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Abstract. Isochrons are usually fitted by ‘York regression’, which uses a weighted least squares approach that accounts for

correlated uncertainties in both variables. Despite its tremendous popularity in modern geochronology, the York algorithm has

two important limitations that reduce its utility in several applications. First, it does not provide a satisfactory mechanism to

deal with so-called ‘errorchrons’, i.e. datasets that are overdispersed with respect to the analytical uncertainties. Second, York

regression is not readily amenable to anchoring, in which either the slope or the intercept of the isochron is fixed based on some5

external information. Anchored isochrons can be very useful in cases where the data are insufficiently spread out to constrain

both the radiogenic and non-radiogenic isotopic composition.

This paper addresses both of these issues by extending a maximum likelihood algorithm that was first proposed by Titter-

ington and Halliday (1979, Chemical Geology 26.3-4: 183-195). The new algorithm offers the ability to attribute any excess

dispersion to either the inherited component (‘model 3a’) or to diachronous closure of the isotopic system (‘model 3b’). It10

provides an opportunity to anchor isochrons either to a fixed nonradiogenic composition or a fixed age. Last but not least, it

allows the user to attach meaningful analytical uncertainty to the anchor. The new method has been implemented in IsoplotR

for immediate use in Ar/Ar, Pb/Pb, U/Pb, Th/Pb, Rb/Sr, Sm/Nd, Lu/Hf, Re/Os, K/Ca and U-Th-He geochronology.

1 Introduction

Isochrons are mixing lines between radiogenic and inherited isotopic endmembers. They are an essential component of radio-15

metric geochronology and exist in several forms. Sections 1–7 of this paper will deal with the simple case of ‘P/D-isochrons’,

which apply to geochronometers that are based on the decay of a single radioactive parent nuclide (P ; e.g., 87Rb, 40K, 147Sm)

to a particular daughter nuclide (D; e.g., 87Sr, 40Ar, 143Nd). Sections 8 and 9 will discuss Pb/Pb- and U/Pb-isochrons, respec-

tively. These are based on the paired decay of two parents (238U and 235U) to two daughters (206Pb and 207Pb, respectively)

and require linear regression in two or three dimensions.20

P/D-isochrons come in two types. ‘Conventional’ isochrons are straight line relationships of the following kind:[
D

d
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i
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i

(
eλt − 1

)
(1)

where i is the aliquot number (1≤ i≤ n), d is a non-radiogenic sister isotope of D, [D/d]0 is the inherited component, λ is the

decay constant and t is the time elapsed since isotopic closure. A full list of definitions is provided in Appendix A. ‘Inverse’
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isochrons are obtained by permuting P , D and d:25 [
d
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(2)

The choice between conventional and inverse isochrons depends on the relative precision of the mass spectrometer measure-

ments. Inverse isochrons are preferred if d≪D. Otherwise, conventional isochrons are fine (Li and Vermeesch, 2021).

Equations 1 and 2 can be recast into a generic linear form:

yi = a+ bxi (3)30

Table A1 maps the parameters of this generic equation to the parameters of Equations 1, 2 and subsequent variants thereof.

Equation 3 is usually solved by York et al. (2004) regression (hereafter simply referred to as ‘York regression’). York regression

uses a least squares algorithm to estimate the intercept (a) and slope (b) of the isochron line from an n×5 table of paired isotopic

ratio measurements, their standard errors and their error correlations.

Although this paper will use the York parameters a and b to fit the isochron, all results will be presented in terms of the35

geologically more meaningful inherited endmember ratio [D/d]0 and radiogenic endmember ratio [D/P ]∗ ≡ eλt − 1, where

[D/d]0 = a and [D/P ]∗ = b for conventional isochrons, and [D/d]0 = 1/a and [D/P ]∗ =−b/a for inverse isochrons (Li and

Vermeesch, 2021).

The most accurate and precise results are obtained from samples that are evenly spread along the isochron line, spanning

the entire range of values from the inherited to the radiogenic endmember. Unfortunately, this condition is not always fulfilled.40

It is not uncommon for most or all aliquots in a sample to cluster together at one point along the isochron, making it difficult

to accurately estimate the endmember compositions. For example, no precise isochron ages can be obtained from samples

whose radiogenic daughter component is dwarfed by the inherited daughter component. Conversely, the composition of the

inherited component cannot be precisely estimated in extremely radiogenic samples. Finally, when the data cluster together in

the middle, then neither endmember component can be reliably determined (Figure 1).45

Sometimes, such poorly constrained isochrons can be fixed using external information. For example, if the composition of

the inherited component is known through some independent means (e.g., by analysing a cogenetic mineral that is naturally

poor in P and rich in D and d), then this information can be used to anchor the isochron. Anchoring reduces the number of

unknown parameters by one, benefitting numerical stability and precision. Conversely, if the age of the sample is known, then

the inherited component can be estimated by anchoring to the radiogenic endmember.50

There currently exists no formally documented way to anchor York regression. A commonly used ‘hack’ is to add an extra

data point with infinite precision representing either the inherited or radiogenic endmember component. However, this hack

does not provide a satisfactory mechanism to assign uncertainty to the anchor. This paper solves that problem. Section 2 intro-

duces a maximum likelihood formulation of York regression, which is amenable to anchoring with uncertainty. Section 3 shows

how this formulation can be used to model ‘errorchrons’ that are overdispersed with respect to the analytical uncertainties.55
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Section 4 provides further details about the implementation of maximum likelihood regression, which can attribute overdis-

persion to either the intercept (‘model 3a’) or slope (‘model 3b’) of the linear fit. It turns out that model 3b is computationally

more challenging than model 3a. Section 5 shows how this issue can be avoided by inverting and flipping the isochron axes.

Section 6 shows how anchored isochron regression represents a trivial special case of the maximum likelihood algorithm.

Section 7 attaches two different geological interpretations to the uncertainty of isochron anchors. These two interpretations60

lead to two different fit models (‘model 1’ and ‘model 3’, which are so named for historical reasons). Sections 8 and 9 apply

the same logic to Pb/Pb and U/Pb isochrons, respectively. Finally, Section 10 shows how the new algorithms can be used within

the IsoplotR software package.
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Figure 1. P/D-isochron diagrams for a synthetic dataset generated using the procedures of Appendix B. The true slope and intercept are a= 1

and b= 1 for the conventional isochrons (i–iii), and a= 1 and b=−1 for the inverse isochrons (iv–vi). These parameter values correspond

to [D/d]0 = [D/P ]∗ = 1. The true trends are shown as dashed lines and the estimated trends as solid lines, with 95% confidence envelopes

shown in grey. The estimated parameter values are shown above the panels. Unconstrained isochron regression (i and iv) yields imprecise

and inaccurate results. Fixing the inherited component (ii and v) or the radiogenic component (iii and vi) greatly improves both aspects of

the fit.
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2 Maximum likelihood formulation of York regression

York et al. (2004) use the method of least squares to fit the general problem of weighted regression with correlated uncertainties65

in both variables. Titterington and Halliday (1979) obtained identical results using the method of maximum likelihood. The

latter approach offers greater flexibility than least squares and will be used in the remainder of this paper.

The method of maximum likelihood is a standard statistical technique to estimate the parameters of a probability distribution

from a set of measurements. In the case of two-dimensional isochron regression, the parameters are the intercept a, the slope

b and the true (but unknown) xi-values. The data are the Xi and Yi-measurements along with their assumed uncertainties and70

error correlations (see Appendix A for a full list of definitions). For a dataset of n aliquots, there are 2n measurements (n

Xi-values and n Yi-values) and n+2 parameters (a, b and n xi-values). That leaves 2n−n− 2 = n− 2 ‘degrees of freedom’

to estimate the parameters.

This overconstrained problem can be solved by minimising the paired differences (‘residuals’) between the true xi- and

yi-values (where yi = a+ bxi) and the measured Xi- and Yi-values:75 Xi = xi + ϵx,i

Yi = a+ bxi + ϵy,i

(4)

To make the problem tractable, the vector of residuals ∆i is assumed to be drawn from a bivariate normal distribution with

zero mean and covariance matrix Σi:

∆i ≡

Xi −xi

Yi − yi

=

ϵx,i
ϵy,i

 and Σi ≡

 s[Xi]
2 s[Xi,Yi]

s[Xi,Yi] s[Yi]
2

 . (5)

The product of the normal probabilities for all the aliquots (from 1≤ i≤ n) is called the ‘likelihood’ of the parameters given80

the data. Maximising this number produces the most accurate possible parameter estimates â, b̂ and x̂i. Alternatively, and

equivalently, the same estimates can be obtained by maximising the logarithm of the likelihood. This is the preferred approach

as it improves numerical stability and facilitates the estimation of the parameter uncertainties. The log-likelihood function can

be formally defined as:

LL(parameters|data) =−1

2

n∑
i=1

(
2π+ ln |Σi|+∆T

i Σ
−1
i ∆i

)
(6)85

This formulation allows for correlated uncertainties between the variables (s[Xi,Yi] ̸= 0 in Equation 5), but not between

aliquots (s[Xi,Yj ] = 0 if i ̸= j). Daëron and Vermeesch (2023) discuss the generalised case of ‘omnivariant’ regression, where

this requirement has been relaxed and Equation 6 is replaced with a single matrix expression.

3 Dealing with overdispersion

The degree to which the residuals ∆i are consistent with the assumed analytical uncertainties Σi can be assessed using a90

Chi-square test and MSWD parameter. Readers who are not familiar with these concepts are referred to Appendix C for

4



details. Isochrons that exhibit significant overdispersion with respect to the analytical uncertainties are colloquially referred to

as ‘errorchrons’. Whether it is right to use such a pejorative term for this common phenomenon is debatable (Schaen et al.,

2021). Four approaches may be used to deal with errorchrons:

model 1: Inflate the analytical uncertainties by a factor
√

MSWD.95

model 2: Ignore the analytical uncertainties and replace York regression with orthogonal regression or a similar technique.

This approach will not be discussed further in this paper.

model 3: Quantify the dispersion as an additional free parameter. There are two options for doing so:

model 3a: Attribute the excess dispersion to variability of the inherited component and, hence, the isochron intercept.

For conventional isochrons, this means that the true isotopic ratios of the cogenetic aliquots do not belong to a single100

isochron line, but to a family of parallel isochron lines whose intercepts are normally distributed (Titterington and

Halliday, 1979). The standard deviation of this normal distribution (σa) can be used to quantify the dispersion of

the data around the ‘central’ isochron line.

model 3b: Attribute the excess dispersion to diachronous closure of the isotopic system. This mechanism produces

families of conventional isochrons that share a common intercept but differ in their slopes. Again, the distribution105

of the slopes can be assumed to follow a normal distribution, with mean b and standard deviation σb. The latter

value can be used to quantify the dispersion of the data, which in this case captures the degree of diachroneity.

Model 3a isochron regression can be formalised by modifying Equation 4 as follows:Xi = xi + ϵx,i

Yi = a+ bxi + ϵa + ϵy,i

(7)

The dispersion parameter σa can be estimated (as σ̂a) by incorporating it into the covariance matrices:110

Σa,i ≡

 s[Xi]
2 s[Xi,Yi]

s[Xi,Yi] s[Yi]
2 +σ2

a

 . (8)

The equivalent expressions for model 3b regression areXi = xi + ϵx,i

Yi = a+(b+ ϵb)xi + ϵy,i

(9)

and

Σb,i ≡

 s[Xi]
2 s[Xi,Yi]

s[Xi,Yi] s[Yi]
2 +(xiσb)

2

 (10)115

respectively.
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4 Specific cases

Three specific cases of Equation 6 are of interest in the present discussion:

model 1: LL1(a,b,x|X,Y,Σ) = constant− 1
2

n∑
i=1

∆T
i Σ

−1
i ∆i

model 3a: LL3a(a,b,σa,x|X,Y,Σ) = constant− 1
2

n∑
i=1

(
ln |Σa,i|+∆T

i Σ
−1
a,i∆i

)
model 3b: LL3b(a,b,σb,x|X,Y,Σ) = constant− 1

2

n∑
i=1

(
ln |Σb,i|+∆T

i Σ
−1
b,i∆i

) (11)

Note that the (logged) determinant of the covariance matrices is not included in the constant for model 3 fits, because Σa,i120

and Σb,i are both functions of x, whereas Σi is not. LL can be numerically maximised using an iterative two-step procedure.

For model 1 regression, the first step maximises LL1(x|a,b,X,Y,Σ) to find x for any pair of a- and b-values. The second

step repeats the first step for different values of a and b until the overall optimum is reached.

This procedure can easily be adapted to model 3 regression, by adding σa or σb to the unknown parameters. It works well

for model 3a, where the first step has a direct solution. However, it is slow for model 3b regression, in which finding x requires125

an additional level of iteration. See Appendix D for further details. Fortunately, in practice model model 3b is rarely or never

needed for geochronology, as explained next.

5 Flipped isochron regression

For inverse isochrons, model 3b regression does not actually provide any useful information. Unlike conventional isochrons,

whose chronological information is contained in the slope, the chronological information of inverse isochrons is contained in130

their horizontal intercept. This information can be unlocked by flipping the axes of the isochron diagram around, inverting

the isochron, and treating the D/P-ratio as the dependent variable. Applying model 3a regression to the flipped data yields a

dispersion estimate σa that can be used to quantify the age dispersion.

The same trick can be used to estimate the slope uncertainty of a conventional isochron. A pragmatic way to avoid the slow

convergence rate of model 3b regression is to carry out the numerical optimisation in inverse isochron space, flip the dependent135

and independent variables around, invert the isochron a second time and carry out a model 3a regression on the transformed

data. The resulting σa-estimate can be converted to a σb-estimate:

σ̂b(conventional isochron)≈ σ̂a

â2
(flipped inverse isochron) (12)

Figure 2 applies model 3 regression to two synthetic Ar–Ar datasets with a non-radiogenic 40Ar/36Ar-ratio of 400 and an

age of 100Ma. The dataset of Figure 2.i exhibits overdispersion of the y-intercept ([40Ar/36Ar]0 = 400,σa = 40), whereas the140

dataset of Figure 2.ii is overdispersed in the x-intercept (t= 100Ma, σt = 10Ma). In both cases, the maximum likelihood

algorithm has retrieved the correct solution from the noisy data.
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Figure 2. Model-3 regression of two synthetic Ar–Ar datasets. (i) model 3a regression through 100 randomly drawn aliquots from an isochron

with a true non-radiogenic 40Ar/39Ar-ratio of 400± 40 (1σ) and a true age of 100Ma; (2) model 3b regression through 100 aliquots from

an isochron with a true non-radiogenic 40Ar/39Ar-ratio of 400 and a true age of 100± 10Ma (1σ). Error bars on the y- and x-axis show the

overdispersion at 95% confidence.

6 Anchored isochron regression

Anchored isochron regression requires just a trivial modification of the maximum likelihood algorithm. It suffices to treat

the anchored parameter as data. For example, the slope and intercept of a model 1 isochron can be anchored by maximising145

LL1(a,x|b,X,Y,Σ) and LL1(b,x|a,X,Y,Σ), respectively. Note that these calculations assume that the anchor is known

exactly. This is reflected in the zero uncertainties of the nonradiogenic component Figures 1.ii and 1.v, and of the radiogenic

components of Figures 1.iii and 1.vi. Such absolute certainty is unrealistic in the noisy world of geology. Section 7 introduces

two ways to formally account for uncertainty in anchored isochron regression.

7 Accounting for anchor uncertainty150

When assigning uncertainty to statistical parameters, it is important to clearly define the meaning of this uncertainty. In the

case of anchored isochron regression, the uncertainty of the intercept or slope can carry two meanings. For example, when the

intercept of an isochron is anchored at a value ā±σā, this can either mean that:

model 1: the data are underlain by a single isochron whose intercept is only approximately known, with a most likely value

of ā and a precision (standard error) of σā.155
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model 3: the data were drawn from a family of isochron lines whose intercepts follow a normal distribution with mean ā and

standard deviation σā.

These two different approaches can be implemented by replacing the log-likelihood functions of Equation 11 with

model 1: LL1(a,b,x|ā,σā,X,Y,Σ) = constant+LL1(a,b,x|X,Y,Σ)− 1
2

(
a−ā
σā

)2

model 3: LL3a(b,x|ā,σā,X,Y,Σ)
(13)

The equivalent expressions for anchored slopes with uncertainty are160

model 1: LL1(a,b,x|b̄,σb̄,X,Y,Σ) = constant+LL1(a,b,x|X,Y,Σ)− 1
2

(
b−b̄
σb̄

)2

model 3: LL3b(a,x|b̄,σb̄,X,Y,Σ)
(14)

Note that model 1 treats the slope and intercept as unknowns, so their maximum likelihood estimates generally do not equal

the anchored values ā and b̄. However, the smaller σā and σb̄ are relative to ā and b̄, the closer that â and b̂ are to ā and b̄. In

contrast, anchored model 3 regression fixes the dispersion of the anchored parameters, so that σ̂a = σā for anchored intercepts,

whereas σ̂b = σb̄ for anchored slopes.165

Figure 3 applies the two approaches to the synthetic dataset of Figure 1, using anchors of [D/d]0 = 1± 0.05 and [D/P ]∗ =

1±0.05 (1σ). As expected, models 1 and 3 produce slightly different outcomes, with model 1 resulting in [D/d]0- and [D/P ]∗-

estimates that are slightly different than the anchored values, whereas model 3 reproduces the anchors exactly. The model 3 fits

produce more precise estimates for the unanchored quantities. This reflects the fact that some of the uncertainty in the isochron

is captured by the dispersion parameter, which is absent from the model 1 fit.170

Model 3 partitions the analytical and geological uncertainty between the standard errors of â and b̂ on the one hand, and the

dispersion parameter on the other hand. It is not easy to visualise this partitioned uncertainty. Figure 3 uses a grey confidence

envelope to show the analytical uncertainty, and black error bars to visualise the geological dispersion. Together these two

items represent the total uncertainty budget.

It is, of course, also possible to treat the dispersion parameter as an unknown by maximising LL3a(b,σa,x|ā,X,Y,Σ) or175

LL3b(a,σb,x|b̄,X,Y,Σ). Section 9 will give an example of this in the context of U–Pb geochronology.

8 Pb/Pb isochrons

The 207Pb/206Pb-method is based on the paired decay of two radioactive parents P1 and P2 (238U and 235U) to two daughters

D1 and D2 (206Pb and 207Pb, respectively) in the presence of a non-radiogenic sister isotope d (204Pb). This gives rise to the

following implicit age equation:180

[D2/d]i − [D2/d]0
[D1/d]i − [D1/d]0

=

[
P2

P1

]
eλ2t − 1

eλ1t − 1
(15)
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Figure 3. Anchored isochrons for the data of Figure 1, shown on inverse isochrons. Panels i and ii anchor the non-radiogenic endmember

composition to [D/d]0 = 1±0.05 (1σ). Panels iii and iv anchor the radiogenic endmember composition to [D/P ]∗ = 1±0.05 (1σ). Panels i

and iii use model 1 isochron regression, whereas panels ii and iv use model 3. Note how the estimated values for [D/d]0 and [D/P ]∗ are

exactly the same as the anchored values for model 3, but not for model 1. The vertical error bar in panel ii and the horizontal error bar on

panel iv represent the fixed dispersion of the vertical and horizontal intercept, respectively.

where λ1 and λ2 are the decay constants of P1 and P2, respectively, and [P2/P1] is constant. Equation 15 can be recast into

the generic form of Equation 3 to form a ‘D/D-isochron’ using the mapping of Table A1. This gives rise to conventional

(207Pb/204Pb vs. 206Pb/204Pb) and inverse (207Pb/206Pb vs. 204Pb/206Pb) isochrons.

Unlike inverse P/D-isochrons, which are characterised by negative slopes, inverse D/D-isochrons have positive slopes. There185

is a perfect symmetry between conventional and inverse D/D-isochrons in the sense that the intercept of a conventional isochron

equals the slope of an inverse isochron and vice versa. This slightly changes and, in fact, simplifies the procedure for anchored

isochron regression.
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There is no need for flipped isochron regression of Pb/Pb data. Instead, all possible scenarios can be handled by straightfor-

ward model 1 and model 3a regression. Isochrons can be anchored to the nonradiogenic component in conventional isochron190

space, and to the radiogenic component in inverse isochron space.

9 U/Pb isochrons

The U/Pb method, like the Pb/Pb method, is based on the paired decay of 238U to 206Pb and of 235U to 207Pb. The two

chronometers can be treated separately and plotted as P/D-isochrons. These two-dimensional isochrons can be anchored to the

radiogenic and nonradiogenic composition using the methods described in Sections 2–7.195 
[

206Pb
204Pb

]
i
=
[

206Pb
204Pb

]
0
+
[

238U
204Pb

]
i

(
eλ238t − 1

)[
207Pb
204Pb

]
i
=
[

207Pb
204Pb

]
0
+
[

235U
204Pb

]
i

(
eλ235t − 1

) (16)

Alternatively, the two ingrowth equations can also be coupled, forming a three dimensional ‘total-Pb/U isochron’. This

problem can be solved using the method of maximum likelihood (Ludwig, 1998). There is just one important difference

between this solution and the York-like algorithm of Section 2. York regression is formulated in terms of a generic intercept

(a) and slope (b). In contrast, the ‘Ludwig’ algorithm is formulated in terms of the actual non-radiogenic 206Pb/204Pb (= α)200

and 207Pb/204Pb (=β) ratio, as well as the age (t) of the system.

It is relatively straightforward to generalise the concept of model 3 regression to total-Pb/U isochrons when the dispersion

is attributed to the isochron age. However, it is not immediately clear how to do the same for the nonradiogenic composition,

because this would require partitioning the dispersion between the α- and β-parameters. This paper will not attempt to answer

this question. Instead, let us conclude the technical discussion by shifting to a far more common type of U/Pb data.205

Most published U/Pb studies do not report 204Pb because this nuclide is rare and difficult to measure. Instead, ‘semitotal-

Pb/U’ regression is done in Wetherill or Tera-Wasserburg concordia space, which are akin to conventional and inverse isochron

space, respectively. In the absence of a nonradiogenic sister isotope of Pb, the isochron is then redefined as as a mixing line

between an inherited 207Pb/206Pb-ratio and the radiogenic 206Pb/238U- and 207Pb/235U-ratios.

The semitotal-Pb/U problem can be cast into a maximum likelihood format by replacing Equation 4 with210 Xi = xi + eλ235t − 1+ ϵx,i

Yi = a+ bxi + ϵy,i

(17)

where Xi and Yi are the measured 207Pb/235U- and 206Pb/238U-ratios of the ith aliquot, respectively; xi is the true 207Pb0/235U-

ratio of the ith aliquot; a= eλ238t − 1 and b= [206Pb/207Pb]0[235U/238U]. Equation 17 can be solved using the same recipe

as the York reformulation of Sections 2–7, with the caveat that the isochron terminates on the concordia line at the U/Pb

composition corresponding to t.215
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Figure 4 shows a model 3a anchored semitotal-Pb/U isochron in Tera-Wasserburg space. The true age for this synthetic

dataset is 1500 Ma. The unconstrained model 1 isochron produces an imprecise isochron age of 1491± 100 Ma, which is

improved to 1504± 38 Ma by anchoring to [207Pb/206Pb]0 = 1.1. Just like the P/D-isochrons of Figure 3, the uncertainty

budget for the U/Pb-isochrons of Figure 4 is partitioned between the analytical and geological dispersion, where the latter is

treated as a free parameter with a maximum likelihood estimate of σ̂a = 0.053± 0.026.220
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Figure 4. Model 3a semitotal-Pb/U isochron for a synthetic dataset with a true age t= 1500 Ma, anchored to 207Pb/206Pb= 1.10 with the

dispersion parameter treated as a free parameter.

10 Implementation in IsoplotR

All the algorithms presented in this paper have been implemented in the free and open geochronological toolbox IsoplotR

(Vermeesch, 2018). The ability to fit isochrons with models 1, 2 and 3 dates back to IsoplotR’s first public release. Versions 2.1

and 5.2 added model 1 anchors to U/Pb ischrons without and with uncertainty, respectively. Anchored York regression and

model 3 anchors with uncertainty were added to IsoplotR 6.0. These funtions can be accessed via the GUI or from the command225

line.

In the GUI, anchored regression is available from the ‘isochron’ menu (so not from the ‘concordia’ menu for U/Pb data). The

relevant settings can be selected from the ‘Options’ menu and should be self explanatory. Using a built-in 40Ar/39Ar-dataset to

illustrate the command-line functionality, and starting with an unanchored inverse isochron fit using York regression:

library(IsoplotR)230
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attach(examples)

isochron(ArAr)

To carry out model 3a isochron regression anchored to a variable initial 40Ar/36Ar-ratio of 300± 5 (1σ):

settings('iratio','Ar40Ar36',300,5)

isochron(ArAr,anchor=1,model=3,taxis=TRUE)235

where settings(. . .) is used to change the atmospheric argon composition, anchor=1 fixes the isochron to the inherited

component, model=3 tells IsoplotR to assign the dispersion to the reported uncertainty of the atmospheric 40Ar/36Ar-ratio,

and taxis=TRUE changes the x-axis to a time scale (as in Figure 2).

Finally, to carry out model 3b isochron regression anchored to a radiogenic composition that was set at 62± 1 Ma (1σ):

isochron(ArAr,anchor=c(2,62,1),model=3,taxis=TRUE)240

The dispersion can be changed to a free parameter by setting the third element of the anchor argument to a non-positive

value. Documentation for additional options and settings can be accessed from the console, using the help(isochron) or

?isochron commands.

11 Conclusions

This paper builds on previous work by McIntyre et al. (1966), Titterington and Halliday (1979) and Ludwig (2003). McIntyre245

et al. (1966) introduced the concept of model 3 isochron regression, attributing the excess dispersion of errorchrons to vari-

ability of the inherited component. This approach is implemented in Isoplot (Ludwig, 2003) and is referred to as model 3a

regression in this paper. Note that McIntyre et al. (1966)’s definition of model 2 regression differs from that of Ludwig (2003).

It is more akin (but not identical) to the
√

MSWD approach of Section 3.

Titterington and Halliday (1979) recast the model 3 algorithm of McIntyre et al. (1966) in a maximum likelihood framework.250

This paper extends the maximum likelihood approach to a second type of geological scenario, in which excess dispersion of

the data around the isochron is not attributed to the inherited component but to the radiogenic component. This approach is

referred to as model 3b regression.

The maximum likelihood formulation of isochron regression can also be used to anchor isochrons to either the inherited or

the radiogenic component, and to assign geologically meaningful uncertainty to the anchor. In reality it is possible that some255

samples are affected by both mechanisms, so that different aliquots of the same sample differ in their initial ratios as well as

the timing of their isotopic closure. Unfortunately, it is not possible to simultaneously capture both types of dispersion using

the algorithms of this paper.

The difference between model 1 and model 3 regression represents two contrasting views of geological reality. The model 1

approach assumes that the isotopic composition of minerals represents discrete components recorded at distinct events. In260
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contrast, model 3 isochrons represent a ‘fuzzier’ reality, in which the initial composition or timing of isotopic closure are

allowed to vary within a rock. Under the latter model, the concept of an ‘errorchron’ no longer makes sense.

Code availability. IsoplotR is available from CRAN (https://CRAN.Rproject.org/package=IsoplotR) and GitHub (https://github.com/pvermees/IsoplotR)

Appendix A: Definitions

P : a radioactive parent (e.g., 87Rb).265

D: the radiogenic daughter of P (e.g., 87Sr).

d: a non-radiogenic sister isotope of D (e.g., 86Sr).

a, b, xi, yi: the true (but unknown) values of the intercept, slope and isotopic ratio of the ith aliquot (out of n aliquots) from a

sample.

â, b̂, x̂i, ŷi: the estimated values of a, b, xi and yi, respectively.270

Xi, Yi: the measured values of xi and yi, respectively.

s[Xi], s[Yi], s[Xi,Yi]: the standard errors and covariance of Xi and Yi.

ϵx,i =Xi −xi, ϵy,i = Yi − yi: the residuals of the data around the best fit line.

Σi: the 2× 2 covariance matrix of Xi and Yi

x, y, X, Y, Σ: arrays and sets containing all n xi, yi, Xi, Yi and Σi-values.275

All uncertainties in this paper are reported as 95% confidence intervals except if noted otherwise.

Table A1. Assignment of the isotopic ratios for P/D- and D/D-isochrons to the generic parameters of Equation 3.

P/D D/D

parameter conventional inverse conventional inverse

xi [P/d]i [P/D]i [D1/d]i [d/D1]i

yi [D/d]i [d/D]i [D2/d]i [D2/D1]i

a [D/d]0 [d/D]0 [D2/d]0 [D2/D1]
∗

b [D/P ]∗ −[d/D]0/[P/D]∗ [D2/D1]
∗ [D2/d]0
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Appendix B: Data

The synthetic data of Figures 1 and 3 were generated as follows:

1. Generate x by drawing ten random numbers from a logit-normal distribution where the mean and standard deviation of

the logits are 0 and 1/5, respectively.280

2. Generate y by plugging x into Equation 3 with a= b= 1.

3. Turn the resulting ten pairs of {xi,yi}-values into ten trios of {Pi,Di,di}-values where di is a random number between

100 and 500.

4. Use each of the {Pi,Di,di}-values obtained in the previous step as parameters for a Poisson experiment.

5. Use the Poisson values obtained in the previous step to form ten pairs of X- and Y-measurements and their (correlated)285

uncertainties.

6. Add some excess dispersion by shrinking the uncertainties by 20%.

Note that this procedure fits the definition of a model 1 isochron, even though panels (ii) and (iv) of Figure 3 use the resulting

data to illustrate model 3 regression. The synthetic data of Figures 2 and 4 are generated using a slightly different algorithm that

simulates model 3a and 3b overdispersion. This modified procedure uses steps 1 and 3–5 of the procedure for Figure 1 whilst290

replacing step 2 with a random effects model, in which a and b are drawn from random normal distributions with standard

deviations corresponding to the dispersion parameter σā (10% for Figure 2.i and 5% for Figure 4) and σb̄ (10% for Figure 2.ii).

Appendix C: Testing overdispersion

Whether a dataset is overdispersed with respect to the analytical uncertainties can be formally assessed using the Chi-statistic

and test. To this end, calculate the χ2-statistic using the sum of squares term of Equation 6.295

χ2 =

n∑
i=1

∆T
i Σ

−1
i ∆i (C1)

If analytical uncertainty is the only source of dispersion in the dataset, then χ2 is expected to follow a Chi-square distribution

with df = n− 2 (or, for anchored regression, df = n− 1) degrees of freedom. This is called the ‘null distribution’. The proba-

bility of observing a value greater than χ2 under this distribution is called the p-value. A p-value cutoff of 0.05 is generally used

to distinguish isochrons (p≥ 0.05) from errorchrons (p < 0.05). Dividing Equation C1 by the number of degrees of freedom300

(df ) produces a ‘reduced Chi-square statistic’, which is known to geologists as an MSWD (McIntyre et al., 1966):

MSWD =
χ2

df
(C2)

In the absence of overdispersion, and for sufficiently large samples (n > 20), the expected null distribution of the MSWD

is approximately normal with a mean of 1 and a standard deviation
√
2/df (Wendt and Carl, 1991). This information can be

used as an alternative way to test the null hypothesis.305
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Appendix D: Further details about the maximum likelihood solution

Section 4 described how the log-likelihood functions of Equation 11 can be maximised in a two step process: (1) find the xi-

values that maximise LL for any pair of a- and b-values, and (2) search the space of a- and b- values until the overall maximum

is found. For model 1 regression, the first step has a direct solution. Introducing some shorthand notation for the inverse of the

covariance matrix Σi:310

Σ−1
i ≡

Ωi
1,1 Ωi

1,2

Ωi
2,1 Ωi

2,2

 , (D1)

where Ω1,2 =Ω2,1. The fitted points xi can be found by solving:

∂LL1

∂xi

∣∣∣∣
x̂i

= 0 (D2)

which yields

x̂i =
Xi(Ω

i
1,1 + bΩi

1,2)+ (Yi − a)(Ωi
2,1 + bΩi

2,2)

(Ωi
1,1 + bΩi

1,2)+ b(Ωi
2,1 + bΩi

2,2)
. (D3)315

The same approach can be used for model 3a regression (with ∂LL3a|/∂xi = 0). However, it does not work for model 3b

isochrons because ∂2LL3b/∂xi∂xj ̸= 0 when i ̸= j. Therefore, the xis are interdependent and cannot be solved separately.

Although it is possible to jointly optimise the entire x-vector, this takes considerably longer than model 1 and model 3a

regression. Fortunately, as explained in Section 5, model 3b regression can be reformulated in terms of the model 3a algorithm.
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