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Abstract. The distribution of zircon crystallisation ages in igneous rocks has been proposed to provide insights into the dy-
namics of underlying magma reservoirs. However, the ability to interpret magmatic processes from an age distribution is
challenged by a complex interplay of factors such as sampling biases, analytical uncertainties and incorporation of extraneous
zircon grains. Here, we use a compilation of igneous zircon U-Pb ages measured by chemical abrasion isotope dilution thermal
ionisation mass spectrometry (CA-ID-TIMS) to quantify the differences that exist among zircon U-Pb age distributions from
different magmatic systems. The compiled dataset was rigorously filtered through a number of processing steps to isolate age
distributions least impacted by sampling biases and analytical factors. We also filter the database using a new algorithm to
systematically identify and remove old outliers from age distributions. We adopt the Wasserstein distance as a dissimilarity
metric to quantify the difference between the shapes of age distributions. Principal component analysis (PCA) of a dissimi-
larity matrix of pairwise Wasserstein distances between age distributions reveals differences among zircon age distributions
found in plutonic, porphyry and volcanic rocks. Volcanic and porphyry zircon populations exhibit a skew towards younger
ages in their distributions, whereas plutonic age distributions skew towards older ages. We use a bootstrap forward modelling
approach to generate synthetic zircon age distributions, which are cast into the PCA space of the dissimilarity matrix of natural
age distributions to allow us to identify the magmatic processes which reproduce distributions found in natural data. We find
that the younger skew of porphyry and volcanic zircon age distributions can be reproduced under bootstrap sampling scenarios
where zircon crystallisation is truncated (e.g. by volcanic eruption or porphyry dyke emplacement). We also find that sampling
underlying zircon age distributions generated under higher magmatic flux can contribute to the younger skew of volcanic and
porphyry zircon age distributions, though we emphasise that no difference in flux is required due to the strong effect of trun-
cation. Given the multitude of factors that influence observed zircon age distributions, we urge caution when quantifying the

thermal evolution of crustal magma bodies using zircon age distributions integrated with numerical models.

1 Introduction

U-Th-Pb geochronology of zircon in igneous rocks provides key information about the age, longevity, and emplacement rates
of magma reservoirs. Historically, the achievable age resolution limited these insights to a singular ‘age’, but as analytical

precision and accuracy have improved, it has become possible to resolve extended records of zircon crystallisation within a
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single igneous rock sample. These zircon crystals can predate the eruption or final solidification of a magma body by as much
as a million years (Brown and Fletcher, 1999; Wotzlaw et al., 2013; Barboni et al., 2015; Samperton et al., 2015; Szymanowski
et al., 2019). The observed zircon populations may result from cooling of the magma volume in which they are found (i.e. they
are autocrystic, Wotzlaw et al., 2013; Samperton et al., 2015) or they could reflect the juxtaposition of zircon populations that
derive from multiple depths within the crustal column (e.g., Schoene et al., 2012; Farina et al., 2018). While still relatively
under-explored, distributions of zircon ages are promising recorders of processes that are critical to the ultimate fate of the host
magmatic system (e.g. a volcanic eruption or economic mineralisation). In several studies, zircon age distributions have been
shown to match those produced from zircon solubility models and thus have been interpreted as the product of monotonous
cooling of the magmatic system (Samperton et al., 2017; Keller et al., 2018). Others have documented age distributions which
differ from these zircon solubility models and have attributed this to competition between cooling and recharge of the magma
reservoir which shifts the peak in the distribution to younger ages (Schmitt et al., 2023; Tavazzani et al., 2023a). Coupling
of zircon age distributions with outputs from numerical models has been used to quantify magmatic fluxes (Caricchi et al.,
2014, 2016; Weber et al., 2020; Liu et al., 2021; Schmitt et al., 2023) and to propose that greater fluxes exist in magma
reservoirs forming super-eruptions compared to plutonic complexes (Caricchi et al., 2014).

Isolating the effect of cooling and recharge processes on zircon age distributions can be challenging since a number of
analytical and geological factors may play a role (Klein and Eddy, 2023). Firstly, a key requirement of this comparison is
the ability to confidently resolve differences in crystallisation age within a single rock sample, i.e., to ensure that the observed
distribution is controlled by geological dispersion rather than analytical uncertainty. This ability, best described by the apparent
duration of zircon crystallisation with respect to the size of average analytical uncertainties of a dataset (At/o), varies with the
employed analytical technique, the time range of zircon crystallisation and absolute age. Datasets also contain variable numbers
of zircon dates per sample and the ability to accurately capture the underlying age distribution increases with the number of
zircons analysed (Caricchi et al., 2016; Tavazzani et al., 2023a). Interpreting age distributions is further challenged by the
termination of zircon crystallisation at intermediate crystallinity by dyke emplacement or volcanic eruption (a process we refer
to herein as ‘truncation’), whereas in plutonic systems zircon crystallisation likely continues until the solidus (Samperton et al.,
2017; Ratschbacher et al., 2018). Comparing age distributions is also complicated due to the challenge in identifying whether
these zircons crystallised from the youngest magmatic pulse (i.e. ‘autocrysts’) or are a cargo of zircons crystallised in multiple,
discrete systems that were incorporated upon transport (‘antecrysts’) (Miller et al., 2007).

As the geochronology community presents a growing number of zircon age distributions from different magmatic systems
with sufficiently long duration to analytically resolve an age distribution, constraining the controls on their distributions is
becoming increasingly relevant. The number of available datasets has now become sufficient to perform systematic analyses
of published data to identify patterns that can be meaningfully attributed to geological processes. Such a comparison requires
a robust statistical approach which is capable of comparing distributions with varying dataset size and analytical uncertainty
without making assumptions about the shape of the distribution. The use of dissimilarity metrics, such as the Kolmogorov-
Smirnov and Wasserstein distances, is becoming increasingly popular to compare age distributions, with successful applications

to tracing sediment provenance in multi-sample datasets (Vermeesch, 2013; Lipp and Vermeesch, 2023). These approaches



Table 1. Symbols used in this study and their definitions

Symbol  Definition

At Absolute duration of zircon crystallisation

Atyer Time between two zircon crystallisation distributions
ti Time of crystallisation of ¢th zircon

trel Relative time of zircon crystallisation

tsat Time of initial zircon saturation

tend Time of termination of zircon crystallisation

o Uncertainty

ECDF Empirical cumulative distribution function

KDE Kernel density estimation

Fo(t) Interpolated ECDF of ¢
fotal Zircon age probability density function
Wy The pth Wasserstein distance

Nzircon ~ Number of zircon crystals

Ninh Number of inherited zircon crystals

6 Delta function

d Dissimilarity matrix

w; Weighting of ¢

VE,(t)  Gradient of interpolated ECDF

Vo Gradient below which an ECDF is marked as discontinuous
tfiat Relative time of ECDF below

M1 Inverse function of M

60 are objective and they can be applied pairwise to datasets with infinite numbers of distributions and can be visualised using
dimensionality reduction techniques (Vermeesch, 2013).

In this study, we compare zircon age spectra from 70 igneous units using the Wasserstein dissimilarity metric to constrain

whether differences in age spectra may reflect variable dynamics of magmatic systems. We identify key differences between

age distributions in plutonic, volcanic and porphyry lithologies and use a bootstrap modelling approach to explore the key

65 factors controlling the variability of zircon age distributions in magmatic systems.
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2 Methodology
2.1 Zircon U-Th-Pb age spectra and their visualisation

The high precision allowed by state-of-the-art U-Th-Pb dating techniques is showcased in rank-order plots of zircon dates from
a single sample (Fig. 1A). In this scenario, zircon dates exhibit dispersion between the onset of zircon crystallisation (i.e. initial
zircon saturation, ty,,) and the end of zircon crystallisation (#.,4), which represents an eruptive event or the final solidification of
a magma batch. These are often treated as a scaled relative zircon crystallisation distribution, fy(t.1), where t,; is the relative

time scaled between ¢, and t.,; (Keller et al., 2018):

t —tend
trep = ————— (1)
e tsat_tend

The fa(trr) of a sample can be visualised as a kernel density estimate (KDE; Fig. 1B) which is where a series of kernels
(typically Gaussian) of a fixed width (the “bandwidith") are stacked along the distribution (Vermeesch, 2012). The main
advantage of KDE plots is their ability to represent the distribution of zircon dates in an intuitive manner, moreover, they
can be weighted by the variable analytical uncertainties associated to each zircon date. Another method for visualising such
age distributions is an empirical cumulative distribution function (ECDF; Fig. 1C), which is a step function that increases by
1/n (or by an interval inverse to the analytical uncertainty) at each of the n dates. The ECDF, though less intuitive, presents
several advantages. The first is that outliers (e.g. xenocrysts) can be more easily identified because it is a step function that
plots each discrete date unlike a KDE plot. The second is that it can be more intuitively related to dissimilarity metrics (e.g.
the Kolmogorov—Smirnov test and the Wasserstein distance) which are related to the distances between two ECDFs. We thus

henceforth prefer to visualise age distributions as ECDFs.
2.2 Filtering of outliers in age distributions

The biggest obstacle to identifying a truly "magmatic" age distribution is the presence of entire zircons or zircon domains (e.g.
crystal cores) which are foreign to the youngest magmatic pulse, introduced into the magma via assimilation/mixing during
emplacement or transport. Zircon crystals that formed within the youngest magmatic pulse are typically defined as “autocrysts",
and those that crystallise in an earlier magmatic pulse related to older pulses of the composite, longer-term magmatic system are
often termed “antecrysts" (Miller et al., 2007). “Xenocrysts" are those incorporated from host rocks and are typically millions
of years older, which makes them easier to exclude than antecrysts.

When analysing datasets of concordant U-Pb dates, identifying antecrysts in an age distribution is subjective. Many recent
interpretations of zircon age—composition datasets acknowledge that zircon populations found in individual igneous rocks com-
monly represent crystallisation in complex magmatic plumbing systems (e.g. Szymanowski et al., 2019; Pamukgu et al., 2022),
thereby making the autocryst—antecryst divide ambiguous, and possibly detrimental to the understanding of the underlying
system. Some authors may decide to exclude older tails of age distributions from their interpretation, but the criteria to do so

are variable and often not clearly outlined. In some studies this can be based on different trace element compositions of older
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Figure 1. A comparison of three visualisation approaches employed in geochronology using an example zircon U-Pb ID-TIMS dataset from
the Youngest Toba Tuff (Szymanowski et al., 2023). (A) Ranked age plot (youngest to oldest) where the horizontal extent of the bars indicates
the 20 uncertainty on each U-Pb date. (B) Kernel density estimate (KDE) using both unweighted (dashed) and weighted (solid) estimates
and, (C) weighted (dashed) and unweighted (solid) empirical cumulative distribution frequency (ECDF) curves, both scaled between onset

and end of zircon crystallisation (¢,.).

zircon, inferring they were derived from an unrelated magmatic pulse (e.g., Gagnevin et al., 2010; Siégel et al., 2018; Tavazzani
et al., 2023a). Other studies may also use "breaks" in the age distribution to indicate that the older zircon crystals were derived
from a different source (e.g., Samperton et al., 2015).

In this study, we present a method to filter old outliers from age distributions using constant criteria. The algorithm removes
older outlier dates from an age distribution which are separated from the rest of the dataset by a fixed relative time gap. Because
old outliers introduce low gradient regions on an ECDF (e.g. black curve on Fig. 2), we identify potential antecrysts based on
the gradient of an ECDF (Fig. 1C). The model first calculates the gradient of an ECDF, where Fn(t,.el) is the interpolated
ECDF:

an (trel)

dtrel (2)

VFn (trel) -

A gradient cut-off term (V) is then defined, that represents the gradient below which a segment of an ECDF will be defined
as marking a discontinuity in the age distribution (Fig. 2). For a scaled age distribution, we then sum the length of the flat
segments of the ECDF older than the two youngest dates (to ignore age gaps at the young end of the distribution which are not

considered here):

ool 4t i VEL () < Vg

tfiat = 3)
i=3 0

otherwise.

This metric 74, then provides a quantification of the scaled age duration that is not continuously covered with U-Pb dates

(Fig. 2). For age distributions with two discontinuous age populations, ?y;,; will scale with increasing temporal distance
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between the two populations. The choice of ¢ f;,; that is deemed acceptable ( f144,,,. ) for such an age distribution is subjective

(i.e. at alow tf4¢ the two age populations will be considered continuous).
If an age distribution yields ¢4t < ?fat,,,, it is deemed to come from one continuous age population. In the opposite case
) is obtained. The

were tuned until the filtering method was satisfactory in discarding significantly older zircons

(i.e.tfiat > tfiat,,.. ) the oldest date is iteratively removed until a continuous age population (¢ f1q¢ < fas

two parameters Vs and tf4¢,....
throughout the data compilation and did not filter those which were potentially part of the main age population. The optimal
parameters determined for Vs and ¢ 74, are 0.30 and 0.25, respectively. Our method has functionality to perform filtering
on weighted ECDFs (i.e. taking into account analytical uncertainty) but we did not implement it as it proved challenging to
select constant parameters that would filter all datasets to an acceptable degree. We emphasise that our approach does not aim to
provide a geologically significant method to isolate autocrystic zircons (which is impossible to verify), but rather a systematic

method of isolating the dominant, continuous population (corresponding to the main magmatic pulse) across multiple datasets.
2.3 Igneous zircon geochronology compilation

Making interpretations about the dynamics of magma reservoirs from zircon age distributions requires confidence that the
dispersion exhibited by the dataset is predominantly geological rather than analytical. One requirement is a sufficiently long
duration of zircon crystallisation in a sample relative to the average analytical uncertainty (At/o, as used by Keller et al.,
2018). A high At/o allows the shape of a distribution to be deconvolved from analytical uncertainties, whereas low At/o
age distributions are dominated by analytical uncertainty. Sufficient At/o in individual magmatic systems is generally only
achieved by two analytical techniques: 22°Th—233U disequilibrium dating applied to young zircon (predominantly obtained
with in situ methods such as secondary ion mass spectrometry — SIMS or laser ablation inductively coupled plasma mass
spectrometry — LA-ICP-MS) and high-precision U-Pb geochronology by (chemical abrasion) isotope dilution thermal ionisa-
tion mass spectrometry — (CA-)ID-TIMS (Schaltegger et al., 2015). The 23°Th—23%U method achieves variable, per cent-level
precision which may be sufficient to resolve age distributions in the young rocks it is best suited to (< ca. 300 ka; Schmitt,
2011). However, difficulty in calculating reliable individual zircon model ages in the absence of a matching coeval melt or
other mineral phase, the effective upper age limit of ca. 300 ka, and a focus of existing datasets on volcanic rocks limit the
utility of 239Th-23%U data for our study. On the other hand, CA-ID-TIMS U-Pb geochronology is applied to zircons from
ca. 100 ka to the age of the Solar System, achieves a typical precision of 206Pb/238U dates between 0.01-1%, and is widely
applied to plutonic, subvolcanic (i.e. porphyry) and volcanic zircon (Schoene, 2014). Given that the resolving power of U-Pb
geochronology decreases with increasing age, we focused our analysis exclusively on CA-ID-TIMS data for the 2°6Pb/238U
chronometer most applicable to young (<1 Ga) rocks.

In order to systematically compare zircon age distributions between different magmatic systems, we adopted a previously
compiled database of published zircon U-Pb dates (Markovic et al., 2024). We classified and sub-selected data from samples
clearly identifiable as either plutonic, porphyry, or proximal volcanic deposits. This permits a comparison of age distributions
in a diverse range of igneous rocks. We excluded distal volcanic materials such as ash beds or bentonites to avoid biases related

to transport sorting or included detrital material. While complete exclusion of cases of Pb loss is not verifiable, we focused
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Figure 2. An example of the methodology used to filter older age populations from the age distribution of a sample from the Orano dyke
swarm, Elba island (Barboni et al., 2015). Upper plot shows the weighted ECDF of the age distribution before and after the filtering process.
Inset diagram shows the ranked age plot (not scaled by the uncertainty), with gray bars highlighting the two dates that were filtered by the
method (uncertainties are not shown). Lower plot shows the gradient of the ECDF (VF n(t)) before and after filtering. The dashed horizontal
grey line indicates the gradient cut-off (V 57) below which some degree of inheritance is deemed to have taken place, if the distance in scaled

age is greater than the threshold (¢ f1at,,, 0, )-

our analysis on samples least affected by radiation damage, only considering datasets with age <130 Ma. Rare cases of clear
young outliers remaining in the database were excluded manually.

We only include age distributions with an apparent At¢/o greater than 10 to provide confidence that the age distribution is
sufficiently dispersed to isolate geological dispersion from analytical dispersion. Resolving an age distribution also requires

a sufficient number of dates (n.;.con) from a magmatic unit. Many studies often report a small number of dates (e.g. five
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Table 2. Sources of data used in the filtered zircon ID-TIMS U-Pb database and metadata describing the type of magmatic emplacement

(plutonic, volcanic or porphyry), the mean 1o analytical precision and the number of spectra present in the database for each locality.

Locality Type Mean Apparent At (Ma) Mean Apparent At/ Ngpecia Reference
Adamello Plutonic 0.35 14.0 1 Schoene et al. (2012)
Agua de Dionisio Volcanic 0.13 17.9 1 Buret et al. (2017)
Bajo de la Alumbrera Porphyry 0.16 15.3 3 Buret et al. (2016)
Batu Hijau Porphyry 0.21 16.4 3 Large et al. (2020)
Bear Valley Plutonic 0.58 144 3 Klein et al. (2021)
Bergell' Plutonic 0.55 36.7 7 Samperton et al. (2015)
Bingham Canyon Porphyry 0.39 377 2 Large et al. (2021)
Capam‘ne1 Plutonic 0.31 80.6 6 Barboni et al. (2015)
Carpathian-Pannonian Volcanic 0.46 40.1 3 Brlek et al. (2023)
Chegem Volcanic 0.08 419 1 Bindeman et al. (2021)
Chuquicamata Porphyry 0.73 272 8 Virmond et al. (2024)
Long Valley Volcanic 0.03 10.0 1 Ickert et al. (2015)
Mogollon-Datil Volcanic, Plutonic 0.72 28.3 6 Rioux et al. (2016); Szymanowski et al. (2019); Gaynor et al. (2023)
New England Plutonic 245 37.8 2 Kinney et al. (2021)
Ok Tedi Porphyry, Plutonic 0.12 11.7 3 Large et al. (2018)
Radomiro Tomic Porphyry 1.19 442 4 Virmond et al. (2024)
Searchlight Plutonic 0.16 109 1 Eddy et al. (2022)
Southern Rocky Mtns Volcanic 0.99 22.4 5 Wotzlaw et al. (2013); Curry et al. (2021)
Spence Porphyry 0.80 13.8 4 Bunker (2020)
Toba Volcanic 0.27 84.3 4 Szymanowski et al. (2023)
Turkey Creek Volcanic 0.30 16.7 1 Deering et al. (2016)
Yellowstone Volcanic 0.10 10.9 1 Wotzlaw et al. (2015)

Age distributions contain sub-grain analyses'

or less), and in such scenarios the underlying age distribution is likely undersampled. The final dataset was thus limited to
include only inheritance-filtered distributions that contained a minimum of 10 dates, as previous works indicate that sampling
with less than 10 zircon dates fails to capture the underlying distribution (Klein and Eddy, 2023; Tavazzani et al., 2023b). We
additionally found that some age distributions contain dates with highly variable analytical uncertainties, with some containing
over an order of magnitude variation in uncertainties for zircon crystals dated from the same rock. Individual dates with high
uncertainty in an age distribution impact the ability to resolve geological dispersion and in many cases would not be filtered
using the apparent At/o. We therefore calculate the weighting w that each date i holds in an age distribution using the inverse

squared uncertainty (McLean et al., 2011):

1
o2
Wi = SSzireon T )
D iy o2
Age distributions with a standard deviation of w; exceeding 0.08 were discarded. The final, filtered compilation contained

70 U-Pb age distributions from 22 magmatic systems (Fig. 3, Fig. S1, Table 2 and Table S1).
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Figure 3. Weighted empirical cumulative distribution frequency curves for all 70 filtered zircon age distributions used in this study. Plots are
separated based on the locality and curves indicate individual geological units within the locality. The color of each curve reflects the sample

classification as volcanic (blue), plutonic (red) and porphyry (yellow) in the database.
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2.4 The Wasserstein distance

The Wasserstein distance arises from the field of optimal transport and is a metric that allows comparison of two probability
distributions. The metric is often termed the "earth mover’s distance" because each probability distribution can be treated as a
mound of earth, where the minimum cost of transferring earth from one mound to the other is the amount of earth multiplied
by the distance it must be moved (Monge, 1781). Thus, the Wasserstein distance seeks to find the most efficient transport plan,
which is the minimum cost of transporting one distribution to another. The optimal transport plan between two distributions is
a measure of the dissimilarity of two distributions, with more dissimilar distributions requiring a greater cost and resulting in
a larger Wasserstein distance. For two age distributions, x and v, with cumulative distribution functions (CDFs) M and N, the

pth Wasserstein distance between them is given as:

1 »
W, (p,v) = /yM—1 — Nt 5)
0

The W) distance (i.e. where p = 1) is equal to the area between two ECDFs (Fig. 4). However, we follow the approach of
Lipp and Vermeesch (2023) and implement the Wasserstein-2 distance (W5) which is the squared distance (p = 2) and is akin to
the standard distance metric used in most statistical analyses. The Python package Python Optimal Transport (v. 0.9.4 Flamary
et al., 2021) is used for all optimal transport computations.

Zircon age datasets are discrete data and do not follow a continuous probability distribution and, as such, the Wasserstein
distance applies to their empirical cumulative distribution frequency (ECDF) functions. In the case of ID-TIMS datasets, each
date is not expected to hold equal weight due to variable analytical uncertainties. Thus the probability distributions y and v,

can be represented as the weighted sum of p and ¢ delta functions § (Lipp and Vermeesch, 2023):

P q
= Zmi(sxm V= anﬁxn (6)

where m and n are weights that sum to 1. In the case where dates do not hold equal weight in the overall distribution, weights
m and n can be calculated using Equation 4. We plot ECDFs and calculate the W, distance using the weights, and provide the
same results calculated without weights for comparison (Figs. S2 and S3).

The Wasserstein distance has several advantages as a metric to compare zircon age distributions. In addition to allowing
weighting based on uncertainty, it can be used on discrete ages (i.e. an ECDF) and does not require the inference of a specific
prior distribution. The W, is also attractive in that, for two age distributions it is sensitive to their location (their means),
spread (their standard deviations) and the shape of the distribution (Irpino and Romano, 2007; Lipp and Vermeesch, 2023). All
three of these properties are relevant when considering two U-Pb age distributions. We prefer the Wasserstein distance to the
Kolmogorov-Smirnov distance because the latter is a measure of the maximum vertical difference between the two ECDF and

is, as such, less sensitive to the overall shape of the distribution.

10
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Figure 4. Examples showing three comparisons of similar to contrasting U-Pb ID-TIMS age distributions. Top row shows the distributions in
blue and red with the transition distributions showing equally spaced (at 0.1 intervals) distributions in Wasserstein space (i.e. the Wasserstein
barycentres). Bottom row shows the same two distributions as above as weighted ECDF curves, where the grey shaded area indicates the W,
distance between the two distributions. The W, is also reported. Insets show where the two compared distributions plot on the PC1 versus

PC2 diagram of the W dissimilarity matrix (Fig. 5; see Section 2.5 for description of dissimilarity matrix construction).

2.5 Dissimilarity matrix and dimensionality reduction

The W, metric permits pairwise comparisons of age distributions. Thus for Y age distributions, a symmetric dissimilarity

matrix, d of dimension Y x Y can be constructed:

dii dig dy
d271 d272 dQ,Y

d=| ] @)
dy1 dyz dy,y

Because the W, distance is a metric (i.e. it satisfies the triangle inequality), principal component analysis (PCA) can be

applied to reduce the dissimilarity matrix to fewer dimensions whilst preserving the pairwise distances (Vermeesch, 2013; Lipp

11
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and Vermeesch, 2023). PCA aims to preserve the variance of a dataset in a lower dimension space, where for a dissimilarity
matrix this reflects the pairwise distances. We use the Python implementation within sci-kit learn (v. 1.5.1 Pedregosa et al.,
2011) for PCA. The first two principal components contain 90% of the variance of the dissimilarity matrix, indicating that the

majority of the pairwise distances are preserved with only 10% being lost.
2.6 Modelling approach
2.6.1 Bootstrap forward modelling of zircon age distributions

Forward modelling of synthetic age distributions and comparison with natural data can yield insights into the controls on age
distributions in magmatic systems (Caricchi et al., 2014; Schmitt et al., 2023; Tavazzani et al., 2023a). This process aims
to sample an underlying zircon age distribution according to realistic uncertainties and numbers of zircons sampled for ID-
TIMS datasets. The underlying distribution, or the uncertainties and number of zircons sampled can be varied to test different
hypotheses on the controls on zircon age distributions.

We follow the boostrap modelling approach of Tavazzani et al. (2023b). The model samples n ;... synthetic dates from
a probability distribution p(x) which is equivalent to a selected underlying age distribution, such as the theoretical zircon
age distribution obtained from zircon solubility and thermodynamic modelling of a monotonically cooling magma reservoir
(Keller et al., 2018). For simplicity, our model assumes each zircon crystallises instantaneously and does not take into account
the protracted growth of each individual zircon and the inherent volumetric bias of bulk grain analyses towards younger ages
(Klein and Eddy, 2023). Gaussian uncertainty is then added to each synthetic age to reproduce uncertainties reported in ID-
TIMS datasets. To calculate the uncertainty at a given age, we parametrised the reported 20 absolute analytical uncertainty in
the ID-TIMS compilation of Markovic et al. (2024) as a function of 2°6Pb/?38U age (¢ in Ma) up to 1000 Ma using a second
order polynomial fit. The resulting best fit parameters and covariance matrix yields the following equation with errors given as
2SE:

20 =5.5x 1077 (£2.8 x 107 ")t? +8.9 x 1074(£2.0 x 10™*)t 4-0.040(40.0162) (8)

Gaussian uncertainty is propagated onto each date sampled during boostrap sampling according to the standard error on
the fit parameters. The bootstrap sampling can be repeated with varying numbers of zircon grains, different age (and thus
different analytical uncertainties) and with a different underlying distribution. These distributions can then be concatenated
with the W, dissimilarity matrix generated on natural data. The pairwise dissimilarities of a modelled distribution with all

natural distributions can then be transformed by PCA and visualised alongside natural data.
2.6.2 Magma recharge and underlying age distributions

The underlying age distribution from which zircon U-Pb dates are sampled can vary as a function of magmatic flux and

volume (Caricchi et al., 2014; Tavazzani et al., 2023a). Keller et al. (2018) showed a remarkable similarity between age

12
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distributions predicted from zircon solubility and thermodynamic models (Watson, 1996) and age distributions observed in
plutons (Samperton et al., 2015). This predicts a peak in zircon crystallisation at the onset of zircon saturation which decays
until the solidus, producing a skew towards older ages. However, this prediction assumes monotonous cooling of magma, while
open-system behaviour can produce multi-modal age distributions with a general shift towards younger skew (Caricchi et al.,
2014; Schmitt et al., 2023; Tavazzani et al., 2023a).

We use the approach of Tavazzani et al. (2023b) who generated zircon age distributions representative of complex crystalli-
sation simulations. These simulations investigate zircon crystallisation under a range of non-linear temperature-crystallinity
scenarios developed using the thermodynamic modelling software Magma Chamber Simulation (Bohrson et al., 2014). This
combines closed- and open-system processes such as fractional crystallisation, single or repeated recharges of new magma in a
magma body. Synthetic age distributions generated under varying recharge can then be compared to natural data as described
above. We compare the bootstrap sampling of a zircon age distribution generated with recharge of a cooling, upper crustal rhy-
olitic magma reservoir with 0, 3 and 5 recharges. Each recharge is triggered when crystallinity reaches 50 vol.% and comprises
an addition of 50 g of rhyolitic magma (with an initial magma reservoir mass of 100 g) with the same composition and liquidus

temperature (870°C) as the original magma (Tavazzani et al., 2023b).

3 Results

The PCA plot of the W, dissimilarity matrix of the high precision U-Pb data compilation produces a parabolic shape (Figure
5). Because the W, distance is equivalent to the squared difference between two weighted ECDFs, the location of an age
distribution on the plot of the PCA of the W, dissimilarity matrix (Fig. 5) can be compared with the shapes of the weighted
ECDFs of the age distributions (Fig. 3). The distance between two age distributions on the PCA plot refers to the degree of
dissimilarity between them. For example, two strongly contrasting distributions (Fig. 3) such as from a New England plutonic
sample (old skew) and a Yellowstone volcanic sample (young skew) plot on opposite sides of the PC parabola (Fig. 5). By
contrast, relatively homogeneous weighted ECDFs in single magmatic systems cluster together on the PC parabola (e.g. Toba).

There is a pronounced tendency for volcanic and porphyry zircon age distributions to plot further left on the parabola
than plutonic age distributions which plot on the right (Fig. 5). In order to interpret this difference, we cast skewed normal
distributions onto the W, dissimilarity matrix which were generated with varying values of skew (see inset plots in Fig. 5).
This comparison demonstrates that the position of a distribution along the PC parabola generally reflects the amount of skew
of a distribution, because old-skewed distributions plot in the top left of the parabola, whilst young-skewed distributions plot in
the top right. Distributions that show a lack of skew (i.e. normal distributions) plot towards the centre of the parabola. Volcanic
and porphyry age distributions therefore generally skew towards younger ages, whereas plutonic age distributions skew towards

older ages.
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Figure 5. Results of PCA on the W, ID-TIMS zircon U-Pb dissimilarity matrix. Each data point indicates one U-Pb age distribution (i.e.
one sample or unit) for a magmatic system. The percentage variance that each principal component accounts for is given. Three inset graphs

represent KDEs of skew normal distribution with varying values of skew (-100, 0 and 100) for comparison with natural distributions.

4 Discussion
4.1 Controlling factors on zircon age distributions
4.1.1 Analytical factors

As discussed previously, the ability to resolve geological dispersion from an age distribution depends strongly on At/c. The
apparent At /o threshold applied to our database (> 10) aims to reduce the number of age distributions which are dominated by
analytical uncertainty. I<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>