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Abstract. The Multiple-Diffusion Domain (MDD) model empirically describes the diffusive behavior of noble gases in some

terrestrial materials and has been commonly used to interpret 40Ar/39Ar stepwise degassing observations in K-feldspar. When

applied in this manner, the MDD model can be used to test crustal exhumation scenarios by identifying the permissible thermal

paths a rock sample could have undergone over geological time, assuming the diffusive properties of Ar within the mineral

are accurately understood. More generally, the MDD model provides a framework for quantifying the temperature-dependent5

diffusivity of noble gasses in minerals. However, constraining MDD parameters that successfully predict the results of step-

heating diffusion experiments is a complex task and the assumptions made by existing numerical methods used to quantify

model parameters can bias the absolute temperatures permitted by thermal modeling. For example, the most commonly used

method assumes that no domains lose more than 60% of their gas during early heating steps [Lovera et al. 1997, Geochimica

et Cosmochimica Acta, 61, 3171–3192]. This assumption is unverifiable, and we show that Lovera et al.’s (1997) procedure10

may bias predicted temperatures towards lower values when it is violated. To address this potential bias and to provide greater

accessibility to the MDD model, we present a new, open-source method for constraining MDD parameters from stepwise

degassing experimental results, called the “MDD Tool Kit.” This software optimizes all MDD parameters simultaneously and

removes any need for user-defined Ea or regression-fitting choices used by other tools. In doing so, this new method eliminates

assumptions about the domain size distribution. To test the validity of our thermal predictions, we then use the MDD Tool Kit15

to interpret 40Ar/39Ar results from the Grayback Fault, AZ, USA. Although the resulting thermal histories are consistently ∼
60 – 75 °C higher than those found in previous studies, they agree with independent observations from apatite fission track,

zircon fission track, and (U-Th)/He.

1 Introduction

40Ar/39Ar thermochronology is a valuable tool for studying Earth’s crustal exhumation because it constrains a mineral’s con-20

tinuous thermal history through geologic time (McDougall and Harrison, 1999). While 40Ar/39Ar geochronology was initially

developed to quantify crystallization timing of rapidly cooled igneous rocks (Turner, 1968), its application to thermochronol-

ogy did not begin in earnest until Dodson’s (1973) quantitative description of closure theory, which allowed one to determine

when a mineral cooled below a mineral-specific “closure temperature” for radiogenic 40Ar retention (Reiners, 2005). Dur-
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ing this early period of thermochronology research, minerals and isotopic systems with disparate closure temperatures were25

combined to constrain a given rock’s permissible thermal histories (e.g. Wagner, 1977). While this approach yielded valuable

insight into Earth’s surface processes (McDougall and Harrison, 1999), it requires that multiple mineral phases—which are

not always present—to coexist in a sample. Further, the thermal histories inferred from this technique are discontinuous, with

one age-temperature measurement for each mineral phase, thus limiting the ability to quantify cooling rates at specific times

(McDougall and Harrison, 1999), and potentially introducing biases. Additionally, this approach does not fully accommodate30

the complexity of the diffusive properties observed in some minerals (Zeitler, 1987; McDougall and Harrison, 1999).

Since the late 1960s, it had been understood that complex retention properties pose challenges for interpreting the thermal

histories of some samples. More specifically, the results of some stepwise degassing experiments were not consistent with

volume diffusion from a single domain in some minerals, requiring a new interpretative framework (Zeitler, 1987; Lovera

et al., 1989). Progress came first with Zeitler’s (1987) observations in K-feldspar that the anomalous behavior seen in their35
40Ar/39Ar age spectra and associated Arrhenius plots could be explained by outward diffusion of 39Ar from several “domains”

(distinct, non-interacting geometries in which volume diffusion takes place) of varying sizes simultaneously. A formalism

for this model, called the Multiple-Diffusion Domain (MDD) Model, was then described by Lovera et al (1989). This model

enabled more nuanced interpretations of sample-specific diffusion kinetics—and thereby thermal histories—of minerals.

While this model has received criticism (e.g. Villa, 1994; Parsons et al., 1999; Popov and Spikings, 2020; Popov et al.,40

2020a, b; Spikings and Popov, 2021), it has largely been adopted by the thermochronology community since the 2000s due

to its ability to constrain time-temperature (t-T) histories that are consistent with both an observed 40Ar/39Ar age spectrum

and calculated diffusion kinetics of a given sample (Reiners, 2005; Harrison and Lovera, 2014). However, we show that the

method used by Lovera et al. (1997) to tune the MDD model parameters to match the results of a step-heating diffusion

experiment potentially introduces a systematic bias towards colder temperatures through geologic time. This was recognized,45

but not addressed, at the time of their publication, likely due to insufficient computing power to resolve the issue (Lovera et al.,

1997).

2 The MDD Model

The MDD model is best understood through analogy to volume diffusion through a single domain. In this simple case, the

temperature-dependent diffusivity is described by50

D(T )

a2
=

D0

a2
∗ e

−Ea
RT (1)

where T is the absolute temperature (K), D is diffusivity at T in (cm2· sec−1), D0 is diffusivity at infinite T , Ea is activation

energy (kJ·mol−1), R is the gas constant (kJ·mol−1·K−1), and a is the radius of the diffusion domain (cm) (see Table 1 for

variable definitions).

This relationship is typically determined empirically for noble gas diffusion in minerals through a stepwise degassing dif-55

fusion experiment. In such experiments, the diffusant is first produced in-situ by a proton or neutron irradiation to ensure a
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homogeneous initial distribution. The sample is then placed under static vacuum where it is repeatedly heated to a known

temperature, and the quantity of the diffusant is measured (Fechtig and Kalbitzer, 1966; McDougall and Harrison, 1999). By

assuming a geometry for the diffusion domain, the fractional loss at each step can be used to calculate a corresponding D
a2

with the equations of Fechtig and Kalbitzer (1966) or Crank (1975). Ginster and Reiners (2018) summarized and propagated60

measurement uncertainties through these equations and we use their forms in this work (Table 2).

When consistent with volume diffusion through a single diffusion domain, a step-heating experiment will produce a linear

Arrhenius relationship between calculated values of log(D
a2 ) and 1

T . In these cases, a linear regression can then be fit to the

results to determine Ea and D0

a2
0

(Lovera et al., 1997) for a sample. Several mineral-diffusant pairs such as 3He in apatite and
3He in olivine exhibit such behavior (Shuster et al., 2004).65

However, not all minerals exhibit diffusive behavior consistent with volume diffusion from a single diffusion domain. The

diffusive behavior of some minerals appears to be more consistent with diffusion from several, non-interacting domains of

varying sizes, within a given mineral, diffusing simultaneously. This behavior was later identified and roughly quantified by

Gillespie et al. (1982) and Zeitler (1987) in K-feldspar, orthoclase, and microcline, and then formalized by Lovera et al. (1989).

In contrast to the single diffusion domain model, the MDD model can be imagined as a series of non-interacting diffusion70

domains of varying diffusive length scale (e.g., different radii, a) that all diffuse simultaneously. The choice of geometry for

the domains is somewhat arbitrary, as it remains unclear what these diffusion domains physically represent in a mineral sample

(Harrison and Lovera, 2014; Parsons et al., 1999). Some authors use a plane sheet, while others prefer a spherical or cylindrical

geometry. Regardless of this choice, it is assumed that each diffusion domain has the same geometry, Ea, and D0. Therefore,

a diffusion domain can be described completely by three parameters: (i) Ea (common to all domains), (ii) its pre-exponential75

term (D0

a2 )i and (iii) the proportion of the total gas it contains (ϕ). Thus, a multiple-diffusion domain model with n domains

has 2n− 1 free parameters because
∑n

i=1ϕn = 1.

An inherent challenge in applying this model is that each of these 2n− 1 parameters need to be optimized to accurately

predict the results of a given diffusion experiment. Because authors using the MDD model fit as many as 10 domains, this

optimization is regularly performed on 19-dimensional vectors or larger, making the exercise non-trivial.80

2.1 Critiques of the MDD Model

Validating the MDD model’s assumptions is beyond this paper’s scope; here we briefly review the assumptions and their

prior critiques. The foundational assumption of the MDD model is that the transport of 40Ar within minerals over geologic

time occurs primarily by volume diffusion. This assumption predicts that low 40Ar concentrations should exist near the outer

edge of a crystal (i.e., for a boundary condition of nearly zero 40Ar concentration external to the crystal), and that higher85

concentrations should exist towards the mineral interior, translating to apparently younger and older 40Ar/39Ar ages in those

locations, respectively. Studies have documented such spatial correlations (Flude et al., 2014). However, others have shown

that polyphasic samples can violate this expectation (Popov and Spikings, 2020); such minerals are not suitable candidates for

MDD modeling.
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It is also assumed that diffusive behavior observed during laboratory step-heating experiments is the same as under natural90

conditions over geologic time. The MDD model proposes that the diffusive behavior of Ar within some minerals can be de-

scribed by numerous, non-interacting, infinite sheets simultaneously diffusing within the same mineral. As evidence, Lovera

et al. (2002) argued that a correlation between the 40Ar/39Ar age spectra and log(r/r0) plots (see Lovera et al. (2002), for de-

scription of log(r/r0) plots) validates, or is at least consistent with, these assumptions. They find, however, that only ∼ 40% of

K-feldspars demonstrate sufficient correlation for MDD modeling and suggest that the remaining samples have been affected95

by recrystallization or other mineral inclusions (Lovera et al., 1997). Other authors have gone further, asserting that recrys-

tallization within minerals is nearly always responsible for this behavior (Popov and Spikings, 2020; Popov et al., 2020a, b;

Spikings and Popov, 2021). While complex mineralogy is likely responsible in some cases, detailed petrologic examinations

and a strong correlation between an 40Ar/39Ar age spectrum and a log(r/r0) plot can increase confidence that the MDD model

framework is applicable to an individual sample. Indeed, such petrologic investigations are commonplace in MDD studies of100

K-feldspars (e.g. Wong et al., 2023).

Others have questioned the primary assumption that Ar diffusion under laboratory conditions functions the same way as

natural diffusion over geologic time by suggesting that mineral structures may be altered during diffusion experiments. Popov

et al., (2020a) observed the development of cracks within crystals during some experiments. However, Lovera et al. (1993)

performed a double-irradiation experiment where they measured the diffusion kinetics of a grain up to ∼ 850 ◦C, reirradiated105

it and then successfully reproduced the diffusion kinetics of the first experiment, indicating that cracking or other annealing

effects were not a primary cause of MDD behavior in that sample. The Lovera et al. (1993) study also indicated that the

diffusion kinetics of the mineral were not altered by heating during the diffusion experiment.

Some further MDD-model assumptions are made which require knowledge of the physical structure of the domains. For

example, it is assumed that Ar is instantaneously removed from the mineral after reaching a domain boundary, that diffusion110

in each domain is isotropic, that the domains are all formed at the same time, and that the parent isotope, 40K, is uniformly

distributed within each domain (Parsons et al., 1999; Lovera et al., 1989). Because it is unclear what the diffusion domains

physically represent within a mineral, these assumptions are currently unverifiable. Although it is unsatisfying that a physical

representation of the diffusion domains is not clearly identifiable within K-feldspar and other minerals, the MDD model need

not be rejected as a tool for thermochronology. Indeed, ample evidence suggests that the MDD model reliably predicts thermal115

histories supported by independent thermochronological data (e.g. Warnock and Zeitler, 1998; Reiners and Farley, 1999; Axen

et al., 2000; Spell et al., 2000; Kirby et al., 2002; Reiners et al., 2004; Shirvell et al., 2009). Though empirical, the MDD model

remains a useful tool for constraining such histories through geologic time.

3 Existing Optimization Methods

The Lovera et al. (1997) method for identifying MDD model parameters is the only published algorithm for this purpose that120

we are aware of and has been used in many studies (e.g. Harrison et al., 1995; Quidelleur et al., 1997; Grove et al., 2003;

Weirich et al., 2012; Wong et al., 2023). The routine begins by defining a reference domain which is used to calculate an Ea by
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fitting an uncertainty-weighted linear regression to the log10(
D
a2 ) values resulting from a subset of the low temperature heating

steps in an Arrhenius plot corrected for excess Ar released from fluid inclusions (Harrison et al., 1994); the resultant Ea is

assumed applicable to all domains. This is done because—even in samples exhibiting MDD-like behavior—these diffusivities125

tend to approximate a line (Figure 1A).

To determine the number of points to include in the uncertainty-weighted linear regression, the lowest temperature heating

steps are sequentially added to the regression. After adding each step, a chi-squared misfit static is calculated and is then used

to calculate a goodness-of-fit probability (q) (Lovera et al., 1997). These relationships are described as follows:

χ2
lovera =

N∑
i=1

(
log10(

D
a2 )i − log10(

D̂
a2 )i

σi
)2 (2)130

q = gammq(
N − 2

2
,
χ2

2
) (3)

where gammq is the incomplete gamma function, (D
a2 )i is the observed pre-exponential term, ( D̂

a2 )i is the modeled pre-

exponential term, σ is the uncertainty on the observed pre-exponential term, and N is the number of steps included (Lovera

et al., 1997; Press, 2007). This calculation is repeated until the value of q ·N is maximized. Once the Ea is determined from135

the above process, this value is held fixed while a Levenberg-Marquardt method (Press, 2007) is used to adjust the gas fraction

(ϕ) and log10(
D0

a2 ) for each domain to minimize the above chi-square quantity. The reader is directed to Appendix B of Lovera

et al. (1997) and the referenced sections of Press (2007) for additional information.

While this routine is generally robust and capable of accurately quantifying Ea in synthetic data experiments where the

kinetics are defined, it fails to do so when the smallest domains lose greater than 60% of their gas in early heating steps (Figure140

1). Thus, use of this routine makes the implicit assumption that no domains diffuse most of their gas during the initial heating

steps. When this assumption is violated, the regression will overestimate the Ea and log10(
D0

a2
0
) (Figure 1). Because there is

currently no way to know the domain size distribution a priori, it is not possible to know whether this assumption is valid for

any given sample (Lovera et al., 1997).

Furthermore, Lovera et al. (1997) found evidence that the variability of predicted Ea values from different aliquots of the145

same mineral decreased when they were able to use a higher percentage of the total gas released in their linear regressions.

Simply put, the more gas included in the calculation, the less variation there was in predicted Ea. This observation suggests

that a routine which maximizes the fraction of 39Ar used in the fitting exercise might lead to more precise estimates of diffusion

kinetics.

4 The MDD Tool Kit Approach150

With the increased computational power since the publication of the original routine for optimizing these models, we apply

SciPy’s implementation of the differential evolution algorithm to fit all the diffusion kinetics parameters simultaneously (Storn
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and Price, 1997; Lampinen, 2002; Qiang and Mitchell, 2014; Virtanen et al., 2020). This algorithm is a population-based

genetic algorithm for optimizing over continuous search spaces in high dimensions with non-linear and non-differentiable

misfit functions (Storn and Price, 1997).155

4.1 Differential Evolution

Our implementation of SciPy’s differential evolution is a method for iteratively improving a randomly selected "population"

of guesses until the best-fitting diffusion kinetics are found (Figure 2). The algorithm improves these guesses by combining

elements of the most successful vectors with those remaining. In this case, success refers to the value of a misfit statistic

calculated between the guess’s forward-modeled gas releases and the observed results. Through this process, each successive160

generation achieves a misfit equal to or lower than the previous one.

We apply two such misfit statistics to the data analyzed in this study, one error weighted, χ2, and another where all points are

weighted equally (%frac). Our χ2 misfit accounts for the uncertainty on the 39Ar measurements by performing its calculations

in units of moles so that the measurement uncertainty can readily be included. This is accomplished by multiplying the forward-

modeled gas fractions (Fi) by the total number of moles released during the experiment. Because this value is not directly165

measured, we add it as a parameter to our model (M̂tot) and allow our optimization algorithm to solve for it when using this

misfit statistic. We allow the model allowed to choose any M̂tot value within 3σ of the observed value. Our χ2 misfit statistic

is thereby defined as follows:

χ2 =

N∑
i=1

(
Mi − F̂iM̂tot

σi
)2 (4)

By contrast, %frac weights all heating steps equally, regardless of their associated measurement uncertainty. This misfit reports170

a percent difference between the measured and modeled gas fraction released at each step and is defined as follows:

%Frac =

N∑
i=1

Fi − F̂i

Fi
(5)

where Fi is the measured gas fraction at a given heating step, and F̂i is the modeled gas fraction at a given heating step.

Regardless of which misfit statistic is used, differential evolution optimizes the parameters in the same way,

and begins by generating its initial population. Given a vector of parameters to be tuned for an n-domain model,175

X(M̂tot,Ea,
D0

a2 (i,i+1,...,n)
,ϕ(i,i+1,...,n−1)), an initial population of candidate vectors is quasi-randomly generated using the

Latin Hypercube method (Iman et al., 1981). These vectors ideally capture the full range of the sample space. To avoid user

bias, we prescribe search ranges much larger than we imagine realistic for each variable based on prior work (Table 3; Lovera

et al., 1997). Lovera et al. (1997).

From here, the improvement process is iterative. To begin, a target vector, Xi, which is to be potentially improved, is180

selected. Next, a multi-step process attempts to replace Xi with an improved offspring vector, X
′

i, as defined by the misfit

function, g. First, the best-fit vector, Xbest (i.e. lowest value of g(Xi)), in the current population is copied and modified by

adding a scaled value of the difference between two other randomly selected vectors in the population (Xr1 and Xr2 ) as
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follows:

U i =Xbest +β(Xr1 −Xr2) (6)185

Here, β is a uniformly random value between 0.5 and 1.0. Next, U i is combined with Xbest to produce the offspring vector

X
′

i. This combination is performed by, for each element of U i, sampling a uniform distribution on [0,1) and replacing the

element of Xi with the corresponding element of U i if the value is less than 0.7, the default recombination constant (see

Storn and Price, 1997; Virtanen et al., 2020). In this roundabout way, the trial vector’s generation is informed by the existing

population.190

At this point, Xi has been generated, and if g(X ′
i)< g(Xi), Xi is replaced with X ′

i in the population. Once the above

improvement steps have been performed for every vector in the population, we advance a generation, and population metrics

are calculated. Based on the results of these metrics, either another generation is calculated, or the algorithm returns the best-fit

vector from the population.

5 Synthetic Data Experiments195

Synthetic, step-heating diffusion experiments allow for the validation of optimization methods like those described above. For

a given set of diffusion kinetics parameters, one can calculate the expected amount of moles released at each step, and these

release fractions can then be used as an input to the optimization algorithm to search for the known diffusion kinetics param-

eters. If the correct parameters are returned, the optimization algorithm is validated. To evaluate the ability of our differential

evolution routine (Storn and Price, 1997) in comparison to existing methods (Lovera, 1992; Lovera et al., 1997), we present200

the results of two such synthetic data experiments (Figure 1).

5.1 Synthetic Data Methods

In calculating the number of moles released for each step of a given heating schedule, two assumptions were made. First, Ea

was assumed common to all domains (Lovera et al., 1997). Second, we required that the ln(D0

a2 )i values of all domains differed

by at least 0.25 natural log units. For the purposes of this experiment, any two domains with ln(D0

a2 )i values differing by less205

than 0.25 were considered to be well represented by a model with one fewer domain.

To guide our choices for the synthetic heating schedule and prescribed diffusion kinetics parameters, we used existing

literature on K-feldspar diffusion experiments (e.g. Lovera et al., 1997). We begin by defining Experiment A where the heating

schedule and Mtot were selected from Lovera et al.’s (1997) N13 K-feldspar experiment because this experiment has been

published many times (e.g. Lovera et al., 1997; Harrison and Lovera, 2014; Reiners et al., 2017), and because it represents a210

typical K-feldspar diffusion experiment. Ea was prescribed by randomly sampling from a gaussian distribution with a mean

of 192.5 kJ·mol−1 and a σ of 25, mirroring Lovera et al.’s (1997) database of K-feldspar Ea values. The ln(D0

a2 )i values were

selected uniformly randomly from a range of 5-25 natural log units. Finally, the ϕi values were prescribed randomly, requiring
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only that the sum of the gas fractions equal 1. The largest of these ϕi values were intentionally placed in the largest domains,

reflecting common K-feldspar behavior.215

Experiment B was then designed to intentionally violate the assumption made by Lovera et al.’s (1997) fitting algorithm

that no domain should significantly degas during early heating steps. This was done by taking the kinetics from experiment A,

removing 1% of the total gas from each domain, and then placing this gas in a new, highly diffusive domain with ln(D
a2 )1 =

23.4, and ϕ1 = 0.01.

To calculate the fractional releases and number of moles released after each heating step, we began with the equations for220

plane sheet geometry outlined in Ginster and Reiners (2018), which relate each heating step’s duration, temperature, and the

domain’s ln(D0

a2 )i to a fractional release from that domain ((Fdom)i). To determine the total gas fraction released for a sample

from each heating step (Fi), and not just for a specific domain ((Fdom)i), we summed the contributions from each domain

as follows: Fi =
∑n

i=1(Fdom)iϕi. In finding the number of moles released at each step, we calculated Mi = Fi ·Mtot, where

Mtot is the total number of atoms measured in Lovera et al.’s (1997) N13 K-feldspar experiment. To approximate uncertainties,225

we simply multiplied the percent error on the 40Ar/39Ar age from each step of the N13 experiment by Mi.

Using these synthetic degassing datasets, we attempted to solve for the prescribed diffusion kinetics of both experiments

using our MDD Tool Kit optimization method (Lovera et al., 1997). Because K-feldspar is known to melt above 1100 ◦C (Luo

et al., 2014), we excluded all calculated heating steps above 1100 ◦C in our misfit calculations.

5.2 Synthetic Data Results and Discussion230

The MDD Tool Kit method successfully quantified the diffusion kinetics of both Experiment A and B, returning the correct Ea

to within 0.02 kJ·mol−1 (Table 4, Figure 1). While the MDD Tool Kit routine did not perform as well in capturing ϕ6−8 this

is unsurprising since a higher percentage of the gas in those domains was released during the high-temperature steps excluded

from the fitting exercise.

Lovera et al.’s (1997) algorithm correctly quantified the Ea of Experiment A, but it underestimated that of Experiment B235

by 9% (Table 4). While we did not implement a Levenberg-Marquardt method (Press, 2007) to solve for each ln(D0

a2 )i and ϕi

value, these parameters could not be correct given the incorrectly-predicted Ea.

Our synthetic experiment results clearly demonstrate that Lovera et al.’s (1997) algorithm can underestimate Ea (Figure

1). Any sample that contains at least one domain which loses a significant portion of its gas during initial heating steps is

prone to this bias. Importantly, this error is not bi-directional; the Lovera algorithm will systematically underestimate Ea. In240

contrast, because the optimized Ea does not depend on a linear regression, but instead fits Ea as a free parameter, the MDD

Tool Kit method appears to avoid this bias. This finding suggests that the use of the MDD Tool Kit to reanalyze any MDD-

model-thermochronology study based on the Lovera approach would either produce similar results, or systematically higher

temperatures through geologic time.
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6 Case Study: Wong et al.’s (2023) Field Validation of the MDD Model245

To assess the accuracy of the MDD model, Wong et al. (2023) conducted a field validation study of K-feldspar 40Ar/39Ar

thermochronology at the Grayback normal fault block, AZ, USA. This field site is well studied, and several independent

thermochronometers have been used here to measure geothermal gradients for application to models of continental extension

(Howard and Foster, 1996; Wong et al., 2015).

The field validation primarily relies on four samples from various stratigraphic positions within the Tea Cup pluton, which250

intruded into the overlying ∼ 1.4 Ga Ruin Granite at ∼ 70 Ma (Banks et al., 1972). Samples originally from ∼ 12 km below

the paleo-surface are accessible since these formations were tilted by ∼ 90◦ to the east during mid-Oligocene extension of

the Greyback Fault (Banks et al., 1972; Wong et al., 2023). The straightforward stratigraphy and availability of independent

thermochronometry data make this location optimal for the validation study.

Wong et al. (2023) found good agreement between their best-fitting 40Ar/39Ar t-T results and existing estimates of the255

paleo-geothermal gradient prior to mid-Oligocene extension (Howard and Foster, 1996; Wong et al., 2015, 2023). A secondary

assessment was provided by fission track, and (U-Th)/He ages in zircon and apatite. Although the observed ages generally do

not directly overlap in time with the K-feldspar MDD histories, the results do not preclude one another. In total, their study

appears to validate the MDD model. To determine whether the MDD Tool Kit method of fitting diffusion kinetics is consistent

with these independent observations, we reanalyze their 40Ar/39Ar stepwise degassing data using our new method.260

6.1 Methods

6.1.1 Diffusion Kinetics

In determining the diffusion kinetics of each sample, Wong et al. (2023) used a modified version of Lovera et al.’s (1997)

fitting algorithm. Their primary modification was to fit an unweighted linear regression to the beginning heating steps from

each sample to determine Ea and ln D0

a2
0

. Instead of using the goodness-of-fit metric of Lovera et al. (1997), Wong et al. (2023),265

varied how many heating steps they included in the regression, and explored the resultant effect of Ea on the constrained t-T

path. They then chose the resultant Ea which most closely agreed with independent thermochronological data, noting that

the choice of Ea mainly affected the absolute temperature predictions, and not the form of a t-T history. Although this was a

routine choice given the tools available at the time of their publication, such user-defined choices may introduce bias, a concern

that the MDD Tool Kit inherently circumvents.270

In our application of the MDD Tool Kit to Wong et al.’s (2023) diffusion experiment results, we apply both the χ2 and

%frac misfit statistics defined above. As previously described, heating steps greater than 1100°C were excluded from our

misfit calculations.
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6.1.2 Thermal Paths

When applying K-feldspar MDD modeling, a number of thermal histories are generated using a Monte Carlo-approach to275

predict an 40Ar/39Ar age spectrum for each prescribed t-T path and using the sample’s apparent diffusion kinetics. A misfit is

then calculated between the modeled and measured 40Ar/39Ar age spectra to determine the fitness of a particular t-T path.

In our study, we generated 30,000 thermal paths per sample and calculated radiogenic 40Ar production and diffusive loss for

each t-T path using a Crank-Nicholson discretization of the diffusion equation for an infinite sheet geometry (Crank, 1975).

We then focus our analysis on the 100 best-fitting t-T paths for each sample based on the following misfit statistic:280

χ2
Age =

1

N
·

N∑
i=1

(
(AgeMeasured)i − (AgeModeled)i

(σAgeMeasured
)i

)2 (7)

where N is the number of steps included in the thermal modeling, and σ is the reported uncertainty on the final 40Ar/39Ar age.

As is common practice, Wong et al. (2023) ignored measurements thought to be contaminated with excess 40Ar (40ArE; Lovera

et al., 2002) for comparison with their results, we exclude the same data.

6.2 Results285

Our predicted Ea values (Tables 5 – 7, Figure 3), regardless of misfit statistic, are systematically higher than those found

by Wong et al. (2023) and are at the upper range of those published in Lovera et al.’s (1997) database of K-feldspar diffusion

experiments (Figure 1). Given the bias inherent to the regression-fitting method (Figure 1), it is not surprising that our predicted

Ea values are systematically higher, since the values of Ea were optimized using the entire dataset, rather than prescribed by

linear regression to a subset of user-defined heating steps tuned to agree with independent thermochronological data. And,290

although we defined a large search space for Ea, we find a smaller inter-sample range in predicted Ea than published by Wong

et al. (2023), consistent with Lovera et al.’s (1997) observation that the variation of K-feldspar Ea values decreases when more

gas is included in the Ea calculation (Tables 5 – 7, Figure 3).

Despite this finding, the choice of misfit statistic appears to influence the calculated diffusion kinetics of a given sample.

In our analysis, choosing a χ2 misfit instead of the %frac misfit statistic led to intra-sample differences in the predicted Ea295

between 4.4 – 22.4 kJ·mol−1 (Tables 8 and 5, respectively). For example, there is a 22.4 kJ·mol−1 difference between the best-

fit Ea value for sample GR-2 when using the χ2 misfit compared to the %frac misfit (Table 6). This disparity may provide an

estimate of the uncertainty on the Ea, with the true Ea lying anywhere between those values. We recommend that investigators

using the MDD_toolkit consider model fits generated by both the χ2 and the %frac misfit statistics as equally plausible, given

the lack of justification for choosing one over the other.300

An additional noteworthy model behavior emerged during our analysis. In three cases, the MDD Tool Kit identified at least

one retentive domain that exhibited no gas diffusion throughout the simulated experiment, as indicated in Tables 4 – 7. The total

ϕ value(s) of these domains typically equaled the gas quantity contained in the heating steps above 1100 ◦C. While the result

that no gas diffused from the most retentive domain (or domains) during the simulated experiment may appear to suggest a poor
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model choice, this is not necessarily the case. Since K-feldspar begins to melt above 1100 ◦C, the MDD model is simply not305

applicable above this temperature. Furthermore, any domain retaining all its gas during simulation will yield identical release

fractions, thereby making the model’s fit insensitive to retentivities above a specific threshold (assuming all other parameters

remain constant). Given our deliberate inclusion of a wide search space for each diffusion parameter and the stochastic nature

of our optimization algorithm, such behavior is to be expected.

6.3 Reinterpretation of Field Calibration310

Although our reinterpretation of these data largely finds t-T paths of similar form to those of Wong et al. (2023), our absolute

temperature predictions are about 60 – 75 ◦C higher (Figure 4). To demonstrate that our approach yields results that are equally

permissible, we compare them to the independent t-T constraints that exist at the Grayback fault.

Wong et al. (2023) proposed three criteria to assess the validity of an MDD model: (i) The thermal histories should be

consistent with the stratigraphic heights of the samples, (ii) The form of the predictions should match prior work, including the315

timing, rate, and duration of cooling events, and (iii) The absolute temperatures should agree with those predicted by previous

estimates of the pre-extensional geothermal gradient (Howard and Foster, 1996; Wong et al., 2015). The constrained t-T paths

shown in Wong et al., (2023) and our re-analysis of the same dataset using the MDD Tool Kit both meet these criteria (Figure

4).

The predicted t-T paths for all four samples generally align with their respective stratigraphic positions; samples from higher320

stratigraphic heights reflect the oldest portions of the thermal histories (Figure 4). Our findings reveal that the sample situated

at the highest stratigraphic level (GR-1) cooled below its Ar closure temperature around ∼ 55 Ma, indicating relatively rapid

cooling between ∼ 70 – 55 Ma. This trend is consistent with Howard and Foster’s (1996) interpretation that the most shallow

depths of the pluton experienced rapid cooling as equilibrated with ambient temperatures.

MDD results for the next sample (GR-2), slightly deeper than GR-1, suggest a gradual cooling rate of approximately ∼ 5325
◦C/Ma between ∼ 55 – 30 Ma, consistent with the prediction of ∼ 4 – 6 ◦C/Ma by Howard and Foster (1996).

The two samples at the lowest stratigraphic levels, GR-27 and GR-8, exhibit similar temperature histories. The median

pathway for GR-27 calculated with the χ2 misfit indicates slightly higher temperatures compared to GR-8, despite the latter

occupying a slightly lower stratigraphic depth. However, given that their thermal pathways are within 1σ of each other, it

suggests that this technique may not be capable of resolving subtle differences between these samples. Moreover, the presence330

of significant ArE (Lovera et al., 2002) in sample GR-8 introduces additional uncertainty into its Paleogene thermal history.

Despite the presence of ArE (Lovera et al., 2002), both of these deep stratigraphic samples demonstrate rapid cooling com-

mencing at around ∼ 27-28 Ma, consistent with the predicted timing of this cooling based on apatite fission track (AFT) ages

(Howard and Foster, 1996).

Finally, all four of our newly-calculated MDD models predict similar absolute temperatures to those estimated of the paleo-335

geothermal gradient along the Tea Cup pluton prior to onset of extension along the Grayback fault. The paleo-gradient has

been estimated from temperature predictions made at 27 Ma at a variety of paleodepths using AFT (Howard and Foster, 1996).

While our estimates are consistently warmer than those calculated by Wong et al. (2023), they are still within the uncertainty
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bounds of the predicted thermal gradient (Figure 5). The overall agreement between the rates and timing of cooling, as well as

the relationship between relative temperatures over time and the samples’ stratigraphic order, indicates that the MDD Tool Kit340

generates t-T results that are not excluded by the existing geologic and independent thermochronology data.

7 Conclusions

The Multiple Diffusion Domain model for 40Ar/39Ar thermochronology is valuable because it allows one to constrain a min-

eral’s continuous thermal history through geologic time (McDougall and Harrison, 1999). However, the methods previously

used to empirically fit stepwise degassing data have required unverifiable assumptions about the grain size distribution of a345

sample. Further, the commonly used method of quantifying Ea by fitting an uncertainty-weighted linear regression to the

lowest-temperature degassing steps of an experiment does not reliably return the correct values, but instead inadvertently in-

troduces a user bias. When this method fails to predict the correct value, it underestimates the true value. To address these

limitations, we present a new numerical routine that does not require fitting a linear regression to a user-defined subset of

heating steps to quantify a sample’s Ea. Our new method utilizes a differential evolution algorithm to robustly search the350

MDD-parameter space and solve for all parameters simultaneously. The code, entitled MDD Tool Kit, is open-source, pip-

installable, and available on GitHub. To evaluate its validity, we apply this new method to reinterpret the dataset published in

Wong et al.’s (2023) field validation of the 40Ar/39Ar K-feldspar MDD system at the Grayback fault. The diffusion kinetics

fit by the MDD Tool Kit predict t-T paths that are consistent with independent observations and geologic constraints, and on

average, 60 – 75 °C warmer than those previously published. We attribute this temperature difference to biases potentially355

introduced by the previously used modeling strategies.

Code availability. The code released in this publication is available at our github link: https://github.com/dgorin1/mddtoolkit

Appendix A: Supplemental Tables

For completeness, we include the optimization inputs used to reanalyze the experiments performed by Wong et al. (2023)

(Tables A1–A4).360
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Figure 1. A. Arrhenius plot resulting from synthetic Experiment A. Gray Circles show the expected D
a2 values calculated from the pre-

determined diffusion kinetics (Table 4), and transparent gray circles show the heating steps excluded from the fitting exercise. Black circles

represent the values predicted by the MDD Tool Kit method. B. Same as A. except showing the expected D
a2 values calculated from the

pre-determined diffusion kinetics for Experiment B. C. Value of q ·N as the number of points included in the uncertainty-weighted linear

regression increases for Experiment A. Lovera et al.’s (1997) algorithm for determining the Ea maximizes the value of this function to

determine the appropriate number of points to include. The black dot indicates this value. D. The predicted Ea as one increases the number

of points included in the unweighted linear regression. The black point indicates the Ea selected by Lovera et al.’s (1997) algorithm for

Experiment A. In this case, the algorithm selects the correct Ea. E. Same as panel C, but showing the results for synthetic Experiment B. F.

Same as panel D but for synthetic Experiment B. In this case, Lovera et al.’s (1997) algorithm underestimates the correct Ea.
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Figure 2. A. Results of an MDD Tool Kit optimization applied to Wong et al.’s (2023) sample GR-27 demonstrating the iterative nature of

the improvement using the %frac misfit statistic shown in Arrhenius space. B. Same as A, but shown in the space where the optimization

is performed–the fractional release at each heating step. Red circles show the optimization halted after 8 iterations (%frac = 15.06), blue

circles show the same optimization halted after 28 iterations (%frac = 8.33), and black circles show the same optimization results after

complete convergence after 18,419 iterations (%frac = 1.82). The number of iterations is independently determined by the differential

evolution algorithm using the convergence criteria outlined by Virtanen et al. (2020). The gray circles show the observed results.
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Figure 3. Arrhenius plots showing our reanalysis of Wong et al.’s (2023) samples with both the χ2 and %frac misfit statistics. Red lines

represent the diffusion kinetics of each individual domain, and their thicknesses are proportional to domain’s ϕ value. Gray circles show the

experimental results and black dots show the MDD model predictions. All Ea are given in kJ·mol−1
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Figure 4. Resulting best-fit thermal pathways and 40Ar-39Ar age spectra from our reanalysis of Wong et al.’s (2023) field validation of the

MDD method in K-feldspar. Blue shaded regions in the thermal history plots correspond to the χ2 misfit statistic. The orange shaded regions

correspond to the %frac misfit statistic. More specifically, the shaded regions represent a 1σ deviation from the median of the top 100

best-fitting thermal paths for a given sample (plotted in bold). The dotted line and gray regions represent Wong et al.’s (2023) predictions

for the same samples. The 40Ar/39Ar age spectrum plots show the predicted 40Ar/39Ar Ages for the median χ2 (blue) and %frac (orange)

thermal paths. Grey boxes represent the measured values from Wong (2023). Heating steps excluded from the modeling exercise are made

to be transparent.
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Figure 5. Predicted paleotemperatures at 27 Ma from samples GR-2, GR-27, and GR-8. The gray symbols represent Wong et al.’s (2023)

results, the orange symbols represent our results from the %frac misfit statistic, and the blue symbols represent our results from the χ2 misfit

statistic.
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Table 1. Table of variables.

Variable Description Units

MDD Model

D Diffusivity cm2·s1

D0 Diffusivity at infinite temperature cm2·s1

Ea Activation energy kJ·mol−1

R Gas constant kJ·mol−1·K−1

T Absolute temperature K

a Radius of diffusion domain cm

ϕi Proportion of total gas contained in domain i –

Lovera et al. (1997) Optimization Method

n Number of domains in an MDD model –

q goodness-of-fit probability used by Lovera et al. (1997) –

χ2
lovera Misfit statistic used by Lovera et al. (1997) –

( D
a2 )i Observed pre-exponential term for heating step i s−1

( D̂
a2 )i Modeled pre-exponential term for heating step i s−1

σi Observed pre-exponential 1 S.D. for heating step i s−1

N Number of heating steps included in optimization –

a0 Grain size of reference domain (Lovera et al., 1997) cm

MDD_toolkit

χ2 Misfit statistic used in MDD_toolkit defined in equation 4 –

%frac Misfit statistic used in MDD_toolkit defined in equation 5 –

Mi Measured 39Ar released at heating step i mol

M̂i Modeled 39Ar released at heating step i mol

Mtot Measured total 39Ar released during experiment mol

M̂tot Modeled total 39Ar released during experiment mol

Fi Measured fraction of Mtot released at heating step i –

F̂i Modeled fraction of Mtot released at heating step i –

Differential Evolution

X Vector of MDD-model parameters –

X′ Offspring vector of X –

g Generic misfit function –

Xbest Vector in population with lowest value of g(Xi) –

Xr Random vector selected from population –

β Value between 0.5 and 1.0 used to scale difference between two Xr –

Continued on next page...
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Variable Description Units

Ui Intermediate vector defined in Equation 6 –

Thermal Paths

χ2
age Misfit statistic used to determine best-fitting thermal path defined in equation 7 –

(AgeMeasured)i Measured 40Ar/39Ar Ma

(AgeModeled)i Modeled 40Ar/39Ar Ma

(σAgeMeasured)i Observed age S.D. for heating step i Ma
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Table 2. Equations used by the MDD Tool Kit to calculate f , the fractional loss from each domain during each heating step in a stepwise

degassing experiment (Crank, 1975; Ginster and Reiners, 2018).

Geometry Equation Validity

Sphere (radius a)

f = 1− 6
π2

∑∞
1

1
n2 exp(

−n2π2Dt
a2 ) All f

f ≈ 1− 6
π2 exp(

−π2Dt
a2 ) 0.85≤ f ≤= 1

f ≈ 6

π
3
2

√
π2Dt
a2 − 3Dt

a2 0≤ f ≤ 0.85

Plane Sheet (half-width a)

f = 1− 8
π2

∑∞
1

1
(2n+1)2

exp[−(2n+1)2π2 Dt
4a2 ] All f

f ≈ 1− 8
π2 exp(

π2Dt
4a2 ) 0.45≤ f ≤ 1

f ≈ 2√
π

√
Dt
a2 0≤ f ≤ 0.60

Table 3. Parameter search ranges used in this publication. These values can be adjusted in the open-access code.

Parameter Search Range

M̂tot (mol) (M̂tot − 3σ, M̂tot +3σ)

Ea (kJ/mol) (50, 500)

ln(D0
a2 ) (s−1) (-5, 50)

ϕ (normalized units) (0, 1)
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Table 4. Setup and results of synthetic diffusion experiment optimizations. Experiment A and B are the same except that a domain with

ln(D0
a2 )1 has been added to experiment B. To redistribute the gas, 1% was removed from all other domains such that ϕ1 = 0.01.

Experiment A Optimization Results A Experiment B Optimization Results B

Mtot (·10−12) 5.21 5.21 5.21 5.21

Ea ( kJ
mol

) 200.2 200.0 200.2 200.3

ln(D0
a2 )1 19.45 19.42 23.8 23.81

ln(D0
a2 )2 16.18 16.14 19.45 19.46

ln(D0
a2 )3 13.93 13.90 16.18 16.19

ln(D0
a2 )4 8.89 8.88 13.93 13.94

ln(D0
a2 )5 8.09 8.18 8.89 8.89

ln(D0
a2 )6 7.51 7.58 8.09 8.04

ln(D0
a2 )7 6.98 7.02 7.51 7.49

ln(D0
a2 )8 – – 6.98 6.97

ϕ1 0.025 0.025 0.01 0.01

ϕ2 0.097 0.097 0.025 0.025

ϕ3 0.082 0.082 0.096 0.096

ϕ4 0.226 0.214 0.082 0.082

ϕ5 0.127 0.109 0.224 0.233

ϕ6 0.273 0.252 0.125 0.129

ϕ7 0.170 0.220 0.270 0.266

ϕ8 – – 0.168 0.160
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Table 5. Results from sample GR-1.

Sample GR-1 Diffusion Kinetics Wong (2023) Results χ2 (This Work) %frac (This Work)

Ea ( kJ
mol

) 187.1 233.7 211.3

ln(D0
a2 )1 14.63 22.8 23.1

ln(D0
a2 )2 12.57 20.5 19.3

ln(D0
a2 )3 10.75 18.3 17.0

ln(D0
a2 )4 7.85 16.3 14.8

ln(D0
a2 )5 7.76 14.50 12.8

ln(D0
a2 )6 6.05 12.1 10.1

ln(D0
a2 )7 3.77 10.2 8.2

ln(D0
a2 )8 1.14 4.4 1.9

ϕ1 0.049 0.022 0.001

ϕ2 0.088 0.044 0.026

ϕ3 0.094 0.073 0.056

ϕ4 0.111 0.080 0.090

ϕ5 0.096 0.058 0.085

ϕ6 0.127 0.145 0.148

ϕ7 0.101 0.187 0.196

ϕ8 0.033 0.391 0.398
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Table 6. Results from sample GR-2.

Sample GR-2 Diffusion Kinetics Wong (2023) Results χ2 (This Work) %frac

Ea ( kJ
mol

) 182.0 233.8 221.2

ln(D0
a2 )1 17.36 25.7 23.2

ln(D0
a2 )2 15.43 23.0 20.5

ln(D0
a2 )3 13.65 21.2 18.9

ln(D0
a2 )4 11.76 19.4 17.7

ln(D0
a2 )5 8.49 17.4 16.0

ln(D0
a2 )6 8.46 15.5 14.2

ln(D0
a2 )6 6.53 12.2 11.0

ln(D0
a2 )8 4.44 10.2 9.1

ln(D0
a2 )9 1.79 5.9 4.9

ϕ1 0.036 0.009 0.011

ϕ2 0.092 0.022 0.045

ϕ3 0.096 0.066 0.052

ϕ4 0.074 0.081 0.067

ϕ5 0.05 0.074 0.072

ϕ6 0.119 0.064 0.069

ϕ7 0.145 0.134 0.121

ϕ8 0.076 0.157 0.154

ϕ9 0.312 0.393 0.410
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Table 7. Results from sample GR-27.

Sample GR-27 Diffusion Kinetics Wong (2023) Results χ2 (This Work) Percent_Frac (This Work)

Ea ( kJ
mol

) 159.5 231.9 211.3

ln(D0
a2 )1 11.2 26.3 23.3

ln(D0
a2 )2 9.9 21.2 18.2

ln(D0
a2 )3 7.5 19.4 16.7

ln(D0
a2 )4 5.2 17.4 15.0

ln(D0
a2 )5 5.0 14.6 12.6

ln(D0
a2 )6 2.9 12.0 10.1

ln(D0
a2 )6 2.0 9.9 8.1

ln(D0
a2 )8 -0.1 6.1 4.3

ϕ1 0.124 0.015 0.013

ϕ2 0.064 0.092 0.098

ϕ3 0.109 0.077 0.070

ϕ4 0.117 0.053 0.050

ϕ5 0.102 0.114 0.103

ϕ6 0.104 0.130 0.121

ϕ7 0.112 0.171 0.168

ϕ8 0.268 0.348 0.377
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Table 8. Results from sample GR-8.

Sample GR-8 Diffusion Kinetics Wong (2023) Results χ2 (This Work) %frac

Ea ( kJ
mol

) 182.0 224.8 229.2

ln(D0
a2 )1 14.9 24.2 25.0

ln(D0
a2 )2 13.5 21.1 21.9

ln(D0
a2 )3 11.9 19.3 19.8

ln(D0
a2 )4 10.2 17.5 17.8

ln(D0
a2 )5 7.5 15.6 15.9

ln(D0
a2 )6 7.5 13.7 13.6

ln(D0
a2 )6 5.5 11.4 11.8

ln(D0
a2 )8 4.3 9.0 10.0

ln(D0
a2 )9 2.7 -4.1 7.5

ϕ1 0.053 0.009 0.008

ϕ2 0.152 0.048 0.050

ϕ3 0.111 0.125 0.136

ϕ4 0.080 0.109 0.106

ϕ5 0.075 0.082 0.085

ϕ6 0.074 0.058 0.062

ϕ7 0.143 0.118 0.081

ϕ8 0.061 0.260 0.107

ϕ9 0.252 0.191 0.365
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Table A1. Sample GR-1 input (Wong et al., 2023).

Step Number Temperature

(◦C)

Duration

(Hours)

39Ar

Released

(mol)

Measurement

Uncertainty

(mol; 1σ)

Included in

Diffusion

Kinetics Op-

timization?

(1=yes,

0=no)

0 500 0.250 2.54E-16 8.40E-19 1

1 500 0.417 1.95E-16 7.58E-19 1

2 550 0.250 4.44E-16 1.22E-18 1

3 550 0.333 3.50E-16 1.05E-18 1

4 550 0.500 3.58E-16 8.48E-19 1

5 600 0.250 7.40E-16 1.29E-18 1

6 600 0.333 1.89E-16 7.23E-19 0

7 600 0.500 8.21E-16 1.57E-18 1

8 650 0.250 1.37E-15 1.87E-18 1

9 650 0.333 1.19E-15 1.59E-18 1

10 650 0.500 1.18E-15 1.43E-18 1

11 700 0.250 1.77E-15 2.23E-18 1

12 700 0.333 1.54E-15 1.75E-18 1

13 750 0.250 2.68E-15 2.59E-18 1

14 750 0.333 2.06E-15 2.29E-18 1

15 800 0.250 3.24E-15 2.84E-18 1

16 800 0.333 2.37E-15 2.58E-18 1

17 850 0.250 3.19E-15 2.79E-18 1

18 850 0.333 2.34E-15 2.40E-18 1

19 900 0.250 2.99E-15 3.27E-18 1

20 900 0.333 2.27E-15 2.22E-18 1

21 950 0.250 2.76E-15 2.62E-18 1

22 950 0.333 2.17E-15 2.14E-18 1
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Step Number Temperature

(◦C)

Duration

(Hours)

39Ar

Released

(mol)

Measurement

Uncertainty

(mol; 1σ)

Included in

Diffusion

Kinetics Op-

timization?

(1=yes,

0=no)

23 1000 0.250 2.86E-15 2.47E-18 1

24 1000 0.333 2.34E-15 2.47E-18 1

25 1050 0.250 3.34E-15 3.08E-18 1

26 1050 0.333 2.51E-15 2.30E-18 1

27 1100 0.250 4.76E-15 3.70E-18 1

28 1100 0.500 4.01E-15 3.26E-18 1

29 1100 1.000 4.41E-15 2.98E-18 1

30 1100 2.000 4.54E-15 3.74E-18 1

31 1100 3.333 3.73E-15 7.08E-18 1

32 1180 0.233 2.29E-14 8.27E-18 0

33 1200 0.233 1.41E-14 7.50E-18 0

34 1215 0.233 4.24E-15 3.30E-18 0

35 1230 0.233 1.07E-15 1.46E-18 0

36 1260 0.233 1.44E-16 6.39E-19 0

37 1310 0.233 4.61E-17 4.30E-19 0

38 1370 0.233 2.87E-17 3.34E-19 0
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Table A2. Sample GR-2 input (Wong et al., 2023).

Step Number Temperature

(◦C)

Duration

(Hours)

39Ar

Released

(mol)

Measurement

Uncertainty

(mol; 1σ)

Included in

Diffusion

Kinetics Op-

timization?

(1=yes,

0=no)

0 500 0.250 6.43E-16 1.22E-18 1

1 500 0.417 4.82E-16 1.09E-18 1

2 550 0.250 1.11E-15 1.62E-18 1

3 550 0.333 8.51E-16 1.41E-18 1

4 550 0.500 8.55E-16 1.47E-18 1

5 600 0.250 1.79E-15 2.02E-18 1

6 600 0.333 1.51E-15 1.79E-18 1

7 600 0.500 1.62E-15 2.12E-18 1

8 650 0.250 2.94E-15 2.47E-18 1

9 650 0.333 2.59E-15 2.83E-18 1

10 650 0.500 2.54E-15 2.81E-18 1

11 700 0.250 3.58E-15 2.98E-18 1

12 700 0.333 2.80E-15 2.49E-18 1

13 750 0.250 4.49E-15 3.20E-18 1

14 750 0.333 3.17E-15 2.08E-18 1

15 800 0.250 4.10E-15 2.59E-18 1

16 800 0.333 2.83E-15 2.30E-18 1

17 850 0.250 3.57E-15 3.04E-18 1

18 850 0.333 2.54E-15 2.42E-18 1

19 900 0.250 3.09E-15 2.67E-18 1

20 900 0.333 2.30E-15 2.23E-18 1

21 950 0.250 2.77E-15 2.38E-18 1

22 950 0.333 2.15E-15 2.61E-18 1
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Step Number Temperature

(◦C)

Duration

(Hours)

39Ar

Released

(mol)

Measurement

Uncertainty

(mol; 1σ)

Included in

Diffusion

Kinetics Op-

timization?

(1=yes,

0=no)

23 1000 0.250 2.99E-15 2.92E-18 1

24 1000 0.333 2.57E-15 2.73E-18 1

25 1050 0.250 3.82E-15 3.57E-18 1

26 1050 0.333 3.15E-15 3.13E-18 1

27 1100 0.250 4.97E-15 3.45E-18 1

28 1100 0.500 4.89E-15 3.55E-18 1

29 1100 1.000 5.39E-15 3.80E-18 1

30 1100 2.000 5.82E-15 3.99E-18 1

31 1100 3.333 5.15E-15 3.53E-18 1

32 1180 0.233 1.36E-14 5.42E-18 0

33 1200 0.233 1.95E-14 6.50E-18 0

34 1215 0.233 1.32E-14 5.65E-18 0

35 1230 0.233 4.09E-15 3.01E-18 0

36 1260 0.233 5.86E-16 1.14E-18 0

37 1310 0.233 1.16E-16 5.24E-19 0

38 1370 0.233 3.83E-17 2.94E-19 0
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Table A3. Sample GR-8 input (Wong et al., 2023).

Step Number Temperature

(◦C)

Duration

(Hours)

39Ar

Released

(mol)

Measurement

Uncertainty

(mol; 1σ)

Included in

Diffusion

Kinetics Op-

timization?

(1=yes,

0=no)

0 500 0.250 8.31E-16 1.64E-18 1

1 500 0.417 6.20E-16 1.28E-18 1

2 550 0.250 1.45E-15 1.90E-18 1

3 550 0.333 1.11E-15 1.64E-18 1

4 550 0.500 1.15E-15 1.51E-18 1

5 600 0.250 2.39E-15 2.21E-18 1

6 600 0.333 2.15E-15 2.20E-18 1

7 600 0.500 2.30E-15 2.62E-18 1

8 650 0.250 4.23E-15 3.29E-18 1

9 650 0.333 3.66E-15 3.21E-18 1

10 650 0.500 3.81E-15 3.02E-18 1

11 700 0.250 5.43E-15 3.41E-18 1

12 700 0.333 4.46E-15 3.56E-18 1

13 750 0.250 6.65E-15 2.86E-18 1

14 750 0.333 4.52E-15 4.01E-18 1

15 800 0.250 5.59E-15 3.13E-18 1

16 800 0.333 3.76E-15 2.88E-18 1

17 850 0.250 4.29E-15 2.93E-18 1

18 850 0.333 3.13E-15 2.72E-18 1

19 900 0.250 3.82E-15 3.08E-18 1

20 900 0.333 2.68E-15 3.01E-18 1

21 950 0.250 3.35E-15 2.68E-18 1

22 950 0.333 2.71E-15 2.66E-18 1
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Step Number Temperature

(◦C)

Duration

(Hours)

39Ar

Released

(mol)

Measurement

Uncertainty

(mol; 1σ)

Included in

Diffusion

Kinetics Op-

timization?

(1=yes,

0=no)

23 1000 0.250 3.54E-15 3.49E-18 1

24 1000 0.333 2.96E-15 2.67E-18 1

25 1050 0.250 4.02E-15 3.14E-18 1

26 1050 0.333 3.29E-15 2.90E-18 1

27 1100 0.250 4.75E-15 3.75E-18 1

28 1100 0.500 5.01E-15 2.75E-18 1

29 1100 1.000 5.95E-15 3.19E-18 1

30 1100 2.000 7.04E-15 3.86E-18 1

31 1100 3.333 6.73E-15 3.29E-18 1

32 1170 0.233 1.25E-14 5.57E-18 0

33 1185 0.233 1.20E-14 6.19E-18 0

34 1200 0.233 7.56E-15 4.37E-18 0

35 1215 0.233 2.91E-15 2.59E-18 0

36 1235 0.233 6.00E-16 1.31E-18 0

37 1280 0.233 6.11E-17 3.71E-19 0

38 1370 0.233 2.11E-17 2.49E-19 0
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Table A4. Sample GR-27 input (Wong et al., 2023).

Step Number Temperature

(◦C)

Duration

(Hours)

39Ar

Released

(mol)

Measurement

Uncertainty

(mol; 1σ)

Included in

Diffusion

Kinetics Op-

timization?

(1=yes,

0=no)

0 500 0.250 1.23E-15 2.19E-18 1

1 500 0.417 8.07E-16 1.55E-18 1

2 550 0.250 1.66E-15 2.25E-18 1

3 550 0.333 1.07E-15 1.56E-18 1

4 550 0.500 9.55E-16 1.46E-18 1

5 600 0.250 1.72E-15 1.91E-18 1

6 600 0.333 1.41E-15 1.92E-18 1

7 600 0.500 1.87E-15 1.86E-18 1

8 650 0.250 4.23E-15 3.52E-18 1

9 650 0.333 3.69E-15 2.82E-18 1

10 650 0.500 3.65E-15 3.31E-18 1

11 700 0.250 4.40E-15 3.73E-18 1

12 700 0.333 3.60E-15 2.76E-18 1

13 750 0.250 4.62E-15 3.53E-18 1

14 750 0.333 3.32E-15 2.79E-18 1

15 800 0.250 4.02E-15 3.26E-18 1

16 800 0.333 2.94E-15 2.38E-18 1

17 850 0.250 3.85E-15 2.81E-18 1

18 850 0.333 2.96E-15 2.35E-18 1

19 900 0.250 4.62E-15 3.34E-18 1

20 900 0.333 3.71E-15 2.78E-18 1

21 950 0.250 5.26E-15 3.46E-18 1

22 950 0.333 3.82E-15 4.29E-18 1
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Step Number Temperature

(◦C)

Duration

(Hours)

39Ar

Released

(mol)

Measurement

Uncertainty

(mol; 1σ)

Included in

Diffusion

Kinetics Op-

timization?

(1=yes,

0=no)

23 1000 0.250 4.68E-15 2.43E-18 1

24 1000 0.333 3.41E-15 2.96E-18 1

25 1050 0.250 4.61E-15 3.73E-18 1

26 1050 0.333 3.78E-15 3.05E-18 1

27 1100 0.250 6.47E-15 4.04E-18 1

28 1100 0.500 5.98E-15 3.31E-18 1

29 1100 1.000 6.76E-15 3.86E-18 1

30 1100 2.000 7.55E-15 4.27E-18 1

31 1100 3.333 6.95E-15 4.17E-18 1

32 1170 0.233 2.40E-14 9.26E-18 0

33 1185 0.233 1.78E-14 6.38E-18 0

34 1200 0.233 8.52E-15 5.10E-18 0

35 1215 0.233 2.82E-15 2.87E-18 0

36 1235 0.233 5.46E-16 1.04E-18 0

37 1280 0.233 4.93E-17 4.16E-19 0

38 1370 0.233 1.88E-17 2.55E-19 0
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