Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-273-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-273-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Eruptive history and 40Ar∕39Ar geochronology of the Milos volcanic field, Greece
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Klaudia Kuiper
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Jan Wijbrans
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Katharina Boehm
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Pieter Vroon
CORRESPONDING AUTHOR
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Related authors
No articles found.
Akbar Aydin Oglu Huseynov, Jan Wijbrans, Klaudia Kuiper, and Jeroen van der Lubbe
Geochronology, 7, 173–197, https://doi.org/10.5194/gchron-7-173-2025, https://doi.org/10.5194/gchron-7-173-2025, 2025
Short summary
Short summary
This study explores quartz veins in Germany's Rursee area, formed during the Variscan Orogeny and later reactivated by tectonic activity in the Jurassic–Cretaceous period. Using advanced isotopic dating techniques, it examines how these veins influenced fluid flow and quartz recrystallization. By tackling the challenges of dating fluid activity, this research offers new insights into argon gas degassing in quartz minerals.
Katharina M. Boehm, Klaudia F. Kuiper, Bora Uzel, Pieter Z. Vroon, and Jan R. Wijbrans
Geochronology, 5, 391–403, https://doi.org/10.5194/gchron-5-391-2023, https://doi.org/10.5194/gchron-5-391-2023, 2023
Short summary
Short summary
The island of Patmos is situated in the southern Aegean Sea (Greece), just north of the present locus of active volcanism. The island is almost entirely built up of volcanic rocks that are 6.6 to 5.2 million years old. We obtain these ages with 40Ar / 39Ar dating technique on sanidine and biotite minerals. Our new age data indicate a geologically brief volcanic period (lasting less than 1.5 million years) that can be divided into three volcanic intervals and correlated to tectonics.
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Related subject area
Argon/argon dating
40Ar ∕ 39Ar age constraints on the formation of fluid-rich quartz veins from the NW Rhenohercynian zone (Rursee area, Germany)
Emplacement age of the Sevier gravity slide, Utah, USA
New developments in incremental heating detrital 40Ar∕39Ar lithic (DARL) geochronology using Icelandic river sand
Volcanism straddling the Miocene–Pliocene boundary on Patmos and Chiliomodi islands (southeastern Aegean Sea): insights from new 40Ar ∕ 39Ar ages
Direct dating of overprinting fluid systems in the Martabe epithermal gold deposit using highly retentive alunite
Complex 40Ar ∕ 39Ar age spectra from low-grade metamorphic rocks: resolving the input of detrital and metamorphic components in a case study from the Delamerian Orogen
Deformation recorded in polyhalite from evaporite detachments revealed by 40Ar ∕ 39Ar dating
Production of 40Ar by an overlooked mode of 40K decay with implications for K-Ar geochronology
The Isotopx NGX and ATONA Faraday amplifiers
Akbar Aydin Oglu Huseynov, Jan Wijbrans, Klaudia Kuiper, and Jeroen van der Lubbe
Geochronology, 7, 173–197, https://doi.org/10.5194/gchron-7-173-2025, https://doi.org/10.5194/gchron-7-173-2025, 2025
Short summary
Short summary
This study explores quartz veins in Germany's Rursee area, formed during the Variscan Orogeny and later reactivated by tectonic activity in the Jurassic–Cretaceous period. Using advanced isotopic dating techniques, it examines how these veins influenced fluid flow and quartz recrystallization. By tackling the challenges of dating fluid activity, this research offers new insights into argon gas degassing in quartz minerals.
Tiffany Rivera, McKenna Holliday, Brian Jicha, David H. Malone, Michael J. Braunagel, V. Alex Bonilla Franco, Robert F. Biek, W. Ashley Griffith, and David B. Hacker
Geochronology, 7, 35–44, https://doi.org/10.5194/gchron-7-35-2025, https://doi.org/10.5194/gchron-7-35-2025, 2025
Short summary
Short summary
The timing of an ancient gravity slide that originated in the Marysvale volcanic field (Utah) is constrained using 40Ar/39Ar dating of pseudotachylyte, a friction-induced glass that is generated during slide movement, and the volcanic tuffs that were displaced by the slide and those that overly the slide mass. Our results suggest that the Sevier gravity slide occurred at 25.25 Ma. The removal of such a large volume of material likely allowed for the eruption of the Antimony Tuff at 25.19 Ma.
Odinaka Okwueze, Kevin Konrad, and Tomas Capaldi
Geochronology, 6, 683–696, https://doi.org/10.5194/gchron-6-683-2024, https://doi.org/10.5194/gchron-6-683-2024, 2024
Short summary
Short summary
Understanding how volcanic landscapes evolve through time is important for constraining the role volcanism plays in driving variations in geography, climate, and ocean circulation. A powerful tool for understanding the chronologic history of a terrain is detrital geochronology. However, traditional detrital geochronology is restricted to felsic minerals. Here we build upon methods for determining the timing of mafic volcanic terrain using argon geochronology on grains of Icelandic sand.
Katharina M. Boehm, Klaudia F. Kuiper, Bora Uzel, Pieter Z. Vroon, and Jan R. Wijbrans
Geochronology, 5, 391–403, https://doi.org/10.5194/gchron-5-391-2023, https://doi.org/10.5194/gchron-5-391-2023, 2023
Short summary
Short summary
The island of Patmos is situated in the southern Aegean Sea (Greece), just north of the present locus of active volcanism. The island is almost entirely built up of volcanic rocks that are 6.6 to 5.2 million years old. We obtain these ages with 40Ar / 39Ar dating technique on sanidine and biotite minerals. Our new age data indicate a geologically brief volcanic period (lasting less than 1.5 million years) that can be divided into three volcanic intervals and correlated to tectonics.
Jack Muston, Marnie Forster, Davood Vasegh, Conrad Alderton, Shawn Crispin, and Gordon Lister
Geochronology, 5, 153–179, https://doi.org/10.5194/gchron-5-153-2023, https://doi.org/10.5194/gchron-5-153-2023, 2023
Short summary
Short summary
About 2 million years ago, rich gold deposits formed at Martabe, on the island of Sumatra in Indonesia. Fluids may have moved as the result of fault dilation caused by changes in stress orientation during the earthquake cycle, so to work out exactly when and how long between cycles, we dated a potassium-bearing mineral, alunite, using argon geochronology in association with diffusion experiments during temperature-controlled furnace step-heating, showing two episodes 250 thousand years apart.
Anthony Reid, Marnie Forster, Wolfgang Preiss, Alicia Caruso, Stacey Curtis, Tom Wise, Davood Vasegh, Naina Goswami, and Gordon Lister
Geochronology, 4, 471–500, https://doi.org/10.5194/gchron-4-471-2022, https://doi.org/10.5194/gchron-4-471-2022, 2022
Short summary
Short summary
Dating low-grade metamorphic rocks with the 40Ar / 39Ar method is difficult because samples are fine-grained mixtures between detrital and newly grown metamorphic minerals. We use a careful step-heating schedule and resolve limits within the complex age spectra thus derived to infer the timing of metamorphism and deformation in the Delamerian Orogen (formerly part of eastern Gondwana). Results suggest detrital mineral from up to 1172 Ma and that metamorphic minerals grew at 470–458 Ma.
Lachlan Richards, Fred Jourdan, Alan Stephen Collins, and Rosalind Clare King
Geochronology, 3, 545–559, https://doi.org/10.5194/gchron-3-545-2021, https://doi.org/10.5194/gchron-3-545-2021, 2021
Short summary
Short summary
This research is part of a PhD thesis examining evaporite detachments characteristics. 40Ar/39Ar geochronology is employed to constrain the timing of formation and deformation events. A diagenetic age of ~514 Ma is interpreted from the oldest significant step age. Other step ages may represent a Cambrian–Permian deformation event or a complex mixing age of diagenetic Ar with partially reset Ar during the Cenozoic. We report the first closure temperature for polyhalite between 254 and 277 °C.
Jack Carter, Ryan B. Ickert, Darren F. Mark, Marissa M. Tremblay, Alan J. Cresswell, and David C. W. Sanderson
Geochronology, 2, 355–365, https://doi.org/10.5194/gchron-2-355-2020, https://doi.org/10.5194/gchron-2-355-2020, 2020
Short summary
Short summary
40K is an isotope of potassium that undergoes several different modes of radioactive decay. We use the decay of 40K to determine the ages of geologic materials that contain potassium but doing this requires us to know the rate at which 40K decays by its different decay modes. Here, we investigate one decay mode of 40K that has previously been overlooked. We demonstrate that this decay mode exists, estimate its rate, and evaluate its significance for geochronology.
Stephen E. Cox, Sidney R. Hemming, and Damian Tootell
Geochronology, 2, 231–243, https://doi.org/10.5194/gchron-2-231-2020, https://doi.org/10.5194/gchron-2-231-2020, 2020
Short summary
Short summary
We show results from a new type of ion detector technology for mass spectrometry that allows us to measure ion beams more precisely. This technology expands the range of ages we can measure using a single instrument and makes it possible to measure those ages – including all required corrections and adjustments – with more confidence. We show measurements of widely used standard materials for Ar / Ar, including air and synthetic standard gas, to illustrate the capabilities of the new detectors.
Cited articles
Alfieris, D., Voudouris, P., and Spry, P. G.:
Shallow submarine epithermal Pb-Zn-Cu-Au-Ag-Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints,
Ore Geol. Rev.,
53, 159–180, https://doi.org/10.1016/j.oregeorev.2013.01.007, 2013.
Angelier, J., Cantagrel, J.-M., and Vilminot, J.-C.:
Neotectonique cassante et volcanisme plio-quaternaire dans l'arc egeen interne; l'ile de Milos (Grece),
B. Soc. Geol. Fr.,
7, 119–124, 1977.
Arias, A., Oddone, M., Bigazzi, G., Di Muro, A., Principe, C., and Norelli, P.:
New data for the characterization of Milos obsidians,
J. Radioanal. Nucl. Ch.,
268, 371–386, https://doi.org/10.1007/s10967-006-0183-9, 2006.
Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., and Zanettin, B.: A chemical classification of volcanic rocks based on the total alkali-silica diagram, J. Petrol., 27, 745–750, https://doi.org/10.1093/petrology/27.3.745, 1986.
Bigazzi, G. and Radi, G.:
Datazione con le tracce di fissione per l'identificazione della provenienza dei manufatti di ossidiana,
Riv. di Sci. Preist.,
36, 223–250, 1981.
Calvo, J. P., Triantaphyllou, M. V., Regueiro, M., and Stamatakis, M. G.:
Alternating diatomaceous and volcaniclastic deposits in Milos Island, Greece. A contribution to the upper Pliocene-lower Pleistocene stratigraphy of the Aegean Sea,
Palaeogeogr. Palaeocl.,
321–322, 24–40, https://doi.org/10.1016/j.palaeo.2012.01.013, 2012.
Campos Venuti, M. and Rossi, P. L.:
Depositional facies in the Fyriplaka rhyolitic tuff ring, Milos Island (Cyclades, Greece),
Acta Vulcanol.,
8, 173–192, 1996.
Cassata, W. S. and Renne, P. R.:
Systematic variations of argon diffusion in feldspars and implications for thermochronometry,
Geochim. Cosmochim. Ac.,
112, 251–287, https://doi.org/10.1016/j.gca.2013.02.030, 2013.
Cole, P. D., Calder, E. S., Sparks, R. S. J., Clarke, A. B., Druitt, T. H., Young, S. R., Herd, R. A., Harford, C. L., and Norton, G. E.:
Deposits from dome-collapse and fountain-collapse pyroclastic flows at Soufrière Hills Volcano, Montserrat,
Geol. Soc. London, Mem.,
21, 231–262, 2002.
Crosweller, H. S., Arora, B., Brown, S. K., Cottrell, E., Deligne, N. I., Guerrero, N. O., Hobbs, L., Kiyosugi, K., Loughlin, S. C., and Lowndes, J.:
Global database on large magnitude explosive volcanic eruptions (LaMEVE),
J. Appl. Volcanol.,
1, 4, https://doi.org/10.1186/2191-5040-1-4, 2012.
Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F., and Savaşçın, M. Y.: On the extension in western Anatolia and the Aegean sea On the extension in western Anatolia and the Aegean sea, J. Virtual Explor., 7, 167–181, https://doi.org/10.3809/jvirtex.2002.00049, 2002.
Druitt, T. H., Edwards, L., Mellors, R. M., Pyle, D. M., Sparks, R. S. J., Lanphere, M., Davies, M., and Barreirio, B.:
Santorini Volcano,
Geol. Soc. Mem.,
19, available at: http://pubs.er.usgs.gov/publication/70094778 (last access: 19 January 2021), 1999.
Druitt, T. H., Pyle, D. M., and Mather, T. A.:
Santorini Volcano and its Plumbing System,
Elements,
15, 177–184, https://doi.org/10.2138/gselements.15.3.177, 2019.
Duermeijer, C. E., Nyst, M., Meijer, P. T., Langereis, C. G., and Spakman, W.:
Neogene evolution of the Aegean arc: Paleomagnetic and geodetic evidence for a rapid and young rotation phase,
Earth Planet. Sc. Lett.,
176, 509–525, https://doi.org/10.1016/S0012-821X(00)00023-6, 2000.
Ferrara, G., Fytikas, M., Giuliani, O., and Marinelli, G.:
Age of the formation of the Aegean active volcanic arc, in: Thera Aegean world 2, The Classical Review, edited by: Doumas, C., The Thera Foundation, London, UK, 37–41, 1980.
Flowers, R. M., Bowring, S. A., Tulloch, A. J., and Klepeis, K. A.:
Tempo of burial and exhumation within the deep roots of a magmatic arc, Fiordland, New Zealand,
Geology,
33, 17–20, https://doi.org/10.1130/G21010.1, 2005.
Francalanci, L. and Zellmer, G. F.:
Magma Genesis at the South Aegean Volcanic Arc,
Elements,
15, 165–170, https://doi.org/10.2138/gselements.15.3.165, 2019.
Francalanci, L., Vougioukalakis, G. E., Fytikas, M., Beccaluva, L., Bianchini, G., and Wilson, M.:
Petrology and volcanology of Kimolos and Polyegos volcanoes within the context of the South Aegean arc, Greece,
Spec. Pap. Soc. Am.,
418, 33–65, https://doi.org/10.1130/SPE418, 2007.
Frey, H. M., Lange, R. A., Hall, C. M., and Delgado-Granados, H.:
Magma eruption rates constrained by chronology and GIS for the Ceboruco-San Pedro volcanic field, western Mexico,
Bull. Geol. Soc. Am.,
116, 259–276, https://doi.org/10.1130/B25321.1, 2004.
Fytikas, M.:
Geology and Geothermics of Milos Island,
Thesis,
Thessaloniki University, 228 pp., 1977 (in Greek with English summary).
Fytikas, M.:
Updating of the geological and geothermal research on Milos island,
Geothermics,
18, 485–496, https://doi.org/10.1016/0375-6505(89)90051-5, 1989.
Fytikas, M., Giuliani, O., Innocenti, F., Marinelli, G., and Mazzuoli, R.:
Geochronological data on recent magmatism of the Aegean Sea,
Tectonophysics,
31, T29–T34, https://doi.org/10.1016/0040-1951(76)90161-X, 1976.
Fytikas, M., Innocenti, F., Kolios, N., Manetti, P., Mazzuoli, R., Poli, G., Rita, F., and Villari, L.:
Volcanology and petrology of volcanic products from the island of Milos and neighbouring islets,
J. Volcanol. Geoth. Res.,
28, 297–317, https://doi.org/10.1016/0377-0273(86)90028-4, 1986.
Grasemann, B., Huet, B., Schneider, D. A., Rice, A. H. N., Lemonnier, N., and Tschegg, C.:
Miocene postorogenic extension of the Eocene synorogenic imbricated Hellenic subduction channel: New constraints from Milos (Cyclades, Greece),
Bull. Geol. Soc. Am.,
130, 238–262, https://doi.org/10.1130/B31731.1, 2018.
Grove, M. and Harrison, T. M.:
40Ar∗ diffusion in Fe-rich biotite,
Am. Mineral.,
81, 940–951, 1996.
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., and Smoczyk, G. M.:
Slab2, a comprehensive subduction zone geometry model,
Science,
362, 58–61, https://doi.org/10.1126/science.aat4723, 2018.
Hildreth, W. and Lanphere, M. A.:
Potassium–argon geochronology of a basalt–andesite–dacite arc system: The Mount Adams volcanic field, Cascade Range of southern Washington,
Geol. Soc. Am. Bull.,
106, 1413–1429, 1994.
Hildreth, W., Fierstein, J., and Lanphere, M.:
Eruptive history and geochronology of the Mount Baker volcanic field, Washington,
Geol. Soc. Am. Bull.,
115, 729–764, 2003a.
Hildreth, W., Lanphere, M. A., and Fierstein, J.:
Geochronology and eruptive history of the Katmai volcanic cluster, Alaska Peninsula,
Earth Planet. Sc. Lett.,
214, 93–114, https://doi.org/10.1016/S0012-821X(03)00321-2, 2003b.
Hora, J. M., Singer, B. S., Jicha, B. R., Beard, B. L., Johnson, C. M., de Silva, S., and Salisbury, M.:
Volcanic biotite-sanidine age discordances reflect Ar partitioning and pre-eruption closure in biotite,
Geology,
38, 923–926, https://doi.org/10.1130/G31064.1, 2010.
IJlst, L.:
A laboratory overflow-centrifuge for heavy liquid mineral separation,
Am. Mineral.,
58, 1088–1093, 1973.
Irvine, T. N. J. and Baragar, W. R. A.: A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 8, 523–548, 1971.
Jicha, B. R. and Jagoutz, O.:
Magma production rates for intraoceanic arcs,
Elements,
11, 105–112, https://doi.org/10.2113/gselements.11.2.105, 2015.
Kilias, S. P., Naden, J., Cheliotis, I., Shepherd, T. J., Constandinidou, H., Crossing, J., and Simos, I.:
Epithermal gold mineralisation in the active Aegen volcanic arc: The Profitis Ilias deposits, Milos Island, Greece,
Miner. Deposita.,
36, 32–44, https://doi.org/10.1007/s001260050284, 2001.
Koppers, A. A. P.:
ArArCALC-software for age calculations,
Comput. Geosci.,
28, 605–619, https://doi.org/10.1016/S0098-3004(01)00095-4, 2002.
Kornprobst, J., Kienast, J.-R., and Vilminot, J.-C.:
The high-pressure assemblages at Milos, Greece,
Contrib. Mineral. Petr.,
69, 49–63, https://doi.org/10.1007/bf00375193, 1979.
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R.:
Synchronizing Rock Clocks of Earth History,
Science,
320, 500–504, https://doi.org/10.1126/science.1154339, 2008.
Lee, J. K. W.:
Ar–Ar and K–Ar Dating BT,
in: Encyclopedia of Scientific Dating Methods,
edited by: Rink, W. J. and Thompson, J. W.,
Springer Netherlands, Dordrecht, pp. 58–73, 2015.
Lee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee, J. B., and Kim, J. S.:
A redetermination of the isotopic abundances of atmospheric Ar,
Geochim. Cosmochim. Ac.,
70, 4507–4512, https://doi.org/10.1016/j.gca.2006.06.1563, 2006.
Mark, D. F., Barfod, D., Stuart, F. M., and Imlach, J.:
The ARGUS multicollector noble gas mass spectrometer: Performance for geochronology,
Geochem. Geophy. Geosy.,
10, 1–9, https://doi.org/10.1029/2009GC002643, 2009.
Matsuda, J., Senoh, K., Maruoka, T., Sato, H., and Mitropoulos, P.:
K-Ar ages of the Aegean the volcanic rocks and arc-trench system their implication for the arc-trench system,
Geochem. J.,
33, 369–377, 1999.
McKenzie, D.:
Active tectonics of the Alpine–Himalayan belt: the Aegean Sea and surrounding regions,
Geophys. J. Int.,
55, 217–254, 1978.
Min, K., Mundil, R., Renne, P. R., and Ludwig, K. R.:
A test for systematic errors in geochronology,
Geochim. Cosmochim. Ac.,
64, 73–98, 2000.
Nicholls, I. A.:
Santorini volcano, greece – tectonic and petrochemical relationships with volcanics of the Aegean region,
Tectonophysics,
11, 377–385, https://doi.org/10.1016/0040-1951(71)90026-6, 1971.
Peccerillo, A. and Taylor, S. R.: Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey, Contrib. Mineral. Petrol., 58, 63–81, https://doi.org/10.1007/BF00384745, 1976.
Pe-Piper, G. and Piper, D. J. W.:
Neogene backarc volcanism of the Aegean: New insights into the relationship between magmatism and tectonics,
Geol. Soc. Am. Spec. Pap.,
418, 17–31, https://doi.org/10.1130/2007.2418(02), 2007.
Pe-Piper, G. and Piper, D. J. W.:
The effect of changing regional tectonics on an arc volcano: Methana, Greece,
J. Volcanol. Geoth. Res.,
260, 146–163, https://doi.org/10.1016/j.jvolgeores.2013.05.011, 2013.
Principe, C., Arias, A., and Zoppi, U.:
Origin, transport and deposition of a debris avalanche deposit of phreatic origin on Milos Island (Greece),
in: Montagne Pelee 1902–2002, Explosive Volcanism in Subduction Zones, Martinigue 12–16 May 2002, Abstracts p. 71, 2002.
Raffi, I., Wade, B. S., Pälike, H., Beu, A. G., Cooper, R., Crundwell, M. P., Krijgsman, W., Moore, T., Raine, I., and Sardella, R.:
The Neogene Period, Geologic Time Scale 2020, 2, 1141–1215, https://doi.org/10.1016/B978-0-12-824360-2.00029-2, 2020.
Rinaldi, M. and Venuti, M. C.:
The submarine eruption of the Bombarda volcano, Milos Island, Cyclades, Greece,
B. Volcanol.,
65, 282–293, https://doi.org/10.1007/s00445-002-0260-z, 2003.
Rivera, T. A., Storey, M., Zeeden, C., Hilgen, F. J., and Kuiper, K.:
A refined astronomically calibrated age for Fish Canyon sanidine,
Earth Planet. Sc. Lett.,
311, 420–426, https://doi.org/10.1016/j.epsl.2011.09.017, 2011.
Rontogianni, S., Konstantinou, K. I., Melis, N. S., and Evangelidis, C. P.:
Slab stress field in the Hellenic subduction zone as inferred from intermediate-depth earthquakes,
Earth Planets Space,
63, 139–144, https://doi.org/10.5047/eps.2010.11.011, 2011.
Schaen, A., Jicha, B., Hodges, K., Vermeesch, P., Stelten, M., Mercer, C., Phillips, D., Rivera, T., Jourdan, F., Matchan, E., Hemming, S., Morgan, L., Kelley, S., Cassata, W., Heizler, M., Vasconcelos, P., Benowitz, J., Koppers, A., Mark, D., Niespolo, E., Sprain, C., Hames, W., Kuiper, K., Turrin, B., Renne, P., Ross, J., Nomade, S., Guillou, H., Webb, L., Cohen, B., Calvert, A., Joyce, N., Ganerød, M., Wijbrans, J., Ishizuka, O., He, H., Ramirez, A., Pfänder, J., Lopez-Martínez, M., Qiu, H., and Singer, B.:
Interpreting and reporting geochronologic data,
GSA Bull.,
133, 461–487, https://doi.org/10.1130/B35560.1, 2020.
Singer, B. S., Thompson, R. A., Dungan, M. A., Feeley, T. C., Nelson, S. T., Pickens, J. C., Brown, L. L., Wulff, A. W., Davidson, J. P., and Metzger, J.:
Volcanism and erosion during the past 930 at the Tatara–San Pedro complex, Chilean Andes,
Geol. Soc. Am. Bull.,
109, 127–142, https://doi.org/10.1130/0016-7606(1997)109<0127:VAEDTP>2.3.CO;2, 1997.
Sonder, R. A.:
Zur Geologie and Petrographie der Inselgruppe yon Milos,
Zeitschr. Volc.,
8, 11–231, 1924.
Spakman, W., Wortel, M. J. R., and Vlaar, N. J.:
The Hellenic Subduction Zone: A tomographic image and its geodynamic implications,
Geophys. Res. Lett.,
15, 60–63, https://doi.org/10.1029/GL015i001p00060, 1988.
Stewart, A. L.:
Volcanic Facies Architecture and Evolution of Milos, Greece,
Doctoral dissertation, University of Tasmania, Australia, 2003.
Stewart, A. L. and McPhie, J.:
Internal structure and emplacement of an Upper Pliocene dacite cryptodome, Milos Island, Greece,
J. Volcanol. Geoth. Res.,
124, 129–148, https://doi.org/10.1016/S0377-0273(03)00074-X, 2003.
Stewart, A. L. and McPhie, J.:
Facies architecture and Late Pliocene – Pleistocene evolution of a felsic volcanic island, Milos, Greece,
B. Volcanol.,
68, 703–726, https://doi.org/10.1007/s00445-005-0045-2, 2006.
Traineau, H. and Dalabakis, P.:
Mise en evidence d'une eruption phreatique historique sur l'ile de Milos (Grece),
CR Acad. Sci. Paris,
308, 247–252, 1989.
Van Hinsbergen, D. J. J., Snel, E., Garstman, S. A., Marunţeanu, M., Langereis, C. G., Wortel, M. J. R., and Meulenkamp, J. E.:
Vertical motions in the Aegean volcanic arc: Evidence for rapid subsidence preceding volcanic activity on Milos and Aegina,
Mar. Geol.,
209, 329–345, https://doi.org/10.1016/j.margeo.2004.06.006, 2004.
Vougioukalakis, G. E., Satow, C. G., and Druitt, T. H.:
Volcanism of the South Aegean volcanic arc,
Elements,
15, 159–164, 2019.
Wendt, I. and Carl, C.:
The statistical distribution of the mean squared weighted deviation,
Chemical Geology: Isotope Geoscience section,
86, 275–285, https://doi.org/10.1016/0168-9622(91)90010-T, 1991.
White, S. M., Crisp, J. A., and Spera, F. J.:
Long-term volumetric eruption rates and magma budgets,
Geochem. Geophy. Geosy.,
7, 262–266, https://doi.org/10.1029/2005GC001002, 2006.
Wijbrans, J. R., Pringle, M. S., Koppers, A. A. P., and Scheveers, R.: Argon geochronology of small samples using the Vulkaan argon laserprobe, in: Proceedings of the Royal Netherlands Academy of Arts and Sciences, 2, 185–218, 1995.
York, D.:
Least squares fitting of a straight line with correlated errors,
Earth Planet. Sc. Lett.,
5, 320–324, https://doi.org/10.1016/s0012-821x(68)80059-7, 1968.
Short summary
High-resolution geochronology is one of the key factors to predict volcanic eruptions. To build up a high-resolution geochronological framework, we reported 21 new high-precision eruption ages (40Ar / 39Ar) for a ~ 3.3 × 106-year-old volcanic field: Milos (Greece). In combination with geochemical information and eruption volumes from the volcanoes of Milos, the long-lived volcanic history could provide important clues for the prediction of volcanic eruptions.
High-resolution geochronology is one of the key factors to predict volcanic eruptions. To build...