Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-273-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-273-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Eruptive history and 40Ar∕39Ar geochronology of the Milos volcanic field, Greece
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Klaudia Kuiper
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Jan Wijbrans
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Katharina Boehm
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Pieter Vroon
CORRESPONDING AUTHOR
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Related authors
No articles found.
Pieter Zeger Vroon, Teun Beemster, Xiaolong Zhou, Paraskevi Nomikou, Martijn Klaver, Jan R. Wijbrans, and Klaudia F. Kuiper
EGUsphere, https://doi.org/10.5194/egusphere-2025-4857, https://doi.org/10.5194/egusphere-2025-4857, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
The Christiana Islands represents the oldest subaerial volcanism in the Christiana-Santorini-Kolombo volcanic field, but the exact age of this volcano has been unknown. This study reports new 40Ar/39Ar ages of ten volcanic samples from Christiana Island that cluster between 2.5–2.7 Ma with small uncertainties (0.02–0.14 Ma). One sample dated much younger: 133 ka; this is most likely derived from the Middle Pumice Plinian eruption of Santorini.
Akbar Aydin Oglu Huseynov, Jan Wijbrans, Klaudia Kuiper, and Jeroen van der Lubbe
Geochronology, 7, 173–197, https://doi.org/10.5194/gchron-7-173-2025, https://doi.org/10.5194/gchron-7-173-2025, 2025
Short summary
Short summary
This study explores quartz veins in Germany's Rursee area, formed during the Variscan Orogeny and later reactivated by tectonic activity in the Jurassic–Cretaceous period. Using advanced isotopic dating techniques, it examines how these veins influenced fluid flow and quartz recrystallization. By tackling the challenges of dating fluid activity, this research offers new insights into argon gas degassing in quartz minerals.
Katharina M. Boehm, Klaudia F. Kuiper, Bora Uzel, Pieter Z. Vroon, and Jan R. Wijbrans
Geochronology, 5, 391–403, https://doi.org/10.5194/gchron-5-391-2023, https://doi.org/10.5194/gchron-5-391-2023, 2023
Short summary
Short summary
The island of Patmos is situated in the southern Aegean Sea (Greece), just north of the present locus of active volcanism. The island is almost entirely built up of volcanic rocks that are 6.6 to 5.2 million years old. We obtain these ages with 40Ar / 39Ar dating technique on sanidine and biotite minerals. Our new age data indicate a geologically brief volcanic period (lasting less than 1.5 million years) that can be divided into three volcanic intervals and correlated to tectonics.
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Cited articles
Alfieris, D., Voudouris, P., and Spry, P. G.:
Shallow submarine epithermal Pb-Zn-Cu-Au-Ag-Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints,
Ore Geol. Rev.,
53, 159–180, https://doi.org/10.1016/j.oregeorev.2013.01.007, 2013.
Angelier, J., Cantagrel, J.-M., and Vilminot, J.-C.:
Neotectonique cassante et volcanisme plio-quaternaire dans l'arc egeen interne; l'ile de Milos (Grece),
B. Soc. Geol. Fr.,
7, 119–124, 1977.
Arias, A., Oddone, M., Bigazzi, G., Di Muro, A., Principe, C., and Norelli, P.:
New data for the characterization of Milos obsidians,
J. Radioanal. Nucl. Ch.,
268, 371–386, https://doi.org/10.1007/s10967-006-0183-9, 2006.
Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., and Zanettin, B.: A chemical classification of volcanic rocks based on the total alkali-silica diagram, J. Petrol., 27, 745–750, https://doi.org/10.1093/petrology/27.3.745, 1986.
Bigazzi, G. and Radi, G.:
Datazione con le tracce di fissione per l'identificazione della provenienza dei manufatti di ossidiana,
Riv. di Sci. Preist.,
36, 223–250, 1981.
Calvo, J. P., Triantaphyllou, M. V., Regueiro, M., and Stamatakis, M. G.:
Alternating diatomaceous and volcaniclastic deposits in Milos Island, Greece. A contribution to the upper Pliocene-lower Pleistocene stratigraphy of the Aegean Sea,
Palaeogeogr. Palaeocl.,
321–322, 24–40, https://doi.org/10.1016/j.palaeo.2012.01.013, 2012.
Campos Venuti, M. and Rossi, P. L.:
Depositional facies in the Fyriplaka rhyolitic tuff ring, Milos Island (Cyclades, Greece),
Acta Vulcanol.,
8, 173–192, 1996.
Cassata, W. S. and Renne, P. R.:
Systematic variations of argon diffusion in feldspars and implications for thermochronometry,
Geochim. Cosmochim. Ac.,
112, 251–287, https://doi.org/10.1016/j.gca.2013.02.030, 2013.
Cole, P. D., Calder, E. S., Sparks, R. S. J., Clarke, A. B., Druitt, T. H., Young, S. R., Herd, R. A., Harford, C. L., and Norton, G. E.:
Deposits from dome-collapse and fountain-collapse pyroclastic flows at Soufrière Hills Volcano, Montserrat,
Geol. Soc. London, Mem.,
21, 231–262, 2002.
Crosweller, H. S., Arora, B., Brown, S. K., Cottrell, E., Deligne, N. I., Guerrero, N. O., Hobbs, L., Kiyosugi, K., Loughlin, S. C., and Lowndes, J.:
Global database on large magnitude explosive volcanic eruptions (LaMEVE),
J. Appl. Volcanol.,
1, 4, https://doi.org/10.1186/2191-5040-1-4, 2012.
Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F., and Savaşçın, M. Y.: On the extension in western Anatolia and the Aegean sea On the extension in western Anatolia and the Aegean sea, J. Virtual Explor., 7, 167–181, https://doi.org/10.3809/jvirtex.2002.00049, 2002.
Druitt, T. H., Edwards, L., Mellors, R. M., Pyle, D. M., Sparks, R. S. J., Lanphere, M., Davies, M., and Barreirio, B.:
Santorini Volcano,
Geol. Soc. Mem.,
19, available at: http://pubs.er.usgs.gov/publication/70094778 (last access: 19 January 2021), 1999.
Druitt, T. H., Pyle, D. M., and Mather, T. A.:
Santorini Volcano and its Plumbing System,
Elements,
15, 177–184, https://doi.org/10.2138/gselements.15.3.177, 2019.
Duermeijer, C. E., Nyst, M., Meijer, P. T., Langereis, C. G., and Spakman, W.:
Neogene evolution of the Aegean arc: Paleomagnetic and geodetic evidence for a rapid and young rotation phase,
Earth Planet. Sc. Lett.,
176, 509–525, https://doi.org/10.1016/S0012-821X(00)00023-6, 2000.
Ferrara, G., Fytikas, M., Giuliani, O., and Marinelli, G.:
Age of the formation of the Aegean active volcanic arc, in: Thera Aegean world 2, The Classical Review, edited by: Doumas, C., The Thera Foundation, London, UK, 37–41, 1980.
Flowers, R. M., Bowring, S. A., Tulloch, A. J., and Klepeis, K. A.:
Tempo of burial and exhumation within the deep roots of a magmatic arc, Fiordland, New Zealand,
Geology,
33, 17–20, https://doi.org/10.1130/G21010.1, 2005.
Francalanci, L. and Zellmer, G. F.:
Magma Genesis at the South Aegean Volcanic Arc,
Elements,
15, 165–170, https://doi.org/10.2138/gselements.15.3.165, 2019.
Francalanci, L., Vougioukalakis, G. E., Fytikas, M., Beccaluva, L., Bianchini, G., and Wilson, M.:
Petrology and volcanology of Kimolos and Polyegos volcanoes within the context of the South Aegean arc, Greece,
Spec. Pap. Soc. Am.,
418, 33–65, https://doi.org/10.1130/SPE418, 2007.
Frey, H. M., Lange, R. A., Hall, C. M., and Delgado-Granados, H.:
Magma eruption rates constrained by chronology and GIS for the Ceboruco-San Pedro volcanic field, western Mexico,
Bull. Geol. Soc. Am.,
116, 259–276, https://doi.org/10.1130/B25321.1, 2004.
Fytikas, M.:
Geology and Geothermics of Milos Island,
Thesis,
Thessaloniki University, 228 pp., 1977 (in Greek with English summary).
Fytikas, M.:
Updating of the geological and geothermal research on Milos island,
Geothermics,
18, 485–496, https://doi.org/10.1016/0375-6505(89)90051-5, 1989.
Fytikas, M., Giuliani, O., Innocenti, F., Marinelli, G., and Mazzuoli, R.:
Geochronological data on recent magmatism of the Aegean Sea,
Tectonophysics,
31, T29–T34, https://doi.org/10.1016/0040-1951(76)90161-X, 1976.
Fytikas, M., Innocenti, F., Kolios, N., Manetti, P., Mazzuoli, R., Poli, G., Rita, F., and Villari, L.:
Volcanology and petrology of volcanic products from the island of Milos and neighbouring islets,
J. Volcanol. Geoth. Res.,
28, 297–317, https://doi.org/10.1016/0377-0273(86)90028-4, 1986.
Grasemann, B., Huet, B., Schneider, D. A., Rice, A. H. N., Lemonnier, N., and Tschegg, C.:
Miocene postorogenic extension of the Eocene synorogenic imbricated Hellenic subduction channel: New constraints from Milos (Cyclades, Greece),
Bull. Geol. Soc. Am.,
130, 238–262, https://doi.org/10.1130/B31731.1, 2018.
Grove, M. and Harrison, T. M.:
40Ar∗ diffusion in Fe-rich biotite,
Am. Mineral.,
81, 940–951, 1996.
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., and Smoczyk, G. M.:
Slab2, a comprehensive subduction zone geometry model,
Science,
362, 58–61, https://doi.org/10.1126/science.aat4723, 2018.
Hildreth, W. and Lanphere, M. A.:
Potassium–argon geochronology of a basalt–andesite–dacite arc system: The Mount Adams volcanic field, Cascade Range of southern Washington,
Geol. Soc. Am. Bull.,
106, 1413–1429, 1994.
Hildreth, W., Fierstein, J., and Lanphere, M.:
Eruptive history and geochronology of the Mount Baker volcanic field, Washington,
Geol. Soc. Am. Bull.,
115, 729–764, 2003a.
Hildreth, W., Lanphere, M. A., and Fierstein, J.:
Geochronology and eruptive history of the Katmai volcanic cluster, Alaska Peninsula,
Earth Planet. Sc. Lett.,
214, 93–114, https://doi.org/10.1016/S0012-821X(03)00321-2, 2003b.
Hora, J. M., Singer, B. S., Jicha, B. R., Beard, B. L., Johnson, C. M., de Silva, S., and Salisbury, M.:
Volcanic biotite-sanidine age discordances reflect Ar partitioning and pre-eruption closure in biotite,
Geology,
38, 923–926, https://doi.org/10.1130/G31064.1, 2010.
IJlst, L.:
A laboratory overflow-centrifuge for heavy liquid mineral separation,
Am. Mineral.,
58, 1088–1093, 1973.
Irvine, T. N. J. and Baragar, W. R. A.: A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 8, 523–548, 1971.
Jicha, B. R. and Jagoutz, O.:
Magma production rates for intraoceanic arcs,
Elements,
11, 105–112, https://doi.org/10.2113/gselements.11.2.105, 2015.
Kilias, S. P., Naden, J., Cheliotis, I., Shepherd, T. J., Constandinidou, H., Crossing, J., and Simos, I.:
Epithermal gold mineralisation in the active Aegen volcanic arc: The Profitis Ilias deposits, Milos Island, Greece,
Miner. Deposita.,
36, 32–44, https://doi.org/10.1007/s001260050284, 2001.
Koppers, A. A. P.:
ArArCALC-software for age calculations,
Comput. Geosci.,
28, 605–619, https://doi.org/10.1016/S0098-3004(01)00095-4, 2002.
Kornprobst, J., Kienast, J.-R., and Vilminot, J.-C.:
The high-pressure assemblages at Milos, Greece,
Contrib. Mineral. Petr.,
69, 49–63, https://doi.org/10.1007/bf00375193, 1979.
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R.:
Synchronizing Rock Clocks of Earth History,
Science,
320, 500–504, https://doi.org/10.1126/science.1154339, 2008.
Lee, J. K. W.:
Ar–Ar and K–Ar Dating BT,
in: Encyclopedia of Scientific Dating Methods,
edited by: Rink, W. J. and Thompson, J. W.,
Springer Netherlands, Dordrecht, pp. 58–73, 2015.
Lee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee, J. B., and Kim, J. S.:
A redetermination of the isotopic abundances of atmospheric Ar,
Geochim. Cosmochim. Ac.,
70, 4507–4512, https://doi.org/10.1016/j.gca.2006.06.1563, 2006.
Mark, D. F., Barfod, D., Stuart, F. M., and Imlach, J.:
The ARGUS multicollector noble gas mass spectrometer: Performance for geochronology,
Geochem. Geophy. Geosy.,
10, 1–9, https://doi.org/10.1029/2009GC002643, 2009.
Matsuda, J., Senoh, K., Maruoka, T., Sato, H., and Mitropoulos, P.:
K-Ar ages of the Aegean the volcanic rocks and arc-trench system their implication for the arc-trench system,
Geochem. J.,
33, 369–377, 1999.
McKenzie, D.:
Active tectonics of the Alpine–Himalayan belt: the Aegean Sea and surrounding regions,
Geophys. J. Int.,
55, 217–254, 1978.
Min, K., Mundil, R., Renne, P. R., and Ludwig, K. R.:
A test for systematic errors in geochronology,
Geochim. Cosmochim. Ac.,
64, 73–98, 2000.
Nicholls, I. A.:
Santorini volcano, greece – tectonic and petrochemical relationships with volcanics of the Aegean region,
Tectonophysics,
11, 377–385, https://doi.org/10.1016/0040-1951(71)90026-6, 1971.
Peccerillo, A. and Taylor, S. R.: Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey, Contrib. Mineral. Petrol., 58, 63–81, https://doi.org/10.1007/BF00384745, 1976.
Pe-Piper, G. and Piper, D. J. W.:
Neogene backarc volcanism of the Aegean: New insights into the relationship between magmatism and tectonics,
Geol. Soc. Am. Spec. Pap.,
418, 17–31, https://doi.org/10.1130/2007.2418(02), 2007.
Pe-Piper, G. and Piper, D. J. W.:
The effect of changing regional tectonics on an arc volcano: Methana, Greece,
J. Volcanol. Geoth. Res.,
260, 146–163, https://doi.org/10.1016/j.jvolgeores.2013.05.011, 2013.
Principe, C., Arias, A., and Zoppi, U.:
Origin, transport and deposition of a debris avalanche deposit of phreatic origin on Milos Island (Greece),
in: Montagne Pelee 1902–2002, Explosive Volcanism in Subduction Zones, Martinigue 12–16 May 2002, Abstracts p. 71, 2002.
Raffi, I., Wade, B. S., Pälike, H., Beu, A. G., Cooper, R., Crundwell, M. P., Krijgsman, W., Moore, T., Raine, I., and Sardella, R.:
The Neogene Period, Geologic Time Scale 2020, 2, 1141–1215, https://doi.org/10.1016/B978-0-12-824360-2.00029-2, 2020.
Rinaldi, M. and Venuti, M. C.:
The submarine eruption of the Bombarda volcano, Milos Island, Cyclades, Greece,
B. Volcanol.,
65, 282–293, https://doi.org/10.1007/s00445-002-0260-z, 2003.
Rivera, T. A., Storey, M., Zeeden, C., Hilgen, F. J., and Kuiper, K.:
A refined astronomically calibrated age for Fish Canyon sanidine,
Earth Planet. Sc. Lett.,
311, 420–426, https://doi.org/10.1016/j.epsl.2011.09.017, 2011.
Rontogianni, S., Konstantinou, K. I., Melis, N. S., and Evangelidis, C. P.:
Slab stress field in the Hellenic subduction zone as inferred from intermediate-depth earthquakes,
Earth Planets Space,
63, 139–144, https://doi.org/10.5047/eps.2010.11.011, 2011.
Schaen, A., Jicha, B., Hodges, K., Vermeesch, P., Stelten, M., Mercer, C., Phillips, D., Rivera, T., Jourdan, F., Matchan, E., Hemming, S., Morgan, L., Kelley, S., Cassata, W., Heizler, M., Vasconcelos, P., Benowitz, J., Koppers, A., Mark, D., Niespolo, E., Sprain, C., Hames, W., Kuiper, K., Turrin, B., Renne, P., Ross, J., Nomade, S., Guillou, H., Webb, L., Cohen, B., Calvert, A., Joyce, N., Ganerød, M., Wijbrans, J., Ishizuka, O., He, H., Ramirez, A., Pfänder, J., Lopez-Martínez, M., Qiu, H., and Singer, B.:
Interpreting and reporting geochronologic data,
GSA Bull.,
133, 461–487, https://doi.org/10.1130/B35560.1, 2020.
Singer, B. S., Thompson, R. A., Dungan, M. A., Feeley, T. C., Nelson, S. T., Pickens, J. C., Brown, L. L., Wulff, A. W., Davidson, J. P., and Metzger, J.:
Volcanism and erosion during the past 930 at the Tatara–San Pedro complex, Chilean Andes,
Geol. Soc. Am. Bull.,
109, 127–142, https://doi.org/10.1130/0016-7606(1997)109<0127:VAEDTP>2.3.CO;2, 1997.
Sonder, R. A.:
Zur Geologie and Petrographie der Inselgruppe yon Milos,
Zeitschr. Volc.,
8, 11–231, 1924.
Spakman, W., Wortel, M. J. R., and Vlaar, N. J.:
The Hellenic Subduction Zone: A tomographic image and its geodynamic implications,
Geophys. Res. Lett.,
15, 60–63, https://doi.org/10.1029/GL015i001p00060, 1988.
Stewart, A. L.:
Volcanic Facies Architecture and Evolution of Milos, Greece,
Doctoral dissertation, University of Tasmania, Australia, 2003.
Stewart, A. L. and McPhie, J.:
Internal structure and emplacement of an Upper Pliocene dacite cryptodome, Milos Island, Greece,
J. Volcanol. Geoth. Res.,
124, 129–148, https://doi.org/10.1016/S0377-0273(03)00074-X, 2003.
Stewart, A. L. and McPhie, J.:
Facies architecture and Late Pliocene – Pleistocene evolution of a felsic volcanic island, Milos, Greece,
B. Volcanol.,
68, 703–726, https://doi.org/10.1007/s00445-005-0045-2, 2006.
Traineau, H. and Dalabakis, P.:
Mise en evidence d'une eruption phreatique historique sur l'ile de Milos (Grece),
CR Acad. Sci. Paris,
308, 247–252, 1989.
Van Hinsbergen, D. J. J., Snel, E., Garstman, S. A., Marunţeanu, M., Langereis, C. G., Wortel, M. J. R., and Meulenkamp, J. E.:
Vertical motions in the Aegean volcanic arc: Evidence for rapid subsidence preceding volcanic activity on Milos and Aegina,
Mar. Geol.,
209, 329–345, https://doi.org/10.1016/j.margeo.2004.06.006, 2004.
Vougioukalakis, G. E., Satow, C. G., and Druitt, T. H.:
Volcanism of the South Aegean volcanic arc,
Elements,
15, 159–164, 2019.
Wendt, I. and Carl, C.:
The statistical distribution of the mean squared weighted deviation,
Chemical Geology: Isotope Geoscience section,
86, 275–285, https://doi.org/10.1016/0168-9622(91)90010-T, 1991.
White, S. M., Crisp, J. A., and Spera, F. J.:
Long-term volumetric eruption rates and magma budgets,
Geochem. Geophy. Geosy.,
7, 262–266, https://doi.org/10.1029/2005GC001002, 2006.
Wijbrans, J. R., Pringle, M. S., Koppers, A. A. P., and Scheveers, R.: Argon geochronology of small samples using the Vulkaan argon laserprobe, in: Proceedings of the Royal Netherlands Academy of Arts and Sciences, 2, 185–218, 1995.
York, D.:
Least squares fitting of a straight line with correlated errors,
Earth Planet. Sc. Lett.,
5, 320–324, https://doi.org/10.1016/s0012-821x(68)80059-7, 1968.
Short summary
High-resolution geochronology is one of the key factors to predict volcanic eruptions. To build up a high-resolution geochronological framework, we reported 21 new high-precision eruption ages (40Ar / 39Ar) for a ~ 3.3 × 106-year-old volcanic field: Milos (Greece). In combination with geochemical information and eruption volumes from the volcanoes of Milos, the long-lived volcanic history could provide important clues for the prediction of volcanic eruptions.
High-resolution geochronology is one of the key factors to predict volcanic eruptions. To build...