are 2s.375



4 Limits of the D-P plot based data-classification scheme

The data-analysis workflow in Figure 6 provides simple decision paths and criteria for assigning a dataset to a class. This has 

the advantage to keep the data-analysis process consistent, especially for studies involving many samples. Still, this decision-

based approach has some limits that need to be pointed out.

First, not all datasets may be assignable unambiguously to a class. Examples may be cases of moderate variation falling  

between clustered or scattered data or cases, in which the distinction between linear- and non-linear relationships is not clear  

(see Fig. 7). While section 3.4 provides suggestions for alternative classifications, this problem highlights the necessity for 

transparent reporting on the decisions taken by the analyst. We recommend to either show the daughter-parent plot for each 

sample or at least report the class of the D-P relationship and the type of the reported age to allow retracing the data-analysis 

process. Table 1 gives an example of a reporting format using the data from Figures 2–4.

Second, our ability to evaluate the D-P relationship for a sample clearly depends on the number of data and the complexity  

of a sample’s geological setting.  There are several limits a small sample imposes on data analysis using the workflow in 

Figure 6: (1) it is not possible to recognize different populations; (2) a single outlier may constitute a large proportion of the  

gathered data; (3) random variation may cause inverse D-P relationships (see Ketcham et al., 2018) or spurious associations  

between the age and other properties; (4)  in terms of sample ages, the small number of grains inhibits the use of isochron or 

central ages, which would require the fitting of several parameters (age and intercept or dispersion) to a small amount of  

data. While this hampers a strict classification following Fig. 6, it is still possible to use the D-P plot as a qualitative guide,  

e.g., to visualize the data in terms of their variation in D and P. It also enables to examine, in which D-P direction a potential  

outlier deviates from the rest of the data. For example, this helps to decide if the pooled age is biased towards a single high-

D or -P grain (see Appendix C1). In this case, we recommend to check this potential outlier or report the single-grain age 

range.  The  number  of  analyzed  grains  is  not  a  concern  for  FT and  ZR dating  (n>10),  but  it  is  a  limiting  factor  for 

conventional whole-grain He dating (n<10). However, the recent development of laser ablation based He dating will increase  

the number of grains analyzed per sample and recognizing D-P relationships (e.g., Tripathy-Lang et al., 2013; Pickering et 

al., 2020). In addition, some cases may allow grouping together data from several small samples. This approach hinges on  

the  condition  that  the  different  samples  are  comparable,  e.g.,  that  they  share  the  same  thermal  history  in  the  partial  

annealing/retention zone of the used thermochronometer. This strategy is often used for analyzing He data with respect to  

radiation-damage effects (e.g., Figs. 3a, b; Fig. 4c; Guenthner et al., 2013, 2017; Baughman et al., 2017; Ault et al., 2018;  

Armstrong et al., 2024).

Third, detrital samples often record a complex mixture of pre- and post-depositional thermal history. They also often contain 

grains  with different  chemical  composition and size.  Detrital  samples  are  therefore  not  expected to  fit  into the simple 

categories of Figure 6. Extracting a sample age or an interpretation from a single sample or a single thermochronometer is  

usually  not  possible  (e.g.  Carter,  2019).  Standard procedures  for  interpreting detrital  thermochronological  data  include 

identifying peak ages in the single-grain age distribution and putting them into the context of the stratigraphic age, age  

distributions of source areas, catchment geometry, etc. (e.g., Malusà and Fitzgerald, 2019). While it is possible to evaluate 

different age populations in the D-P plot (see sect. 3.4.5), KDE or radial plots are the more adequate tools for this task. Still,  

the D-P plot may hold additional information that is difficult to access with these plots. First, it may be used on a subset of 

the  data  to  evaluate  the  daughter-parent  relationship  for  a  given  age  population  and  possibly  detect  a  non-linear  or 

systematically offset relationship (sect. 3.4.3, 3.4.4). However, this can only be done reliably, if enough data (e.g., n ≥10) are  

available in this grain population. Second, it may help to identify bias in grain selection. One of these is the problem with  

overlapping, uncountable fission tracks in old or U-rich zircon, that may skew ZFT age populations towards younger ages 

and thus affect the interpretation in terms of source-area exhumation and erosion patterns (e.g., Malusà, 2019). Figure 9a  

shows the D-P plot for a synthetic ZFT dataset. The dashed line marks the countability limit for the spontaneous tracks. This  
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limit cuts off the track-density distribution for an old grain population; it indicates that the sample may contain older or  

higher-U grains not datable with the ZFT method. A third application is the visualization of different grain populations with  

respect to age, parent concentration and other grain properties, e.g. grain size or composition to highlight nuances in the  

composition of different age populations. Figure 9b shows the D-P plot for a synthetic AFT dataset, color-coded by the Cl/F 

ratio and with a dashed line representing the depositional age. In this case, part of the grains in the age group slightly older  

than the depositional age stands out due to its high induced-track density (high U content) and its F-dominated halogen  

composition. So, despite the complexity of detrital samples, there are situations, in which the visualization of the data in a D-

P plot can be useful.

Figure 9. Possible applications of D-P plots for detrital thermochronology. (a) D-P plot for a synthetic ZFT 
dataset  with  the  dashed  line  marking  the  density  threshold,  at  which  the  spontaneous  tracks  become 
uncountable. (b) D-P plot for a synthetic AFT dataset color-coded by the Cl/F ratio. The dashed line represents  
the depositional age.

5 Conclusions

Plots of daughter vs. parent concentration (D-P plots) represent a graphical solution of the age equation in radiometric dating  

and are effective to reveal crucial information in low-temperature thermochonrology data. They allow to identify sources of  

age variation and choose an appropriate algorithm to calculate a sample age. Their unique advantages over other data-

analysis tools are their capabilities to detect systematic offsets and radiation-damage effects in the data and the possibility to  

identify potential outliers with respect to both, daughter and parent concentration rather than the single-grain age only. We  

show several published datasets exemplifying the range of possible D-P relationships and how they link up to geological  

factors influencing the age. We propose a new workflow for using D-P plots in thermochronological data analysis. This 

approach follows a step-wise examination of the daughter-parent relationship and assigns one of seven classes to it. It also 

enables us to choose the further steps for data analysis and identify possible factors influencing the age. The classification 

scheme is an attempt to make data analysis more consistent and transparent. Our classification approach has limitations  

especially when applied to small or detrital datasets, however, the D-P plot itself can still provide important insights in these  

cases. We also introduce Incaplot, a free, graphical-user-interface software and invite everyone for creating and customizing  

D-P plots in a straightforward way.
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Appendix A: The effective uranium concentration

The effective uranium concentration (eU) is a summary of the α-producing U, Th, and Sm concentrations, rescaling them to 

a common decay rate of U:

eU=kU [U ]+kTh [Th ]+k Sm [Sm ] (A1),

with the terms in the brackets being the concentrations in units of mass, and k U, kTh and kSm being coefficients for each 

concentration. There are currently two definitions of eU that result in slightly different coefficients. Shuster et al. (2006) and 

Cooperdock et al. (2019) recalculate the actinide concentrations to a concentration of total U, whereas Härtel et al. (2021)  

recalculate them to the decay rate of  238U only. The latter approach enables us to use eU as a single parent with a well-

defined decay rate for He and ZR dating. It also considers the change of the daughter-production rate over geological time  

instead of using present-time production rates. Härtel et al. (2023) showed that the formulation

eU=1.05 [U ]+0.24 [Th ]+0.0012 [Sm ]  (A2)

gives accurate results for samples at 30<t<1000 Ma, but may be modified if the expected ages for a set of samples are 

consistently higher or constrained well-enough to calculate them more accurately.

The coefficients for eU are derived in Eq. (A3)–(A9). The starting point is the α-production equation:

N (α )=8
N A [  238U ]
M 238

(e λ238 t−1 )+7
N A [  235U ]
M 235

(e λ235 t−1 )+6
N A [  232Th ]
M 232

(e λ232 t−1 )+
N A [  147Sm ]
M 147

(e λ147 t−1 ) (A3).

N(α) is the number of alpha decays, NA is the Avogadro constant, 8, 7, 6 and 1 are the numbers of alpha particle produced by 

the  respective  decay  series,  M  are  the  molar  masses,  and  λ  the  decay  constants  and  the  symbols  in  brackets  the 

concentrations in units of mass. The constants used in the calculations are summarized in Table A1. Rescaling all summands 

to the terms of 238U gives:

N (α )=8
N A

M 238
(e λ238 t−1 )[(1+

7M 238 (e λ235 t−1 )
8M 235 (e λ238 t−1 )

w 235

w 238 ) [  238U ]+( 6M 238 (e λ232 t−1 )
8M 232 (e λ238 t−1 ) ) [  232Th ]+( M 238 (e λ147 t−1 )

8M 147 (e λ238 t−1 ) ) [  147Sm ]] (A4).

This equation can be simplified by replacing the weighted actinide concentrations in the square brackets by eU:

N (α )=8
NA

M 238
(e λ238 t−1) [eU ] (A5).

This results in:

eU=[(1+
7M 238 (e λ235 t−1 )
8M 235 (e λ238 t−1 )

w 235

w 238 ) [U ]w 238+( 6M 238 (e λ232 t−1 )
8M 232 (e λ238 t−1 ) ) [Th ]+( M 238 (e λ147 t−1 )

8M 147 (e λ238 t−1 ) ) [Sm ]w 147] (A6).

w235, w238 and w147 are the mass fractions of the 235U, 238U and 147Sm isotopes and the terms in square brackets are element 

concentrations. Equations (A7)–(A9) define the coefficients in (A1) for each element:

kU=w 238+
7M 238 (e λ235 t−1 )
8M 235 (e λ238 t−1 )

w 235 (A7),

kTh=
6M 238 (e λ232 t−1 )
8M 232 (e λ238 t−1 )

(A8),

k Sm=
M 238 (e λ147 t−1 )
8M 147 (e λ238 t−1 )

w 147 (A9).

Figure A1 shows how the normalization coefficients for each α-producing element change with respect to the age of a  

sample.
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Fig. A1. Time-dependence of the coefficients for U, Th and Sm 
(multiplied by 100) in the eU equation (2).

The time-dependence in Eqs. (A7)–(A9) also allows iterative age calculation for He and ZR dating. This requires calculating 

eU from equation (A2) and then alternating between calculating the age from Eq. (1), and recalculating eU from Eqs. (A1) 

and (A7)–(A9) until the solutions converge.

Table A1. Coefficients and constants used in the calculations. The atomic masses and mass abundances are based on Holden et al.  
(2018), the decay constants are from Jaffey et al. (1971), Steiger and Jäger (1977), and Holden (1990). The decay constants are  
rounded to the first significant digit of their uncertainty.

Constant Value

λ238 1.551 10-10 a-1

λ235 9.848 10-10 a-1

λ232 4.95 10-11 a-1

λ147 6.5 10-12 a-1

M238 238.05 g/mol

M235 235.04 g/mol

M232 232.04 g/mol

M147 146.91 g/mol

NA 6.022 1023 mol-1

w235 0.0072

w238 0.9928

w147 0.1466
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Appendix B: Units of daughter and parent concentrations

Daughter and parent concentrations can be expressed differently in external-detector-method FT and whole-grain He dating.  

Several criteria can be considered to find the right set of units for the D-P plot. 

In He dating, the pairs of daughters (He) and parents (eU from U, Th, Sm) can either be expressed in units of abundance and 

mass (e.g., fmol and ng) or as concentrations (e.g., nmol/g and µg/g). The difference between these units is the normalization 

by the mass of the analyzed grain. For non-normalized data, the size or mass of the analyzed grains will introduce variation  

into D and P that is unrelated to the age of the sample. In case the grains differ strongly in size, this may bias the pooled age  

towards the largest grains and the isochron age towards the smallest or the largest ones (see Appendix C). Rescaling the units  

of D and P to concentrations eliminates this potential bias. Furthermore, it is advantageous to correct the He concentration  

for α-ejection correction before calculating the age: correcting for α-ejection after age calculation introduces a positive bias  

to the age (e.g., Vermeesch, 2008). Therefore, the corrected He concentration should be used as daughter concentration for  

plotting. In external-detector FT dating, a similar question of units arises concerning the use of either the spontaneous- and  

induced-track counts or their track densities. In this case, it is advantageous to use the track densities instead of the counts to  

avoid bias towards big grains.

The specific units then determine the value of the constant c in Eq. (1). Re-arranging it to a daughter-production equation  

gives:

D=
1
c

(e λt−1 ) [P ] (B1).

For ZR dating, c results from equating Eq. (B1) and (A8):

c=
M 238

8N A

=4.9410−23g /α (B2).

Given input damage densities in 1016 α/g and eU concentrations in µg/g, c takes a value of 0.494 [10-16 µg/α].

For He dating,  the same relationship as for  ZR dating applies,  with the difference of He concentrations usually being 

reported in molar concentrations:

c=
M 238

8
=29.76 g /mol (B3).

If the input He concentrations are in in nmol/g and the eU concentrations in µg/g, c takes a value of 0.02976 [µg/nmol].

For FT dating, the constant c depends on measured experimental factors. This gives:

c=0.5λD ζ ρD (B4)

for  the  external  detector  method,  where  0.5  is  the  geometry  factor,  λD is  the  total  decay  constant  for  238U,  ζ  is  the 

proportionality factor determined from dating an age reference material, and ρD the dosimeter track density (see Hurford, 

2019). In this case, c is dimensionless because the spontaneous and induced-track counts densities are expressed in the same 

measurement units. 

Laser-ablation  FT  dating  requires  a  slightly  different  value  for  c  because  no  dosimeter  glass  is  involved  in  parent  

measurement (see Vermeesch, 2019):

c=0.5λD ζ (B5).

In this case, the dimension of c depends on the units of parent measurement, e.g. as U concentration or as element ratio, e.g.,  

U/Ca.
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Appendix C: Age calculation and reporting

C1 Mean ages

For  datasets  showing a  single  age,  it  is  attractive  to  report  the  arithmetic  mean age  due to  its  familiarity  and simple  

calculation. However, the mean age is inadequate for summarizing most thermochronological ages. First, calculating a mean 

from ages determined by a logarithmic age equation as in (1) ‘linearizes’ the age equation and causes a negative bias  

compared to applying the logarithmic age equation to a mean D/P ratio. Second, even when directly applied to the ratio, the  

arithmetic mean gives a biased age estimate, as can be shown from its relationship to the pooled age (see below; Pearson,  

1896; Härtel et al., 2022a):

tmean=t pooled (1−r DP v P v D+v P ² ) (C1).

vD and  vP are  the  variation  coefficients  (standard  deviation  divided  by  arithmetic  mean)  of  the  daughter  and  parent  

concentrations, and rDP is their correlation coefficient. Equation (C1) shows that for the ideal proportional D-P relationship 

(rDP = 1,  vD  = vP),  the mean and pooled ages are the same. In a less ideal  case,  the measurement error on the parent 

concentration increases vP and – as it is independent of the daughter concentration – weaken the relationship between D and 

P (decreasing rDP). This causes the mean age to increase with respect to the pooled age. It means that the mean age is biased  

towards higher ages under non-ideal daughter-parent relationships. This is especially problematic for the whole-grain He and  

laser-ablation FT methods, for which the analytical uncertainties are often too small to explain the observed age variation 

(e.g., Fitzgerald et al., 2006; Ketcham et al., 2018). Essentially, measurement error on the parent concentration creates a  

right-skewed age distribution, whose mean increases with increasing variance and is biased towards higher ages.

A more robust alternative for calculating a central tendency is the pooled age, i.e., treating all analyzed grains as a single  

grain by summing up all daughter and parent concentrations. The age is then calculated by substituting the ratio of these  

sums for D/P in Eq. (1):

t pooled=
1
λ

ln(1+c
∑ D

∑ P ) (C2).

Vermeesch (2008) pointed out that in the presence of outliers with high parent concentration or age, the pooled age is biased  

towards these grains. Also, Green (1981) and Galbraith and Laslett (1993) argued that the pooled age is not appropriate as 

sample age, if the age variation cannot be explained by the estimated uncertainties. However, in the case of clustered data 

(sect. 3.4.2) or those forming a linear trend with zero intercept (sect. 3.4.1) without outliers, the age variation is small so that  

the bias on the pooled age can be assumed to be negligible. The uncertainty on the pooled age can be estimated from error 

propagation of the single-grain uncertainties. For He and ZR dating, this gives:

s (t pooled )=t pooled √∑ s (D )2

(∑ D )
2 +

∑ s (P )2

(∑ P )
2 (C3),

with s representing the uncertainties on D, P, and t, respectively. FT dating requires to also take into account the uncertainty  

on c in Eq. (C2). For the EDM method, this gives (Galbraith, 2005):

s (t pooled )=t pooled √( s (ζ )
(ζ ) )

2

+
1

∑ N s

+
1

∑ N i

+
1

∑ N d

(C4).

Ns, Ni and Nd are the spontaneous, induced, and dosimeter track counts, respectively; ζ and s(ζ) are the calibration factor and 

its uncertainty.

For laser-ablation FT dating, the uncertainty on the pooled age is:

s (t pooled )=t pooled √( s (ζ )
(ζ ) )

2

+
1

∑ N s

+
∑ s (P )2

(∑ P )
2 (C5).
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If the ages from a dataset are over-dispersed due to the uncertainties not reflecting the variation in the data, it  may be  

advantageous to estimate the uncertainty of the pooled age directly from the variation in D and P concentrations (e.g.,  

Pearson, 1896):

s (t )=t √ v D2 +v P
2 −r DP v D v P
n

(C6).

vD and vP represent the variation coefficients of D and P, and rDP is the correlation coefficient for the D-P relationship. 

Equation (C6) may give a more realistic uncertainty estimate than those in Eq. (C3)-(C5) if the data are slightly over-

dispersed. For strongly scattered data, however, (C6) gives a large uncertainty, confirming that a single sample age may be  

meaningless.

C2 Isochron ages

For systematically offset data (sect. 3.4.3), the single-grain ages and the pooled age are offset in the same direction and give  

erroneously high or low ages (see sect.  2.3).  In this  case,  it  is  advantageous to calculate an isochron age by fitting a  

regression line to the D-P data and replacing D/P in Eq. (1) by the slope m:

t isochron=
1
λ

ln (1+cm ) (C7).

The uncertainty on the isochron age results from propagation of the slope’s uncertainty. This logarithmic age equation avoids 

the bias of the isochron age identified by Vermeesch (2008) for a linear age equation.

Typical  algorithms  for  fitting  isochrons  are  uncertainty-weighted  (York,  1968;  Kullerud,  1991)  and  robust  regression 

(Huber, 1981; Powell et al., 2020). Both of these assign weights to each data point: the former based on the measured  

uncertainty, the latter based on the uncertainty and the distance of each point from a linear ‘spine’ in the data. Robust 

regression is therefore useful for datasets in which single grains fall off well-defined trends. However, its benefits are limited  

in the case of many grains deviating from the trend. These regression algorithms, together with the classic least-squares 

regression are implemented in Incaplot.

In general, data at the low- and high-parent ends of the distribution and data with small uncertainties have a strong influence  

on the isochron age, making it sensitive for outliers. Its use should therefore be limited to cases of systematic offset in the D-

P relationship. Apart from the isochron age, the intercept may also contain important information for the interpretation and 

should be reported together with the age (sect. 3.4.3).

The mean square weighted deviation (MSWD; or the spine width for robust isochrons) of the isochron provides information 

on how well the isochron fits the data. An MSWD within the confidence interval (Table C1) indicates that the variation of  

the data about the isochron is within the range expected from the input uncertainties. A high MSWD outside the confidence  

interval (Table C1) denotes over-dispersed data, whose variation is not explained by the input uncertainties alone – this may  

either point to unidentified sources of error or inter-grain variation of true ages within a sample. For He and laser-ablation  

FT data, whose sources of error are not yet well understood, these metrics have to be used with caution.

A standard practice to account for over-dispersed data in geochronology is to expand the uncertainty of the isochron age,  

multiplying it by √MSWD  (e.g., Ludwig, 2012).
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Table C1. Confidence intervals (95 %) for the MSWD and the spine width for isochron fits (n-2 degrees of freedom). The MSWD 
intervals are based on Wendt and Carl (1991), the intervals for the spine width are from Powell et al. (2020).

MSWD Spine width

n Lower boundary Upper boundary Lower boundary Upper boundary

10 0.50 2.00 0.31 1.55

15 0.61 1.78 0.4 1.5

30 0.73 1.53 0.58 1.39

60 0.81 1.37 0.71 1.28

C3 Age mixtures

Apart from the simple cases, discrete or continuous mixtures of ages may occur. There are two strategies to deal with  

discrete age components in a sample (sect. 3.4.5): mixture modeling (e.g., Galbraith and Laslett, 1993; Galbraith, 2005;  

Vermeesch, 2019), or splitting the data into different groups and calculating sample ages for each of them.

A continuous age mixture occurs if a sample contains grains with a wide range of kinetic properties responding differently to  

same thermal history (e.g., Vermeesch, 2019) – each grain then acts as single thermochronometer. An example could be the  

apatite FT age in a monotonously cooled plutonic rock with grains of different Cl/F ratio. In this case, the intra-sample age  

variation reflects both, the measurement error and the true-age variation between grains. This distribution is best described 

by a ‘random effects model’ and the age to be reported is the central age (Galbraith and Laslett, 1993) – the dispersion  

parameter describes the variation in true ages. Note however, that it is necessary to relate the single-grain age to a kinetic  

parameter such as grain size, mineral chemistry, or measured radiation damage (Fig. 4a) to justify the use of a continuous  

mixture of ages. Galbraith (2005) and Vermeesch (2019) provide further discussion and calculation algorithms of the central 

age for  FT dating,  and Vermeesch (2008) for  He dating.  For  complex data  that  cannot  be described by a  discrete  or  

continuous mixture, we suggest to report the range of single-grain ages, which requires no additional assumptions.
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