Crank, J.: The Mathematics of Diffusion: London, Oxford University Press,
414 pp., 1975.
Deyell, C. L., Rye, R. O., Landis, G. P., and Bissig, T.: Alunite and the
role of magmatic fluids in the Tambo high-sulfidation deposit, El
Indio–Pascua belt, Chile. Chem. Geol., 215, 185–218,
https://doi.org/10.1016/j.chemgeo.2004.06.038, 2005.
Dodson, M. H.: Closure temperature in cooling geochronological and
petrological systems, Contrib. Mineral Petr., 40, 259–274,
https://doi.org/10.1007/BF00373790, 1973.
Fleck, R. J., Sutter, J. F., and Elliot, D. H.: Interpretation of discordant
40Ar
39Ar age-spectra of Mesozoic tholeiites from Antarctica,
Geochim. Cosmochim. Ac., 41, 15–32, https://doi.org/10.1016/0016-7037(77)90184-3, 1977.
Forster, M. A. and Lister, G. S.: The interpretation of
40Ar
39Ar
apparent age spectra produced by mixing: application of the method of
asymptotes and limits, J. Struct. Geol., 26, 287–305,
https://doi.org/10.1016/j.jsg.2003.10.004, 2004.
Forster, M. A. and Lister, G. S.: Argon enters the retentive zone:
reassessment of diffusion parameters for K-feldspar in the South Cyclades
Shear Zone, Ios, Greece, Geol. Soc. Lond. Geol. Sp.,
332, 17–34, https://doi.org/10.1144/SP332.2, 2010.
Forster, M. A. and Lister, G. S.:
40Ar
39Ar geochronology and the
diffusion of
39Ar in phengite–muscovite intergrowths during
step-heating experiments in vacuo, Geol. Soc. Lond. Geol. Sp., 378, 117–135, https://doi.org/10.1144/sp378.16,
2014.
Forster, M. A., Lister, G. S., and Lennox, P. G.: Dating deformation
using crushed alkali feldspar:
40Ar
39Ar geochronology of shear
zones in the Wyangala Batholith, NSW, Australia, Aust. J. Earth Sci., 61,
619–629, https://doi.org/10.1080/08120099.2014.916751, 2014.
Forster, M. A., Armstrong, R., Kohn, B., Lister, G. S., Cottam, M. A., and
Suggate, S.: Highly retentive core domains in K-feldspar and their
implications for
40Ar
39Ar thermochronology illustrated by
determining the cooling curve for the Capoas Granite, Palawan, The
Philippines, Aust. J. Earth Sci., 62, 883–902, https://doi.org/10.1080/08120099.2015.1114524, 2015.
Forster, M. A., Koudashev, O., Nie, R., Yeung, S., and Lister, G. S.:
40Ar
39Ar thermochronology in the Ios basement terrane resolves
the tectonic significance of the South Cyclades Shear Zone, Geol. Soc. Lond. Geol. Sp., 487, 291–313,
https://doi.org/10.1144/SP487-2018-169, 2019.
Garwin, S., Hall, R., and Watanabe, Y.: Tectonic Setting, Geology, and Gold
and Copper Mineralization in Cenozoic Magmatic Arcs of Southeast Asia and
the West Pacific, Econ. Geol., 100th Anniversary Volume,
https://doi.org/10.5382/AV100.27, 2005.
Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A. B., Tshoso, G., Le
Gall, B., Tiercelin, J. J., and Capiez, P.: The Karoo triple junction
questioned: evidence from Jurassic and Proterozoic
40Ar
39Ar ages
and geochemistry of the giant Okavango dyke swarm (Botswana), Earth Planet.
Sc. Lett., 222, 989–1006, 10.1016/j.epsl.2004.03.017, 2004.
Kelley, S.: Excess argon in K–Ar and Ar–Ar geochronology, Chem. Geol.,
188, 1–22, https://doi.org/10.1016/s0009-2541(02)00064-5, 2002.
Kunk, M. J., Wintsch, R. P., Naeser, C. W., Naeser, N. D., Southworth, C.
S., Drake, A. A., and Becker, J. L.: Contrasting tectonothermal domains and
faulting in the Potomac terrane, Virginia–Maryland–discrimination by
40Ar
39Ar and fission-track thermochronology, Geo. Soc. Am. Bull.,
117, 1347–1366, https://doi.org/10.1130/B25599.1, 2005.
Landis, G. P., Snee, W., and Juliani, C.: “Evaluation of argon ages and
integrity of fluid-inclusion compositions: stepwise noble gas heating
experiments on 1.87 Ga alunite from Tapajós Province, Brazil.” Chem. Geol., 215, 127–153, 2005.
Levet, B. K., Jones, M. L., and Sutopo, B.:
The Purnama gold deposit in the Martabe District of North Sumatra,
Indonesia, SMEDG-AIG Symposium,
https://www.smedg.org.au/Tiger/Purnama.htm (last access: 1 January 2023), 2003.
Li, J., Poureau, A., Li, Z.-X., Jourdan, F., Nordsvan, A. R., Collins, W. J.,
and Volante, S.: Heterogeneous exhumation of the Mount Isa Orogen in NE
Australia after 1.6 Ga Nuna assembly: New high-precision
40Ar
39Ar
thermochronological constraints, Tectonics, 39, e2020TC006129,
https://doi.org/10.1029/2020TC006129, 2020.
Lister, G. S. and Baldwin, S. L.: Modelling the effect of arbitrary P-T-t
histories on argon diffusion in minerals using the MacArgon program for the
Apple Macintosh, Tectonophysics, 253, 83–109, 1996.
Love, D. A., Clark, A. H., Hodgson, C. J., Mortensen, J. K., Arichibald, D. A.,
and Farrar, E.: The timing of adularia-sericite-type mineralization and
alunite-kaolinite-type alteration, Mount Skukum epithermal gold deposit,
Yukon Territory, Canada:
40Ar
39Ar and U-Pb geochronology, Econ.
Geol., 93, 437–462, https://doi.org/10.2113/gsecongeo.93.4.437, 1998.
Mahon, K.: The New “York” Regression: Application of an Improved
Statistical Method to Geochemistry, Int. Geol. Rev., 38, 293–303,
https://doi.org/10.1080/00206819709465336, 1996.
Maryono, A., Natawidjaja, D. H., van Leeuwen, T. M., Harrison, R. L., and
Santoso, B.: Sumatra, an Emerging World-Class Magmatic Gold
Belt, Proceedings of Sundaland Resources 2014 MGEI Annual Convention, 17–18
November 2014, Palembang, South Sumatra, Indonesia, 89–101, 2014.
McDougall, I. and Harrison., M. T.: Geochronology and Thermochronology By the
40Ar
40Ar method, 1st edn., Oxford University Press,
Oxford, UK, ISBN 10 0195043022, 1988.
Muston, J. E.: Volcanoes, ore deposits, and the 3D slab geometry along the
Andaman-Sumatran subduction system, M.Phil thesis, Australian National
University,
https://openresearch-repository.anu.edu.au/ (last access: 1 January 2023), 2020.
Ren, Z. and Vasconcelos, P. M.: Argon diffusion in hypogene and supergene
alunites: Implications to geochronology and thermochronometry on Earth and
Mars, Geochim. Cosmochim. Ac., 262, 166–187,
https://doi.org/10.1016/j.gca.2019.07.014, 2019.
Saing, S., Takahashi, R., and Imai, A.: Fluid Inclusion and Stable Isotope Study
at the Southeastern Martabe Deposit: Purnama, Barani and Horas Ore Bodies,
North Sumatra, Indonesia, Resour. Geol., 66, 127–148, 2016
Sharp, W. D. and Renne, P. R.: The
40Ar
39Ar dating of core
recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii,
Geochem. Geophy., Geosy., 6, Q04G67, https://doi.org/10.1029/2004GC000846, 2005.
Steiger, R. H. and Jäger, E.: Subcommission on geochronology: Convention on
the use of decay constants in geo- and cosmochronology, Earth Planet. Sc.
Lett., 36, 359–362, https://doi.org/10.1016/0012-821X(77)90060-7, 1977.
Sutopo, B.: The Martabe Au-Ag high-sulfidation epithermal deposits, Sumatra,
Indonesia: implications for ore genesis and exploration, PhD. thesis,
University of Tasmania, Australia, PhD thesis, 01/01/2023, 2013.
Trappitsch, R., Boehnke, P., Stephan, T., Telus, M., Savina, M. R., Pardo,
O., Davis, A. M., Dauphas, N., Pellin, M. J., and Huss, G. R.: New Constraints on
the Abundance of
60Fe in the Early Solar System, Astrophys. J., 857, https://doi.org/10.3847/2041-8213/aabba9,
2018.
Turner, G.:
40Ar
39Ar Ages from the Lunar Maria, Earth Planet. Sc.
Lett., 11, 169–191,
https://doi.org/10.1016/0012-821x(71)90161-0, 1971.
Waltenberg, K. M.: Mineral physics and crystal chemistry of minerals
suitable for weathering geochronology: implications to
40Ar
39Ar
and (U-Th)/He geochronology, PhD thesis, The University of Queensland,
Australia, 2012.
White, N. C. and Hedenquist, J. W.: Epithermal environments and styles of
mineralization: Variations and their causes, and guidelines for exploration,
J. Geochem. Explor., 36, 445–474,
https://doi.org/10.1016/0375-6742(90)90063-G, 1990.
York, D.: Least Squares Fitting of a Straight Line with Correlated Errors,
Earth Planet. Sc. Lett., 5, 320–324,
https://doi.org/10.1016/s0012-821x(68)80059-7, 1969.