Articles | Volume 3, issue 2
https://doi.org/10.5194/gchron-3-465-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-465-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TephraNZ: a major- and trace-element reference dataset for glass-shard analyses from prominent Quaternary rhyolitic tephras in New Zealand and implications for correlation
Jenni L. Hopkins
CORRESPONDING AUTHOR
School of Geography Environment and Earth Science, Victoria University of Wellington, Wellington, P.O. Box 600, New Zealand
Janine E. Bidmead
School of Geography Environment and Earth Science, Victoria University of Wellington, Wellington, P.O. Box 600, New Zealand
David J. Lowe
School of Science/Te Aka Mātuatua, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
Richard J. Wysoczanski
National Institute of Water and Atmospheric Research, Wellington,
Private Bag 14901, New Zealand
Bradley J. Pillans
Research School of Earth Science, Australian National University, Canberra, Australia
Luisa Ashworth
School of Geography Environment and Earth Science, Victoria University of Wellington, Wellington, P.O. Box 600, New Zealand
Andrew B. H. Rees
School of Geography Environment and Earth Science, Victoria University of Wellington, Wellington, P.O. Box 600, New Zealand
Fiona Tuckett
School of Geography Environment and Earth Science, Victoria University of Wellington, Wellington, P.O. Box 600, New Zealand
Related authors
Benjamin Läuchli, Paul Christian Augustinus, Leonie Peti, and Jenni Louise Hopkins
Sci. Dril., 29, 19–37, https://doi.org/10.5194/sd-29-19-2021, https://doi.org/10.5194/sd-29-19-2021, 2021
Short summary
Short summary
Auckland Volcanic Field maar lake sediments exhibit enormous potential for the identification and interpretation of short-duration climate events and long-term climate trends as well as intra- and inter-hemispheric climate. In tandem with ongoing work on Orakei maar, the study of Onepoto maar lake sediments will extend this record by providing high-resolution palaeoclimate and palaeoenvironmental reconstructions spanning the last two glacial cycles.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
David J. Lowe, Peter M. Abbott, Takehiko Suzuki, and Britta J. L. Jensen
Hist. Geo Space. Sci., 13, 93–132, https://doi.org/10.5194/hgss-13-93-2022, https://doi.org/10.5194/hgss-13-93-2022, 2022
Short summary
Short summary
The Commission on Tephrochronology (COT), formed in 1961, comprises geoscientists who characterize, map, and date tephra (volcanic ash) layers and use them as stratigraphic linking and dating tools in geological, palaeoenvironmental, and archaeological research. We review COT's origins and growth and show how its leadership and activities – hosting meetings, supporting ECRs, developing new analytical and dating methods, and publishing volumes – have strongly influenced tephrochronology globally.
Benjamin Läuchli, Paul Christian Augustinus, Leonie Peti, and Jenni Louise Hopkins
Sci. Dril., 29, 19–37, https://doi.org/10.5194/sd-29-19-2021, https://doi.org/10.5194/sd-29-19-2021, 2021
Short summary
Short summary
Auckland Volcanic Field maar lake sediments exhibit enormous potential for the identification and interpretation of short-duration climate events and long-term climate trends as well as intra- and inter-hemispheric climate. In tandem with ongoing work on Orakei maar, the study of Onepoto maar lake sediments will extend this record by providing high-resolution palaeoclimate and palaeoenvironmental reconstructions spanning the last two glacial cycles.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Related subject area
Tephra
Ultra-distal tephra deposits and Bayesian modelling constrain a variable marine radiocarbon offset in Placentia Bay, Newfoundland
Late Holocene cryptotephra and a provisional 15 000-year Bayesian age model for Cascade Lake, Alaska
Alistair J. Monteath, Matthew S. M. Bolton, Jordan Harvey, Marit-Solveig Seidenkrantz, Christof Pearce, and Britta Jensen
Geochronology, 5, 229–240, https://doi.org/10.5194/gchron-5-229-2023, https://doi.org/10.5194/gchron-5-229-2023, 2023
Short summary
Short summary
Accurately dating ocean cores is challenging because the radiocarbon age of water masses varies substantially. We identify ash fragments from eruptions more than 4000 km from their source and use these time markers to develop a new age–depth model for an ocean core in Placentia Bay, North Atlantic. Our results show that the radiocarbon age of waters masses in the bay varied considerably during the last 10 000 years and highlight the potential of using ultra-distal ash deposits in this region.
Lauren J. Davies, Britta J. L. Jensen, and Darrell S. Kaufman
Geochronology, 4, 121–141, https://doi.org/10.5194/gchron-4-121-2022, https://doi.org/10.5194/gchron-4-121-2022, 2022
Short summary
Short summary
Subarctic and Arctic lake sediments provide key data to understand natural climate variability and future climate change. However, they can be difficult to date accurately and of limited use without a robust chronology. We use volcanic ash deposits from the last ~4000 BP to identify anomalously old radiocarbon ages at Cascade Lake, Alaska. A provisional ~15 000-year Bayesian age model is produced for the lake, and a new location for ash from five Late Holocene eruptions is reported.
Cited articles
Abbott, P., Bonadonna, C., Bursik, M., Cashman, K., Davies, S., Jensen, B.,
Kuehn, S., Kurbatov, A., Lane, C., Plunkett, G., Smith, V., Thomlinson, E.,
Thordarsson, T., Walker, D. J., and Wallace, K.: Community Established Best
Practice Recommendations for Tephra Studies-from Collection through Analysis
(Version 3.0.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.5047775, 2021.
Allan, A. S.: An elemental and isotopic investigation of Quaternary silicic
Taupo Volcanic Zone tephras from ODP Site 1123: chronostratigraphic and
petrogenetic applications, MSc thesis, Victoria University of Wellington,
Wellington, New Zealand, 2008.
Allan, A. S., Baker, J. A., Carter, L., and Wysoczanksi, R. J.: Reconstructing
the Quaternary evolution of the world's most active silicic volcanic system:
insights from an ∼ 1.65 Ma deep ocean tephra record sourced from Taupo
Volcanic Zone, New Zealand, Quaternary Sci. Rev., 27, 2341–2360,
2008.
Allan, A. S. R., Wilson, C. J. N., Millet, M.-A., and Wysoczanski, R. J.: The
invisible hand: tectonic triggering and modulation of a rhyolitic
supereruption, Geology, 40, 563–566, 2012.
Alloway, B. V., Pillans, B. J., Sandhu, A. S., and Westgate, J. A.: Revision of
the marine chronology in the Wanganui Basin, New Zealand, based on the
isothermal plateau fission-track dating of tephra horizons, Sediment.
Geol., 82, 299–310, 1993.
Alloway, B. V., Pillans, B. J., Carter, L., Naish, T. R., and Westgate, J. A.:
Onshore–offshore correlation of Pleistocene rhyolitic eruptions from New
Zealand: implications for TVZ eruptive history and paleoenvironmental
construction, Quaternary Sci. Rev., 24, 1601–1622, 2005.
Alloway, B. V., Lowe, D. J., Larsen, G., Shane, P. A. R., and Westgate, J. A.:
Tephrochronology, in: The Encyclopaedia of
Quaternary Science, edited by: Elias, S. A. and Mock, C. J., 2nd Edn., 4, Elsevier, London, 277–304, 2013.
Barker, S. J., Wilson, C. J., Allan, A. S., and Schipper, C. I.: Fine-scale
temporal recovery, reconstruction and evolution of a post-supereruption
magmatic system, Contrib. Mineral. Petr., 170, 1–40, 2015.
Barker, S. J., Wilson, C. J. N., Morgans, D. J., and Rowland, J. V.: Rapid priming,
accumulation, and recharge of magma driving recent eruptions at a
hyperactive caldera volcano, Geology, 44, 323–326, 2016.
Barker, S. J., Van Eaton, A. R., Mastin, L. G., Wilson, C. J. N., Thompson, M. A.,
Wilson, T. M., Davis, C., and Renwick, J. A.: Modeling ash dispersal from future
eruptions of Taupo supervolcano, Geochem. Geophy. Geosy., 20, 3375–3401, 2019.
Barker, S. J., Wilson, C. J. N., Illsley-Kemp, F., Leonard, G. S., Mestel,
E. R. H., Mauriohooho, K., and Charlier, B. L. A.: Taupō: an overview of New
Zealand's supervolcano, New Zeal. J. Geol. Geop., 64, 320–346,
https://doi.org/10.1080/00288306.2020.1792515, 2021.
Barrell, D. J. A., Almond, P. C., Vandergoes, M. J., Lowe, D. J., Newnham, R. M.,
and NZ-INTIMATE members: A composite pollen-based stratotype for
inter-regional evaluation of climatic events in New Zealand over the past
30,000 years (NZ-INTIMATE project), Quaternary Sci. Rev., 74, 4–20, 2013.
Beu, A. G. and Edwards, A. R.: New Zealand Pleistocene and late Pliocene
glacio-eustatic cycles, Palaeogeogr. Palaeoclim., 46, 119–142, 1984.
Black, T. M., Shane, P. A., Westgate, J. A., and Froggatt, P. C.: Chronological
and palaeomagnetic constraints on widespread welded ignimbrites of the Taupo
volcanic zone, New Zealand, Bull. Volc., 58, 226–238, 1996.
Bland, K. J., Kamp, P. J., and Nelson, C. S.: Systematic lithostratigraphy of the
Neogene succession exposed in central parts of Hawke's Bay Basin, eastern
North Island, New Zealand. Ministry of Economic Development New Zealand
Unpublished Petroleum Report PR3724, 259 pp., 2007.
Bolton, M. S., Jensen, B. J., Wallace, K., Praet, N., Fortin, D., Kaufman, D.,
and De Batist, M.: Machine learning classifiers for attributing tephra to
source volcanoes: an evaluation of methods for Alaska tephras, J. Quaternary
Sci., 35, 81–92, 2020.
Briggs, R. M., Houghton, B. F., McWilliams, M., and Wilson, C. J. N.:
40Ar/39Ar ages of silicic volcanic rocks in the TaurangaKaimai
area, New Zealand: dating the transition between volcanism in the Coromandel
Arc and the Taupo Volcanic Zone, New Zeal. J. Geol. Geop., 48, 459–469, 2005.
Briggs, R. M., Lowe, D. J., Esler, W. R., Smith, R. T., Henry, M. A. C., Wehrmann,
H., and Manning, D. A.: Geology of the Maketu area, Bay of Plenty, North
Island, New Zealand. Sheet V14 1:50000, Department of Earth and Ocean
Sciences, University of Waikato, Occasional Report 26, 43 pp. + Map, 2006.
Buck, M. D., Briggs, R. M., and Nelson, C. S.: Pyroclastic deposits and volcanic
history of Mayor Island, New Zeal. J. Geol. Geop., 24, 449–467, 1981.
Bussell, M. R.: Palynological evidence for upper Putikian (middle Pleistocene)
interglacial and glacial climates at Rangitawa Stream, south Wanganui Basin,
New Zealand, New Zeal. J. Geol. Geop., 29, 471–479, 1986.
Bussell, M. R. and Pillans, B.: Vegetational and climatic history during
oxygen isotope stage 7 and early stage 6, Taranaki, New Zealand, J. Royal
Soc. New Zeal., 27, 419–438, 1997.
Carter, L., Nelson, C. S., Neil, H. L., and Froggatt, P. C.: Correlation,
dispersal, and preservation of the Kawakawa Tephra and other late Quaternary
tephra layers in the Southwest Pacific Ocean, New Zeal. J. Geol.
Geop., 38, 29-46, 1995.
Carter, L., Shane, P., Alloway, B., Hall, I. R., Harris, S. E., and Westgate,
J. A.: Demise of one volcanic zone and birth of another – a 12 my marine
record of major rhyolitic eruptions from New Zealand, Geology, 31, 493–496, 2003.
Carter, L., Alloway, B., Shane, P., and Westgate, J.: Deep-ocean record of
major late Cenozoic rhyolitic eruptions from New Zealand, New Zeal. J. Geol.
Geop., 47, 481–500, 2004.
Carter, R. M. and Naish, T. R.: A review of Wanganui Basin, New Zealand: global
reference section for shallow marine, Plio–Pleistocene (2.5–0 Ma)
cyclostratigraphy, Sediment. Geol., 122, 37–52, 1998.
Carter, R. M., Abbott, S. T., and Naish, T. R.: Plio-Pleistocene cyclothems from
Wanganui Basin, New Zealand: type locality for an astrochronologic
time-scale, or template for recognizing ancient
glacio-eustacy?, P. Roy. Soc. Lond. A, 357, 1861–1872, 1999.
Charlier, B. L. A. and Wilson, C. J. N.: Chronology and evolution of
caldera-forming and post caldera magma systems at Okataina Volcano, New Zealand from zircon U–Th
model-age spectra, J. Petrol., 51, 1121–1141, 2010.
Cole, J. W., Deering, C. D., Nairn, B. R. M., Sewell, S., Shane, P. A. R. and Matthews, N. E.: Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand: A review of
volcanism and synchronous pluton development in an active, dominantly silicic caldera
system, Earth Sci. Rev., 128, 1–17, 2014.
Cooper, G. F., Wilson, C. J. N., Millet, M.-A., Baker, J. A., and Smith, E. G. C.:
Systematic tapping of independent magma chambers during the 1 Ma Kidnappers
supereruption, Earth Planet Sc. Lett., 313, 23–33, 2012.
Curran, J.: Hotelling: Hotelling's T'2 Test and Variants, R
package version 1.0-5, available at: https://CRAN.R-project.org/package=Hotelling (last access: June 2021), 2018.
Danišík, M., Shane, P., Schmitt, A. K., Hogg, A., Santos, G. M.,
Storm, S., Evans, N. J., Fifield, L. K., and Lindsay, J. M.: Re-anchoring the
late Pleistocene tephrochronology of New Zealand based on concordant
radiocarbon ages and combined 238U/230Th disequilibrium and
(U–Th)/He zircon ages, Earth Planet Sc. Lett., 349, 240–250, 2012.
Danišík, M., Lowe, D. J., Schmitt, A. K., Friedrichs, B., Hogg, A. G., and Evans, N. J.: Sub-millennial eruptive recurrence in the
silicic Mangaone Subgroup tephra sequence, New Zealand, from Bayesian
modelling of zircon double-dating and radiocarbon ages, Quaternary Sci.
Rev., 246, 106517, https://doi.org/10.1016/j.quascirev.2020.106517, 2020.
Denton, J. S. and Pearce, N. J.: Comment on “A synchronized dating of three
Greenland ice cores throughout the Holocene” by BM Vinther et al.: No
Minoan tephra in the 1642 BC layer of the GRIP ice core, J. Geophys.
Res., 113, D04303, https://doi.org/10.1029/2007JD008970, 2008.
Dugmore, A. J., Larsen, G., and Newton, A. J.: Tephrochronology and its
application to late Quaternary environmental reconstruction, with special
reference to the North Atlantic islands, in:
Tools for Constructing Chronologies: Cross Disciplinary Boundaries, edited by: Buck, C. E. and Millard A. R., Lecture
Notes in Statistics, Springer, London, 177, 173–188, 2004.
Erdman, C. F. and Kelsey, H. M.: Pliocene and Pleistocene stratigraphy and
tectonics, Ohara Depression and Wakarara Ra-nge, North Island, New
Zealand, New Zeal. J. Geol. Geop., 35, 177–192, 1992.
Ewart, A.: The Petrography of the Central North Island Rhyolitic Lavas: Part
2 – Regional Petrography Including Notes on Associated Ash-Flow Pumice
Deposits, New Zeal. J. Geol. Geop., 11, 478–545, 1968.
Flude, S. and Storey, M.: 40Ar/39Ar age of the Rotoiti Breccia and Rotoehu
Ash, Okataina Volcanic Complex, New Zealand, and identification of
heterogeneously distributed excess 40Ar in supercooled crystals, Quat.
Geochronol., 33, 13–23, 2016.
Froggatt, P. C.: Toward a comprehensive Upper Quaternary tephra and ignimbrite
stratigraphy in New Zealand using electron microprobe analysis of glass
shards, Quaternary Res., 19, 188–200, 1983.
Froggatt, P. C.: Standardization of the chemical analysis of tephra deposits,
Report of the ICCT working group, Quatern. Int., 13–14, 93–96, 1992.
Froggatt, P. C. and Lowe, D. J.: A review of late Quaternary silicic and some
other tephra formations from New Zealand: their stratigraphy, nomenclature,
distribution, volume, and age, New Zeal. J. Geol. Geop., 33, 89–109,
1990.
Froggatt, P. C. and Rogers, G. M.: Tephrostratigraphy of high-altitude peat
bogs along the axial ranges, North Island, New Zealand, New Zeal. J. Geol.
Geop., 33, 111–124, 1990.
Gehrels, M. J., Lowe, D. J., Hazell, Z. J., and Newnham, R. M.: A continuous
5300-yr Holocene cryptotephrostratigraphic record from northern New Zealand
and implications for tephrochronology and volcanic hazard assessment,
Holocene, 16, 173–187, 2006.
GNS Science: Petlab: New Zealand's national rock, mineral and geoanalytical database, GNS Science [data set], https://doi.org/10.21420/9DJH-RP34, 2004.
Grant, G. R., Sefton, J. P., Patterson, M. O., Naish, T. R., Dunbar, G. B.,
Hayward, B. W., Morgans, H. E. G., Alloway, B. V., Seward, D., Tapia, C. A., and
Prebble, J. G.: Mid-to late Pliocene (3.3–2.6 Ma) global sea-level
fluctuations recorded on a continental shelf transect, Whanganui Basin, New
Zealand, Quaternary Sci. Rev., 201, 241–260, 2018.
Grant, G. R., Naish, T. R., Dunbar, G. B., Stocchi, P., Kominz, M. A., Kamp,
P. J., Tapia, C. A., McKay, R. M., Levy, R. H., and Patterson, M. O.: The
amplitude and origin of sea-level variability during the Pliocene
epoch, Nature, 574, 237–241, 2019.
Gravely, D. M., Wilson, C. J. N., Rosenberg, M. D., and Leonard, G. S.: The nature
and age of Ohakuri Formation and Ohakuri Group rocks in surface exposures
and geothermal drillhole sequences in the central Taupo Volcanic Zone, New
Zealand, New Zeal. J. Geol. Geop., 49, 305–308, 2006.
Gravely, D. M., Wilson, C. J. N., Leonard, G. S., and Cole, J. W.: Double trouble:
Paired ignimbrite eruptions and collateral subsidence in the Taupo Volcanic
Zone, New Zealand, Geol. Soc. Am. Bull., 119, 18–30, 2007.
Hogg, A. G. and McCraw, J. D.: Late Quaternary tephras of Coromandel Peninsula,
North Island, New Zealand: a mixed peralkaline and calcalkaline tephra
sequence, New Zeal. J. Geol. Geop., 26, 163–187, 1983.
Hogg, A. G., Higham, T. F. G., Lowe, D. J., Palmer, J., Reimer, P., and Newnham,
R. M.: A wiggle-match date for Polynesian settlement of New Zealand,
Antiquity, 77, 116–125, 2003.
Hogg, A. G., Lowe, D. J., Palmer, J. G., Boswijk, G., and Bronk Ramsey, C. J.:
Revised calendar date for the Taupo eruption derived by 14C
wiggle-matching using a New Zealand kauri 14C calibration data set,
Holocene, 22, 439–449, 2012.
Hogg, A. G., Wilson, C. J. N., Lowe, D. J., Turney, C. S. M., White, P., Lorrey,
A. M., Manning, S. W., Palmer, J. G., Bury, S., Brown, J., Southon, J., and
Petchey, F.: Wiggle-match radiocarbon dating of the Taupo eruption, Nature
Comm., 10, 4669, https://doi.org/10.1038/s41467-019-12532-8, 2019.
Holt, K., Wallace, R. C., Neall, V. E., Kohn, B. P., and Lowe, D. J.: Quaternary
tephra marker beds and their potential for palaeoenvironmental
reconstruction on Chatham Islands east of New Zealand, southwest Pacific
Ocean, J. Quaternary Sci., 25, 1169–1178, 2010.
Holt, K. A., Lowe, D. J., Hogg, A. G., and Wallace, R. C.: Distal occurrence of
mid-Holocene Whakatane Tephra on the Chatham Islands, New Zealand, and
potential for cryptotephra studies, Quatern. Int., 246, 344–351, 2011.
Hopkins, J. L. and Seward, D.: Towards robust tephra correlations in early and
pre-Quaternary sediments: A case study from North Island, New Zealand, Quat.
Geochronol., 50, 91–108, 2019.
Hopkins, J. L., Millet, M. A., Timm, C., Wilson, C. J., Leonard, G. S., Palin,
J. M., and Neil, H.: Tools and techniques for developing tephra stratigraphies
in lake cores: a case study from the basaltic Auckland Volcanic Field, New
Zealand, Quaternary Sci. Rev., 123, 58–75, 2015.
Hopkins, J. L., Wilson, C. J., Millet, M. A., Leonard, G. S., Timm, C., McGee,
L. E., Smith, I. E., and Smith, E. G.: Multi-criteria correlation of tephra
deposits to source centres applied in the Auckland Volcanic Field, New
Zeal. Bull. Volc., 79, 55, https://doi.org/10.1007/s00445-017-1131-y, 2017.
Hopkins, J. L., Wysoczanski, R. J., Orpin, A. R., Howarth, J. D., Strachan,
L. J., Lunenburg, R., McKeown, M., Ganguly, A., Twort, E., and Camp, S.:
Deposition and preservation of tephra in marine sediments at the active
Hikurangi subduction margin, Quaternary Sci. Rev., 274, 106500,
https://doi.org/10.1016/j.quascirev.2020.106500, 2020a.
Hopkins, J. L., Bidmead, J. E., Lowe, D. J., Wysoczanski, R. J., Pillans, B. J., Ashworth, L., Rees, A. B., Tuckett, F.: TephraNZ, Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [code], https://doi.org/10.26022/IEDA/111724, 2020b.
Hopkins, J. L., Lowe, D. J., and Horrocks, J. L.: Tephrochronology in Aotearoa New
Zealand, New Zeal. J. Geol. Geop., 64, 153–200,
https://doi.org/10.1080/00288306.2021.1908368, 2021.
Houghton, B. F., Wilson, C. J. N., McWilliams, M. O., Lanphere, M. A., Weaver,
S. D., Briggs, R. M., and Pringle, M. S.: Chronology and dynamics of a large
silicic magmatic system: central Taupo Volcanic Zone, New
Zealand, Geology, 23, 13–16, 1995.
Howorth, R.: New formations of late Pleistocene tephras from the Okataina
Volcanic Centre,
New Zealand, New Zeal. J. Geol. Geop., 18, 683–712, 1975.
Hunt, J. B., Fannin, N. G., Hill, P. G., and Peacock, J. D.: The tephrochronology
and radiocarbon dating of North Atlantic, Late-Quaternary sediments: an
example from the St. Kilda Basin, Geol. Soc. Ldn. Sp. Pub., 90, 227–248, 1995.
Jarosewich, E., Nelen, J. A., and Norberg, J. A.: Reference samples for electron
microprobe analysis, Geostandard. Newslett., 4, 43–47, 1980.
Jochum, K. P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A. W., Amini, M.,
Aarburg, S., Abouchami, W., Hellebrand, E., Mocek, B., and Raczek, I.:
MPI-DING reference glasses for in situ microanalysis: New reference values
for element concentrations and isotope ratios, Geochem. Geophy.
Geosy., 7, https://doi.org/10.1029/2005GC001060, 2006.
Jurado-Chichay, Z. and Walker, G. P. L.: Stratigraphy and dispersal of the
Mangaone Subgroup
pyroclastic deposits, Okataina Volcanic Centre, New Zealand, J. Volc. Geoth.
Res., 104, 319–380, 2000.
Kassambara, A. and Mundt, F.: factoextra: Extract and Visualize the Results
of Multivariate Data Analyses. R package version 1.0.7, available at:
https://CRAN.R-project.org/package=factoextra (last access: June 2021), 2020.
Kilgour, G. N. and Smith, R. T.: Stratigraphy, dynamics, and eruption impacts
of the dual magma Rotorua eruptive episode, Okataina Volcanic Centre, New
Zealand, New Zeal. J. Geol. Geop., 51, 367–378, 2008.
Klemetti, E. W., Deering, C. D., Cooper, K. M., and Roeske, S. M.: Magmatic
perturbations in the
Okataina Volcanic Complex, New Zealand at thousand-year timescales recorded
in single zircon crystals, Earth Planet Sc. Lett., 305, 185–194, 2011.
Knott, J. R., Sarna-Wojcicki, A. M., Montañez, I. P., and Wan, E.:
Differentiating the Bishop ash bed and related tephra layers by
elemental-based similarity coefficients of volcanic glass shards using
solution inductively coupled plasma-mass spectrometry (S-ICP-MS), Quatern.
Int., 166, 79–86, 2007.
Kobayashi, T., Nairn, I., Smith, V., and Shane, P.: Proximal stratigraphy and
event sequence of the c. 5600 cal yr BP Whakatane rhyolite eruption episode
from Haroharo volcano, Okataina Volcanic Centre, New Zealand, New Zeal. J.
Geol. Geop., 48, 471–490, 2005.
Kuehn, S. C., Froese, D. G., Carrara, P. E., Foit, F. F., Pearce, N. J., and
Rotheisler, P.: The latest Pleistocene Glacier Peak tephra set revisited and
revised: Major-and trace-element characterization, distribution, and a new
chronology in western North America, Quaternary Res., 71, 201–216, 2009.
Kuehn, S. C., Froese, D. G., Shane, P. A. R., and INTAV Intercomparison
Participants: The INTAV intercomparison of electron-beam microanalysis of
glass by tephrochronology laboratories: results and recommendations, Quatern.
Int., 246, 19–47, 2011.
Kurbatov, A., Dunbar, N. W., Iverson, N. A., Gerbi, C. C., Yates, M. G.,
Kalteyer, D., and McIntosh, W. C.: Antarctic Tephra Database (AntT), in: AGU
Fall Meeting Abstracts, available at:
http://www.tephrochronology.org/AntT/ (last access: June 2021), December 2014.
Le Maitre, R. W.: A proposal by the IUGS Subcommission on the Systematics of
Igneous Rocks for a chemical classification of volcanic rocks based on the
total alkali silica (TAS) diagram: (on behalf of the IUGS Subcommission on
the Systematics of Igneous Rocks), Aus. J. Earth Sci., 31, 243–255,
1984.
Leahy, K.: Discrimination of reworked pyroclastics from primary tephra-fall
tuffs: a case study using kimberlites of Fort a la Corne, Saskatchewan,
Canada, Bull. Volc., 59, 65–71, 1997.
Lowe, D. J.: Late Quaternary volcanism in New Zealand: towards an integrated
record using distal airfall tephras in lakes and bogs, J. Quaternart Sci., 3, 111–120, 1988.
Lowe, D. J.: Tephrochronology and its application: a review, Quat.
Geochronol., 6, 107–153, 2011.
Lowe, D. J.: Marine tephrochronology: a personal perspective, Geol. Soc. Ldn.
Sp. Pub., 398, 7–19, 2014.
Lowe, D. J.: Using soil stratigraphy and tephrochronology to understand the
origin, age, and classification of a unique Late Quaternary tephra-derived
Ultisol in Aotearoa New Zealand, Quaternary, 2, 9 pp.,
https://doi.org/10.3390/quat2010009, 2019.
Lowe, D. J. and Newnham, R. M.: Role of tephra in dating Polynesian settlement
and impact, New Zealand, Past Global Changes, 12, 5–7, 2004.
Lowe, D. J., Newnham, R. M., and Ward, C. M.: Stratigraphy and chronology of a 15
ka sequence of multi-sourced silicic tephras in a montane peat bog, eastern
North Island, New Zealand, New Zeal. J. Geol. Geop., 42, 565–579,
1999.
Lowe, D. J., Tippett, J. M., Kamp, P. J., Liddell, I. J., Briggs, R. M., and
Horrocks, J. L.: Ages on weathered Plio-Pleistocene tephra sequences, western
North Island, New Zealand, Les Dossiers de l'Archéo-Logis, 1, 45–60,
2001.
Lowe, D. J., Shane, P. A., Alloway, B. V., and Newnham, R. M.: Fingerprints and
age models for widespread New Zealand tephra marker beds erupted since
30,000 years ago: a framework for NZ-INTIMATE, Quaternary Sci.
Rev., 27, 95–126, 2008.
Lowe, D. J., Blaauw, M., Hogg, A. G., and Newnham, R. M.: Ages of 24 widespread
tephras erupted since 30,000 years ago in New Zealand, with re-evaluation of
the timing and palaeoclimatic implications of the Lateglacial cool episode
recorded at Kaipo bog, Quaternary Sci. Rev., 74, 170–194, 2013.
Lowe, D. J., Pearce, N. J. G., Jorgensen, M. A., Kuehn, S. C., Tryon, C. A., and
Hayward, C. L.: Correlating tephras and cryptotephras using glass
compositional analyses and numerical and statistical methods: review and
evaluation, Quaternary Sci. Rev., 175, 1–44, 2017.
Lowe, D. J., Rees, A. B. H., Newnham, R. M., Hazell, Z. J., Gehrels, M. J.,
Charman, D. J., and Amesbury, M. J.: Isochron-informed Bayesian age modelling
for tephras and cryototephras, and application to mid-Holocene Tuhua tephra,
New Zealand, 20th INQUA Congress, Dublin, 25–31 July 2019 (abstract P-4604,
p. 1), 2019.
Manning, D. A.: Middle-late Pleistocene tephrostratigraphy of the eastern Bay
of Plenty, New Zealand, Quatern. Int., 34, 3–12, 1996.
Mahony, S. H., Barnard, N. H., Sparks, R. S. J., and Rougier, J. C.: VOLCORE, a
global database of visible tephra layers sampled by ocean
drilling, Sci. Data, 7, 1–17, 2020.
McDonough, W. F. and Sun, S. S.: The composition of the Earth, Chem.
Geol., 120, 223–253, 1995.
Milner, D. M., Cole, J. W., and Wood, C. P.: Mamaku Ignimbrite: a caldera-forming
ignimbrite erupted from a compositionally zoned magma chamber in Taupo
Volcanic Zone, New Zealand, J. Volcanol. Geoth. Res., 12, 243–264,
2003.
Molloy, C., Shane, P., and Augustinus, P.: Eruption recurrence rates in a
basaltic volcanic field based on tephra layers in maar sediments:
implications for hazards in the Auckland volcanic field, Geol. Soc. Am.
Bull., 121, 1666–1677, 2009.
Molloy, C. M.: Tephrostratigraphy of the Auckland Maar Craters, MSc thesis,
University of Auckland, Auckland, New Zealand, 2008.
Mortimer, N. and Scott, J. M.: Volcanoes of Zealandia and the Southwest
Pacific, New Zeal. J. Geol. Geop., 63, 371–377, 2020.
Nairn, I. A.: The Te Rere and Okareka eruptive episodes — Okataina Volcanic
Centre, Taupo Volcanic Zone, New Zealand, New Zeal. J. Geol. Geop., 35, 93–108, 1992.
Nairn, I. A.: Geology of the Okataina Volcanic Centre, scale 1: 50 000,
Institute of Geological and Nuclear Sciences geological map 25, 1 sheet+
156 pp., Institute of Geological and Nuclear Sciences Ltd, 2002.
Nairn, I. A. and Kohn, B. P.: Relation of the Earthquake Flat Breccia to the
Rotoiti Breccia, central North Island, New Zealand, New Zeal. J. Geol.
Geop., 16, 269–279, 1973.
Nairn, I. A., Shane, P. R., Cole, J. W., Leonard, G. J., Self, S., and Pearson,
N.: Rhyolite magma processes of the∼ AD 1315 Kaharoa eruption episode,
Tarawera volcano, New Zealand, J. Volcanol. Geoth. Res., 131, 265–294, 2004.
Naish, T. and Kamp, P. J.: Pliocene-Pleistocene marine cyclothems, Wanganui
Basin, New Zealand: A lithostratigraphic framework, New Zeal. J. Geol.
Geop., 38, 223–243, 1995.
Naish, T. and Kamp, P. J.: Foraminiferal depth palaeoecology of Late Pliocene
shelf sequences and systems tracts, Wanganui Basin, New Zealand, Sediment.
Geol., 110, 237–255, 1997.
Naish, T., Kamp, P. J., Alloway, B. V., Pillans, B., Wilson, G. S., and
Westgate, J. A.: Integrated tephrochronology and magnetostratigraphy for
cyclothemic marine strata, Whanganui Basin: implications for the
Pliocene-Pleistocene boundary in New Zealand, Quatern. Int., 34, 29–48,
1996.
Naish, T. R., Field, B. D., Zhu, H., Melhuish, A., Carter, R. M., Abbott, S. T.,
Edwards, S., Alloway, B. V., Wilson, G. S., Niessen, F., and Barker, A.:
Integrated outcrop, drill core, borehole and seismic stratigraphic
architecture of a cyclothemic, shallow-marine depositional system, Wanganui
Basin, New Zealand, J. Royal Soc. New Zeal., 35, 91–122, 2005.
Nelson, C. S., Froggatt, P. C., and Gosson, G. J.: Nature, chemistry, and origin
of late Cenozoic megascopic tephras in Leg 90 cores from the southwest
Pacific, in: Proceedings of
the Ocean Drilling Program, Initial Reports, edited by: Kennett, J. P. and Von Der Borch, C. C., 90, Ocean Drilling Program,
Texas A & M University, College Station, TX, 1160–1173, 1985.
Newnham, R. M., De Lange, P. J., and Lowe, D. J.: Holocene vegetation, climate
and history of a raised bog complex, northern New Zealand based on
palynology, plant macrofossils and tephrochronology, Holocene, 5, 267–282, 1995.
Newnham, R. M., Lowe, D. J., McGlone, M. S., Wilmshurst, J. M., and Higham,
T. F. G.: The Kaharoa Tephra as a critical datum for earliest human impact in
northern New Zealand, J. Archae. Sci., 25, 533–544, 1998.
Newnham, R. M., Eden, D. N., Lowe, D. J., and Hendy, C. H.: Rerewhakaaitu Tephra,
a land–sea marker for the Last Termination in New Zealand, with
implications for global climate change, Quaternary Sci. Rev., 22, 289–308, 2003.
Newnham, R. M., Lowe, D. J., Green, J. D., Turner, G. M., Harper, M. A., McGlone,
M. S., Stout, S. L., Horie, S., and Froggatt, P. C.: A discontinuous ca. 80 ka
record of Late Quaternary environmental change from Lake Omapere, Northland,
New Zealand, Palaeogeogr. Palaeocl., 207, 165–198, 2004.
Newnham, R. M., Vandergoes, M. J., Garnett, M. H., Lowe, D. J., Prior, C., and
Almond, P. C.: Test of AMS 14C dating of pollen concentrates using
tephrochronology, J. Quaternary Sci., 22, 37–51, 2007.
Newnham, R. M., Hazell, Z. J., Charman, D. J., Lowe, D. J., Rees, A. B. H.,
Amesbury, M. J., Roland, T. P., Gehrels, M. J., van den Bos, V., and Jara, I. A.:
Peat humification records from Restionaceae bogs in northern New Zealand as
potential indicators of Holocene precipitation, seasonality, and ENSO,
Quaternary Sci. Rev., 218, 378–394, 2019.
Newton, A.: Tephrabase, A tephrochronological database, Quaternary
Newsletter, 8–13, available at: https://www.tephrabase.org/ (last access: June 2021), 1996.
Nicol, A., VanDissen, R., Vella, P., Alloway, B., and Melhuish, A.: Growth of
contractional structures during the last 10 my at the southern end of the
emergent Hikurangi forearc basin, New Zealand, New Zeal. J. Geol.
Geop., 45, 365–385, 2002.
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry,
M., Stevens, H., Szoecs, E., and Wagner, H.: vegan: Community Ecology Package. R
package version 2.5-6, available at: https://CRAN.R/project.org/package=vegan (last access: June 2021), 2019.
Orpin, A. R., Carter, L., Page, M. J., Cochrn, U. A., Trustrum, N. A., Gomez,
B., Palmer, A. S., Mildenhall, D. C., Rogers, K. M., Brackly, H. L., and
Northcote, L.: Holocene sedimentary record from Lake Tutira: a template for
upland watershed erosion proximal to the Waipaoa Sedimentary System,
northeastern New Zealand, Mar. Geol., 270, 11–29, 2010.
Pain, C. F.: Some tephra deposits in the south-west Waikato area, North
Island, New Zealand, New Zeal. J. Geol. Geop., 18, 541–550, 1975.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite:
Freeware for the visualisation and processing of mass spectrometric data, J.
Anal. At. Spec., 26, 2508–2518, 2011.
Pearce, N. J.: Towards a protocol for the trace element analysis of glass from
rhyolitic shards in tephra deposits by laser ablation ICP-MS, J. Quaternary
Sci., 29, 627–640, 2014.
Pearce, N. J., Westgate, J. A., and Perkins, W. T.: Developments in the analysis
of volcanic glass shards by laser ablation ICP-MS: quantitative and single
internal standard-multielement methods, Quatern. Int., 34, 213–227, 1996.
Pearce, N. J., Eastwood, W. J., Westgate, J. A., and Perkins, W. T.: Trace-element
composition of single glass shards in distal Minoan tephra from SW
Turkey, J. Geol. Soc., 159, 545–556, 2002.
Pearce, N. J., Westgate, J. A., Perkins, W. T., and Preece, S. J.: The application
of ICP-MS methods to tephrochronological problems, Appl. Geochem., 19, 289–322, 2004.
Pearce, N. J., Denton, J. S., Perkins, W. T., Westgate, J. A., and Alloway, B. V.:
Correlation and characterisation of individual glass shards from tephra
deposits using trace element laser ablation ICP-MS analyses: current status
and future potential, J. Quaternary Sci., 22, 721–736, 2007.
Pearce, N. J., Alloway, B. V., and Westgate, J. A.: Mid-Pleistocene silicic
tephra beds in the Auckland region, New Zealand: their correlation and
origins based on the trace element analyses of single glass shards, Quatern.
Int., 178, 16–43, 2008.
Pearce, N. J., Perkins, W. T., Westgate, J. A., and Wade, S. C.: Trace-element
microanalysis by LA-ICP-MS: the quest for comprehensive chemical
characterisation of single, sub-10 µm volcanic glass shards, Quatern.
Int., 246, 57–81, 2011.
Pecher, I. A., Barnes, P. M., LeVay, L. J., and the Expedition 372 Scientists:
Expedition 372 Preliminary Report: Creeping Gas Hydrate Slides and Hikurangi
LWD, International Ocean Discovery Program, available at: https://doi.org/10.14379/iodp.pr.372.2018, 2018.
Peti, L., Gadd, P. S., Hopkins, J. L., and Augustinus, P. C.: Itrax μ-XRF
core scanning for rapid tephrostratigraphic analysis: a case study from the
Auckland Volcanic Field maar lakes, J. Quaternary Sci., 35, 54–65, 2020.
Peti, L., Hopkins, J. L., and Augustinus, P.: Revised tephrochronology for key
tephras in the 130-ka Ōrākei Basin maar core, Auckland Volcanic
Field, New Zealand: implications for the timing of climatic changes, New
Zealand, New Zeal. J. Geol. Geop., 64, 235–249,
https://doi.org/10.1080/00288306.2020.1867200, 2021.
Pillans, B.: Direct marine-terrestrial correlations, Wanganui Basin, New
Zealand: the last 1 million years, Quaternary Sci. Rev., 13, 189–200,
1994.
Pillans, B.: Quaternary stratigraphy of Whanganui Basin – a globally
significant archive, in: Landscape and quaternary environmental change in New
Zealand, Atlantis Press, Paris, 141–170, 2017.
Pillans, B. J., Roberts, A. P., Wilson, G. S., Abbott, S. T., and Alloway, B. V.:
Magnetostratigraphic, lithostratigraphic and tephrostratigraphic constraints
on Lower and Middle Pleistocene sea-level changes, Wanganui Basin, New
Zealand, Earth Planet Sc. Lett., 121, 81–98, 1994.
Pillans, B., Kohn, B. P., Berger, G., Froggatt, P., Duller, G., Alloway, B. and Hesse, P.: Multi-method dating comparison for mid-Pleistocene Rangitawa tephra, New Zealand, Quaternary. Sci. Rev., 15, 641–653, 1996.
Pittari, A., Prentice, M. L., McLeod, O. E., Yousefzadeh, E., Kamp, P. J. J., Danišík, M., and Vincent, K. A.: Inception of the modern North Island (New Zealand) volcanic setting: spatio-temporal patterns of volcanism between 3.0 and 0.9 Ma, New Zeal. J. Geol. Geop., 64, 250–272, https://doi.org/10.1080/00288306.2021.1915343, 2021.
Portnyagin, M. V., Ponomareva, V. V., Zelenin, E. A., Bazanova, L. I., Pevzner, M. M., Plechova, A. A., Rogozin, A. N., and Garbe-Schönberg, D.: TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific), Earth Syst. Sci. Data, 12, 469–486, https://doi.org/10.5194/essd-12-469-2020, 2020.
Preece, S. J., Westgate, J. A., Froese, D. G., Pearce, N. J. G., and Perkins, W. T.:
A catalogue of late Cenozoic tephra beds in the Klondike goldfields, Yukon.
Can. J. Earth Sci., 48, 1386–1418, 2011.
R Core Team, R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org (last access: June 2021), 2019.
Rees, C., Palmer, J., and Palmer, A.: Plio-Pleistocene geology of the lower
Pohangina valley, New Zealand, New Zeal. J. Geol. Geop., 61, 44–63,
2018.
Rees, C., Palmer, A., and Palmer, J.: Quaternary sedimentology and
tephrostratigraphy of the lower Pohangina Valley, New Zealand, New Zeal. J.
Geol. Geop., 62, 171–194, 2019.
Rees, C., Palmer, J., and Palmer, A.: Tephrostratigraphic constraints on
sedimentation and tectonism in the Whanganui Basin, New Zealand, New Zeal.
J. Geol. Geop., 63, 262–280, 2020.
Rosenberg, M. D., Wilson, C. J. N., Bignall, G., Ireland, T. R., Sepulveda, F.,
and Charlier, B. L. A. Structure and evolution of the Wairakei–Tauhara
geothermal system (Taupo Volcanic Zone, New Zealand) revisited with a new
zircon geochronology, J. Volcanol. Geoth. Res., 390, 106705, https://doi.org/10.1016/j.jvolgeores.2019.106705, 2020.
Rubin, A. E., Cooper, K. M., Leever, M., Wimpenny, J., Deering, C., Rooney,
T., Gravley, D., and Yin,
Q.-Z.: Changes in magma storage conditions following caldera collapse at
Okataina
Volcanic Center, New Zealand, Contrib. Mineral. Petr., 171, 1–18, 2016.
Saffer, D. M., Wallace, L. M., Petronotis, K., and the Expedition 375
Scientists: Expedition 375 Preliminary Report: Hikurangi Subduction Margin
Coring and Observatories, International Ocean Discovery Program,
https://doi.org/10.14379/iodp.pr.375.2018, 2018.
Sahetapy-Engel, S., Self, S., Carey, R. J., and Nairn, I. A.: Deposition and
generation of multiple widespread fall units from the c. AD 1314 Kaharoa
rhyolitic eruption, Tarawera, New Zealand. Bull. Volc., 76, 836,
https://doi.org/10.1007/s00445-014-0836-4, 2014.
Sarna-Wojcicki, A. M.: Tephrochronology, in: Quat Geochronol. Methods and Applications, edited by: Noller, J. S., Sowers, J. M., and
Lettis, W. R., AGU
Reference Shelf, American Geophysical Union Washington, DC,
Vol. 4, 357–377, 2000.
Saul, G., Naish, T. R., Abbott, S. T. and Carter, R. M.: Sedimentary cyclicity
in the marine Pliocene-Pleistocene of the Wanganui basin (New Zealand):
Sequence stratigraphic motifs characteristic of the past 2.5 my, Geol. Soc.
Am. Bull., 111, 524–537, 1999.
Schneider, J. L., Le Ruyet, A., Chanier, F., Buret, C., Ferrière, J.,
Proust, J. N., and Rosseel, J. B.: Primary or secondary distal volcaniclastic
turbidites: how to make the distinction? An example from the Miocene of New
Zealand (Mahia Peninsula, North Island), Sediment. Geol., 145, 1–22,
2001.
Seward, D.: Tephrostratigraphy of the marine sediments in the Wanganui Basin,
New Zealand, New Zeal. J. Geol. Geop., 19, 9–20, 1976.
Shane, P. A. R.: A widespread, early Pleistocene tephra (Potaka tephra, 1 Ma)
in New Zealand: character, distribution, and implications, New Zeal. J.
Geol. Geop., 37, 25–35, 1994.
Shane, P. A. R.: Correlation of rhyolitic pyroclastic eruptive units from the
Taupo volcanic zone by Fe–Ti oxide compositional data, Bull. Volc., 60, 224–238, 1998.
Shane, P. A. R.: Tephrochronology: a New Zealand case study, Earth Sci. Rev.,
49, 223–259, 2000.
Shane, P. A. R. and Froggatt, P. C.: Glass chemistry, paleomagnetism, and
correlation of middle Pleistocene tuffs in southern North Island, New
Zealand, and Western Pacific, New Zeal. J. Geol. Geop., 34, 203–211,
1991.
Shane, P. A. R. and Hoverd, J.: Distal record of multi-sourced tephra in
Onepoto Basin, Auckland, New Zealand: implications for volcanic chronology,
frequency and hazards, Bull. Volc., 64, 441–454, 2002.
Shane, P. A. R., Black, T. J., and Westgate, J. A.: Isothermal plateau
fission-track age for a paleomagnetic excursion in the Mamaku Ignimbrite,
New Zealand, and implications for Late Quaternary stratigraphy, Geophys.
Res. Lett., 21, 1695–1698, 1994.
Shane, P. A. R., Froggatt, P., Black, T., and Westgate, J.: Chronology of
Pliocene and Quaternary bioevents and climatic events from fission-track
ages on tephra beds, Wairarapa, New Zealand, Earth Planet Sc.
Lett., 130, 141–154, 1995.
Shane, P. A. R, Black, T. M., Alloway, B. V., and Westgate, J. A.: Early to middle
Pleistocene tephrochronology of North Island, New Zealand: Implications for
volcanism, tectonism, and paleoenvironments, Geol. Soc. Am. Bull., 108, 915–925, 1996.
Shane, P., Lian, O. B., Augustinus, P., Chisari, R., and Heijnis, H.:
Tephrostratigraphy and geochronology of a ca. 120 ka terrestrial record at
Lake Poukawa, North Island, New Zealand, Global Planet.
Change, 33, 221–242, 2002.
Shane, P. A. R., Smith, V. C., Lowe, D. J., and Nairn, I. A.: Re-identification of
c. 15700 cal yr BP tephra bed at Kaipo Bog, eastern North Island:
implications for dispersal of Rotorua and Puketarata tephra beds, New Zeal.
J. Geol. Geop., 46, 591–596, 2003a.
Shane, P. A. R., Smith, V. C., and Nairn, I. A.: Biotite composition as a tool for
the identification of Quaternary tephra beds, Quaternary Res., 59, 262–270, 2003b.
Shane, P. A. R., Smith, V. C., and Nairn, I. A.: High temperature rhyodacites of
the 36 ka Hauparu pyroclastic eruption, Okataina Volcanic Centre, New
Zealand: change in a silicic magmatic system following caldera collapse, J.
Volcanol. Geoth. Res., 147, 357–376, 2005.
Shane, P. A. R., Sikes, E. L., and Guilderson, T. P.: Tephra beds in deep-sea
cores off northern New Zealand: implications for the history of Taupo
volcanic zone, Mayor Island and White Island volcanoes, J. Volcanol. Geoth.
Res., 154, 276–290, 2006.
Shane, P., Nairn, I. A., Martin, S. B., and Smith, V. C.: Compositional
heterogeneity in tephra deposits resulting from the eruption of multiple
magma bodies: implications for tephrochronology, Quatern. Int., 178, 44–53, 2008.
Shane, P., Gehrels, M., Zawalna-Geer, A., Augustinus, P., Lindsay, J., and
Chaillou, I.: Longevity of a small shield volcano revealed by crypto-tephra
studies (Rangitoto volcano, New Zealand): change in eruptive behavior of a
basaltic field, J. Volcanol. Geoth. Res., 257, 174–183, 2013.
Smith, V. C., Shane, P., and Smith, I. E. M.: Tephrostratigraphy and geochemical
fingerprinting of the Mangaone Subgroup tephra beds, Okataina volcanic
centre, New Zealand, New Zeal. J. Geol. Geop., 45, 207–219, 2002.
Smith, V. C., Shane, P., and Nairn, I. A.: Reactivation of a rhyolite magma body
by new rhyolitic intrusion before the 15.8 ka Rotorua eruptive episode:
implications for magma storage in the Okataina Volcanic Centre, New Zealand.
J. Geol. Soc. Ldn., 161, 757–772, 2004.
Smith, V. C., Shane, P., and Nairn, I. A.: Trends in rhyolite geochemistry,
mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo
volcanic centres, Taupo Volcanic Zone, New Zealand, J. Volcanol. Geoth.
Res., 148, 372–406, 2005.
Stokes, S., Lowe, D. J., and Froggatt, P. C.: Discriminant function analysis and
correlation of late Quaternary rhyolitic tephra deposits from Taupo and
Okataina volcanoes, New Zealand, using glass shard major element
composition, Quatern. Int., 13–14, 103–117, 1992.
Streck, M. J. and Wacaster, S.: Plagioclase and pyroxene hosted melt
inclusions in basaltic andesites of the current eruption of Arenal volcano,
Costa Rica, J. Volcanol. Geoth. Res., 157, 236–253, 2006.
Storm, S., Schmitt, A. K., Shane, P., and Lindsay, J. M.: Zircon trace element
chemistry at submicrometer resolution for Tarawera volcano, New Zealand, and implications
for rhyolite 1061 magma evolution, Contrib. Mineral. Petr., 167, 1000,
https://doi.org/10.1007/s00410-014-1000-z, 2014.
Sutton, A. N., Blake, S., Wilson, C. J., and Charlier, B. L.: Late Quaternary
evolution of a hyperactive rhyolite magmatic system: Taupo volcanic centre,
New Zealand, J. Geol. Soc., 157, 537–552, 2000.
Tanaka, H. G. M. T., Turner, G. M., Houghton, B. F., Tachibana, T., Kono, M., and
McWilliams, M. O.: Palaeomagnetism and chronology of the central Taupo
volcanic zone, New Zealand, Geophys. J. Int., 124, 919–934, 1996.
Tapia, C. A., Grant, G. R., Turner, G. M., Sefton, J. P., Naish, T. R., Dunbar,
G., and Ohneiser, C.: High-resolution magnetostratigraphy of mid-Pliocene
(3.3–3.0 Ma) shallow-marine sediments, Whanganui Basin, New Zealand, Geophys.
J. Int., 217, 41–57, 2019.
Tryon, C. A., Faith, J. T., Peppe, D. J., Fox, D. L., McNulty, K. P., Jenkins,
K., Dunsworth, H., and Harcourt-Smith, W.: The Pleistocene archaeology and
environments of the Wasiriya beds, Rusinga Island, Kenya, J. Human
Evol., 59, 657–671, 2010.
Turner, M. B., Bebbington, M. S., Cronin, S. J., and Stewart, R. B.: Merging
eruption datasets: building an integrated Holocene eruptive record for Mt
Taranaki, New Zealand, Bull. Volc., 71, 903–918, 2009.
Turner, M. B., Cronin, S. J., Bebbington, M. S., Smith, I. E., and Stewart, R. B.:
Integrating records of explosive and effusive activity from proximal and
distal sequences: Mt. Taranaki, New Zealand, Quatern. Int., 246, 364–373, 2011.
Turney, C. S., Blockley, S. P., Lowe, J. J., Wulf, S., Branch, N. P.,
Mastrolorenzo, G., Swindle, G., Nathan, R., and Pollard, A. M.: Geochemical
characterization of Quaternary tephras from the Campanian Province,
Italy, Quatern. Int., 178, 288–305, 2008.
Vandergoes, M. J., Hogg, A. G., Lowe, D. J., Newnham, R. M., Denton, G. H.,
Southon, J., Barrell, D. J., Wilson, C. J., McGlone, M. S., Allan, A. S., and
Almond, P. C.: A revised age for the Kawakawa/Oruanui tephra, a key marker for
the Last Glacial Maximum in New Zealand, Quaternary Sci. Rev., 74, 195–201, 2013.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics With S, 4th
Edn., Springer-Verlag, New York, 2002.
Vu, V. Q.: ggbiplot: A ggplot2 based biplot, R package version 0.55, available at:
http://github.com/vqv/ggbiplot (last access: June 2021), 2011.
Vucetich, C. G. and Pullar, W. A.: Stratigraphy and chronology of late
Pleistocene volcanic ash beds in the central North Island, New Zealand, New
Zeal. J. Geol. Geop., 12, 784–837, 1969.
Vucetich, C. G., Birrell, K. S., and Pullar, W. A.: Ohinewai Tephra Formation; a
c. 150000-year-old tephra marker in New Zealand, New Zeal. J. Geol.
Geop., 21, 71–73, 1978.
Walker, G. P. L.: The Taupo plinian pumice: product of the most powerful known
(ultraplinian) eruption?, J. Volcanol. Geoth. Res., 8, 69–94, 1980.
Walker, G. P. L.: Volcanological applications of pyroclastic studies, in: Tephra Studies, edited by: Self,
S. and Sparks, R. S. J., Reidel, Dordrecht,
391–403, 1981.
Wallace, K. L.: Alaska Tephra Data, 2018 (ver. 1.0, August 2018): U.S.
Geological Survey data release,
https://doi.org/10.5066/P9PFQGVC, available at:
https://avo.alaska.edu/about/tephra.php (last access: June 2021), 2018.
Ward, W. T.: Volcanic ash beds of the lower Waikato basin, North Island, New
Zealand, New Zeal. J. Geol. Geop., 10, 1109–1135, 1967.
Watkins, N. D. and Huang, T. C.: Tephras in abyssal sediments east of the
North Island, New Zealand: chronology, paleowind velocity, and
paleoexplosivity, New Zeal. J. Geol. Geop., 20, 179–198, 1977.
Westgate, J. A. and Gorton, M. P.: Correlation techniques in tephra studies,
in: Tephra studies, Springer, Dordrecht, 73–94, 1981.
Westgate, J. A., Perkins, W. T., Fuge, R., Pearce, N. J. G., and Wintle, A. G.:
Trace-element analysis of volcanic glass shards by laser ablation
inductively coupled plasma mass spectrometry: application to
tephrochronological studies, Appl. Geochem., 9, 323–335, 1994.
Westgate, J. A., Preece, S. J., Froese, D. G., Pearce, N. J., Roberts, R. G.,
Demuro, M., Hart, W. K., and Perkins, W.: Changing ideas on the identity and
stratigraphic significance of the Sheep Creek tephra beds in Alaska and the
Yukon Territory, northwestern North America, Quatern. Int., 178, 183–209,
2008.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New
York, 2016.
Wilson, C. J. N. and Rowland, J. V.: The volcanic, magmatic and tectonic setting
of the Taupo Volcanic Zone, New Zealand, reviewed from a geothermal
perspective, Geothermics, 59, 168–187, 2016.
Wilson, C. J. N., Houghton, B. F., McWilliams, M. O., Lanphere, M. A., Weaver,
S. D. and Briggs, R. M.: Volcanic and structural evolution of Taupo Volcanic
Zone, New Zealand: a review, J. Volcanol. Geoth. Res., 68, 1–28,
1995a.
Wilson, C. J. N., Houghton, B. F., Pillans, B. J., and Weaver, S. D.: Taupo
Volcanic Zone calc-alkaline tephras on the peralkaline Mayor Island volcano,
New Zealand: identification and uses as marker horizons, J. Volcanol. Geoth.
Res., 69, 303–311, 1995b.
Wilson, C. J. N., Gravley, D. M., Leonard, G. S., and Rowland, J. V.: Volcanism in
the central Taupo Volcanic Zone, New Zealand: tempo, styles and controls,
in: Studies in volcanology: the legacy of George Walker, edited by: Thordarson, T., Self, S., Larsen, G., Rowland, S. K., and Hoskuldsson, A., Special
Publications of IAVCEI (Geological Society, London), 2, 225–247, 2009.
Short summary
Here we present the foundation dataset for TephraNZ, a formal, comprehensive, open-access reference dataset of glass-shard compositions for New Zealand tephras. We geochemically characterise 45 eruptive episodes ranging from Kaharoa (ca. 636 cal yr BP) to the Hikuroa Pumice member (ca. 2.0 Ma) from six or more caldera sources, most from the central Taupō Volcanic Zone.
Here we present the foundation dataset for TephraNZ, a formal, comprehensive, open-access...