Preprints
https://doi.org/10.5194/gchron-2024-3
https://doi.org/10.5194/gchron-2024-3
16 Feb 2024
 | 16 Feb 2024
Status: this preprint is currently under review for the journal GChron.

A method for quantifying the time of cooling in thermochronometric inversions

Kalin T. McDannell and C. Brenhin Keller

Abstract. Reconstructing geological processes and events from thermochronometric data typically requires the interpretation of time-temperature path ensembles calculated by inverse methods. Commonly, this may be as simple as associating heating or cooling in thermal histories with specific geologic events and indirectly "dating" such events by estimating the time of observed heating or cooling. While visual assessments may suffice in the simplest cases, statistical comparison requires quantitative estimations of the time of cooling. This study presents a straightforward methodology wherein we ascertain the time of peak cooling for the entire cooling signal within a thermal history model. The focus is on the time-temperature paths intersecting the half-maximum cooling isotherm, where the full distribution of interpolated model times at that isotherm provides a quantitative metric for the characteristic "time of cooling". We apply this method to thermochronologic inversions of synthetic and natural examples, demonstrating its practicality and functionality. This systematic approach provides an effective means of quantitatively reporting the peak cooling time from thermal history inversions.

Kalin T. McDannell and C. Brenhin Keller

Status: open (until 13 May 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Kalin T. McDannell and C. Brenhin Keller
Kalin T. McDannell and C. Brenhin Keller

Viewed

Total article views: 415 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
346 62 7 415 7 6
  • HTML: 346
  • PDF: 62
  • XML: 7
  • Total: 415
  • BibTeX: 7
  • EndNote: 6
Views and downloads (calculated since 16 Feb 2024)
Cumulative views and downloads (calculated since 16 Feb 2024)

Viewed (geographical distribution)

Total article views: 415 (including HTML, PDF, and XML) Thereof 415 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 01 May 2024
Download
Short summary
We introduce a new statistical method for determining the time of "peak cooling" in thermochronological inversions. Specifically, we focus on the time-temperature paths that intersect the half-maximum cooling isotherm, signifying the zenith or most rapid cooling within a defined interval. The resultant interpolated time distribution provides a systematic metric, particularly applicable for evaluating model cooling characterized by relatively smooth histories featuring a single inflection point.