Articles | Volume 5, issue 2
https://doi.org/10.5194/gchron-5-391-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-391-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Volcanism straddling the Miocene–Pliocene boundary on Patmos and Chiliomodi islands (southeastern Aegean Sea): insights from new 40Ar ∕ 39Ar ages
Katharina M. Boehm
Department of Earth Sciences, Vrije Universiteit Amsterdam, 1081HV
Amsterdam, the Netherlands
Klaudia F. Kuiper
CORRESPONDING AUTHOR
Department of Earth Sciences, Vrije Universiteit Amsterdam, 1081HV
Amsterdam, the Netherlands
Bora Uzel
Department of Geological Engineering, Dokuz Eylül University,
35160 İzmir, Turkey
Pieter Z. Vroon
Department of Earth Sciences, Vrije Universiteit Amsterdam, 1081HV
Amsterdam, the Netherlands
Jan R. Wijbrans
Department of Earth Sciences, Vrije Universiteit Amsterdam, 1081HV
Amsterdam, the Netherlands
Related authors
Xiaolong Zhou, Klaudia Kuiper, Jan Wijbrans, Katharina Boehm, and Pieter Vroon
Geochronology, 3, 273–297, https://doi.org/10.5194/gchron-3-273-2021, https://doi.org/10.5194/gchron-3-273-2021, 2021
Short summary
Short summary
High-resolution geochronology is one of the key factors to predict volcanic eruptions. To build up a high-resolution geochronological framework, we reported 21 new high-precision eruption ages (40Ar / 39Ar) for a ~ 3.3 × 106-year-old volcanic field: Milos (Greece). In combination with geochemical information and eruption volumes from the volcanoes of Milos, the long-lived volcanic history could provide important clues for the prediction of volcanic eruptions.
Pieter Zeger Vroon, Teun Beemster, Xiaolong Zhou, Paraskevi Nomikou, Martijn Klaver, Jan R. Wijbrans, and Klaudia F. Kuiper
EGUsphere, https://doi.org/10.5194/egusphere-2025-4857, https://doi.org/10.5194/egusphere-2025-4857, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
The Christiana Islands represents the oldest subaerial volcanism in the Christiana-Santorini-Kolombo volcanic field, but the exact age of this volcano has been unknown. This study reports new 40Ar/39Ar ages of ten volcanic samples from Christiana Island that cluster between 2.5–2.7 Ma with small uncertainties (0.02–0.14 Ma). One sample dated much younger: 133 ka; this is most likely derived from the Middle Pumice Plinian eruption of Santorini.
Akbar Aydin Oglu Huseynov, Jan Wijbrans, Klaudia Kuiper, and Jeroen van der Lubbe
Geochronology, 7, 173–197, https://doi.org/10.5194/gchron-7-173-2025, https://doi.org/10.5194/gchron-7-173-2025, 2025
Short summary
Short summary
This study explores quartz veins in Germany's Rursee area, formed during the Variscan Orogeny and later reactivated by tectonic activity in the Jurassic–Cretaceous period. Using advanced isotopic dating techniques, it examines how these veins influenced fluid flow and quartz recrystallization. By tackling the challenges of dating fluid activity, this research offers new insights into argon gas degassing in quartz minerals.
Xiaolong Zhou, Klaudia Kuiper, Jan Wijbrans, Katharina Boehm, and Pieter Vroon
Geochronology, 3, 273–297, https://doi.org/10.5194/gchron-3-273-2021, https://doi.org/10.5194/gchron-3-273-2021, 2021
Short summary
Short summary
High-resolution geochronology is one of the key factors to predict volcanic eruptions. To build up a high-resolution geochronological framework, we reported 21 new high-precision eruption ages (40Ar / 39Ar) for a ~ 3.3 × 106-year-old volcanic field: Milos (Greece). In combination with geochemical information and eruption volumes from the volcanoes of Milos, the long-lived volcanic history could provide important clues for the prediction of volcanic eruptions.
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Cited articles
Agostini, S., Doglioni, C., Innocenti, F., Manetti, P., and Tonarini, S.: On the geodynamics of the Aegean rift, Tectonophysics, 488, 7–21, 2010.
Akal, C., Helvacı, C., Prelević, D., and van den Bogaard, P.: High-K
volcanism in the Afyon region, western Turkey: from Si-oversaturated to
Si-undersaturated volcanism, Int. J. Earth Sci.,
102, 435–453, 2013.
Akay, E. and Erdoğan, B.: Evolution of Neogene calc-alkaline to
alkaline volcanism in the Aliağa-Foça region (Western Anatolia,
Turkey), J. Asian Earth Sci., 24, 367–387, 2004.
Alıcı, P., Temel, A., and Gourgaud, A.: Pb–Nd–Sr isotope and trace
element geochemistry of Quaternary extension-related alkaline volcanism: a
case study of Kula region (western Anatolia, Turkey), J. Volcanol.
Geoth. Res., 115, 487–510, 2002.
Altunkaynak, S., Rogers, N. W., and Kelley, S. P.: Causes and effects of
geochemical variations in late Cenozoic volcanism of the Foca volcanic
centre, NW Anatolia, Turkey, Int. Geol. Rev., 52,
579–607, 2010.
Anderson, A. T., Davis, A. M., and Lu, F.: Evolution of Bishop Tuff
rhyolitic magma based on melt and magnetite inclusions and zoned
phenocrysts, J. Petrol., 41, 449–473, 2000.
Armijo, R., Meyer, B., Hubert, A., and Barka, A.: Westward propagation of
the North Anatolian fault into the northern Aegean: Timing and kinematics,
Geology, 27, 267–270, 1999.
Armijo, R., Meyer, B., Navarro, S., King, G., and Barka, A.: Asymmetric slip
partitioning in the Sea of Marmara pull-apart: A clue to propagation
processes of the North Anatolian fault?, Terra Nova, 14, 80–86,
2002.
Biedermann, A. R., Pettke, T., Angel, R. J., and Hirt, A. M.: Anisotropy of
magnetic susceptibility in alkali feldspar and plagioclase, Geophysical
Supplements to the Monthly Notices of the Royal Astronomical Society,
205, 479–489, 2016.
Biryol, C. B., Beck, S. L., Zandt, G., and Özacar, A. A.: Segmented African
lithosphere beneath the Anatolian region inferred from teleseismic P-wave
tomography, Geophys. J. Int., 184, 1037–1057, 2011.
Bozkurt, E. and Mittwede, S. K.: Introduction: Evolution of continental
extensional tectonics of western Turkey, Geodin. Acta, 18,
153–165, 2005.
Çoban, H. and Flower, M. F.: Mineral phase compositions in
silica-undersaturated “leucite” lamproites from the Bucak area, Isparta, SW
Turkey, Lithos, 89, 275–299, 2006.
Duermeijer, C. E., Krijgsman, W., Langereis, C. G., and Ten Veen, J. H.:
Post-early Messinian counterclockwise rotations on Crete: implications for
Late Miocene to Recent kinematics of the southern Hellenic
arc, Tectonophysics, 298, 177–189, 1998.
Elitok, Ö.: Geology and
petrology of the potassic and ultrapotassic rocks from the northern part of
Senirkent (Isparta-SW Turkey): evidence of magma–carbonate wall-rock
interactions, Arab. J. Geosci., 12, 289, https://doi.org/10.1007/s12517-019-4453-6, 2019.
Ersoy, E. Y. and Palmer, M. R.: Eocene-Quaternary magmatic activity in the
Aegean: Implications for mantle metasomatism and magma genesis in an
evolving orogeny, Lithos, 180, 5–24, 2013.
Finch, A. A. and Klein, J.: The causes and petrological significance of cathodoluminescence emissions from alkali feldspars, Contrib. Mineral. Petrol., 135, 234–243, 1999.
Fytikas, M., Giuliani, O., Innocenti, F., Marinelli, G. T., and Mazzuoli,
R.: Geochronological data on recent magmatism of the Aegean Sea,
Tectonophysics, 31, T29–T34, 1976.
Galeos, A.: Geological map of Greece-Patmos island sheet 1.50.000, IGME,
Athens, Greece, https://shop.geospatial.com/product/CAFVME9BP47C45EXS3333W5TY5/255-Patmos-Sheet-Greece-1-to-50000-Scale-Geological-Maps (last access: 7 October 2023), 1993.
Gessner, K., Gallardo, L. A., Markwitz, V., Ring, U., and Thomson, S. N.:
What caused the denudation of the Menderes Massif: Review of crustal
evolution, lithosphere structure, and dynamic topography in southwest
Turkey, Gondwana Res., 24, 243–274, 2013.
Govers, R. and Fichtner, A.: Signature of slab fragmentation beneath
Anatolia from full-waveform tomography, Earth Planet. Sc.
Lett., 450, 10–19, 2016.
Hess, J. C., Lippolt, H. J., and Wirth, R.: Interpretation of
40Ar39Ar biotites: Evidence from hydrothermal degassing
experiments and TEM studies, Chem. Geol., 66, 137–149, 1987.
Hora, J. M., Singer, B. S., Jicha, B. R., Beard, B. L., Johnson, C. M., de
Silva, S., and Salisbury, M.: Volcanic biotite-sanidine age
discordances reflect Ar partitioning and pre-eruption closure in biotite:
Geology, 38, 923–926, 2010.
Horvath, F. and Berckhemer, H.: Mediterranean backarc
basins, Alpine-Mediterranean Geodynamics, 7, 141–173, 1982.
Hounslow, M. W. and Morton, A. C.: Evaluation of sediment provenance using
magnetic mineral inclusions in clastic silicates: comparison with heavy
mineral analysis, Sediment. Geol., 171, 13–36, 2004.
Jacobshagen,
V.: Orogenic evolution of the Hellenides: new aspects, in: Active Continental Margins – Present and Past, edited by: Giese, P. and Behrman, J., Springer, Berlin, Heidelberg, Germany, 249–256, https://doi.org/10.1007/978-3-662-38521-0, 1994.
Jacobshagen, V., Duerr, J., Kockel, F., Kowalczyk, G., and Berckhemer, H.: Structure and geodynamic evolution of the Aegean region, in: Alps, Apennines, Hellenides, Volume report 38, edited by: Cloos, H., Roeder, D., and Schmidt, K., Stuttgart, E. Schweizerbart'sche, 537–564, 1978.
Jolivet, L. and Brun, J. P.: Cenozoic geodynamic evolution of the
Aegean, Int. J. Earth Sci., 99, 109–138, 2010.
Jolivet, L., Arbaret, L., Le Pourhiet, L., Cheval-Garabédian, F., Roche, V., Rabillard, A., and Labrousse, L.: Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids, Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021, 2021.
Kissel, C. and Laj, C.: The Tertiary geodynamical evolution of the Aegean arc:
a paleomagnetic reconstruction, Tectonophysics, 146, 183–201, 1988.
Klaver, M., Djuly, T., de Graaf, S., Sakes, A., Wijbrans, J., Davies, G.,
and Vroon, P.: Temporal and spatial variations in provenance of Eastern
Mediterranean Sea sediments: Implications for Aegean and Aeolian arc
volcanism, Geochim. Cosmochim. Ac., 153, 149–168, 2015.
Klaver, M., Carey, S., Nomikou, P., Smet, I., Godelitsas, A., and Vroon, P.:
A distinct source and differentiation history for Kolumbo submarine volcano,
Santorini volcanic field, Aegean arc, Geochem. Geophy. Geosys.,
17, 3254–3273, 2016.
Koçyigit, A., Yusufoglu, H., and Bozkurt, E.: Discussion on evidence from the Gediz Graben for episodic two-stage extension in western Turkey, J. Geol. Soc. Lond., 156, 1240–1242, 1999.
Koppers, A. A.: ArArCALC – software for age calculations,
Comput. Geosci., 28, 605–619, 2002.
Kuiper, K. F., Hilgen, F. J., Steenbrink, J., and Wijbrans, J. R.:
ages of tephras intercalated in astronomically tuned Neogene
sedimentary sequences in the eastern Mediterranean, Earth Planet.
Sc. Lett., 222, 583–597, 2004.
Le Bas, M., Le Maitre, R., Streckeisen, A., and Zanettin, B.: A chemical
classification of volcanic rocks based on the total alkali-silica diagram,
J. Petrol., 27, 745–750, 1986.
Le Pichon, X. and Angelier, J.: The Aegean Sea, Philos. T.
Roy. Soc. A, 300, 357–372, 1981.
Lee, J.-Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H.-S., Lee,
J. B., and Kim, J. S.: A redetermination of the isotopic abundances of
atmospheric Ar, Geochim. Cosmochim. Ac., 70, 4507–4512, 2006.
Lips, A. L., Cassard, D., Sözbilir, H., Yilmaz, H., and Wijbrans, J. R.:
Multistage exhumation of the Menderes massif, western Anatolia
(Turkey), Int. J. Earth Sci., 89, 781–792,
2001.
Lykousis, V., Anagnostou, C., Pavlakis, P., Rousakis, G., and Alexandri, M.: Quaternary sedimentary history and neotectonic evolution of the eastern part of Central Aegean Sea, Greece, Mar. Geol., 128, 59–71, 1995.
McKenzie, D.: Active tectonics of the Alpine–Himalayan belt: the
Aegean Sea and surrounding regions, Geophys. J. Int.,
55, 217–254, 1978.
Palmer, M., Ersoy, E. Y., Akal, C., Uysal, İ., Genç, Ş., Banks,
L., Cooper, M., Milton, J., and Zhao, K.: A short, sharp pulse of
potassium-rich volcanism during continental collision and subduction:
Geology, 47, 1079–1082, 2019.
Pe-Piper, G. and Piper, D. J.: Neogene backarc volcanism of the Aegean: new insights into the relationship between magmatism and tectonics, 2007.
Pe-Piper, G., Zhang, Y., Piper, D. J., and Prelević, D.: Relationship of
Mediterranean type lamproites to large shoshonite volcanoes, Miocene of
Lesbos, NE Aegean Sea, Lithos, 184, 281–299, 2014.
Prelević, D., Akal, C. Ü. N. E. Y. T., Foley, S. F., Romer, R. L., Stracke, A., and Van Den Bogaard, P.: Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey, J. Petrol., 53, 1019–1055, 2012.
Prelević, D., Akal, C., Romer, R. L., Mertz-Kraus, R., and Helvacı,
C.: Magmatic response to slab tearing: constraints from the Afyon Alkaline
Volcanic Complex, Western Turkey, J. Petrol., 56,
527–62, 2015.
Ring, U., Laws, S., and Bernet, M.: Structural analysis of a complex nappe
sequence and late-orogenic basins from the Aegean Island of Samos, Greece,
J. Struct. Geol., 21, 1575–1601, 1999.
Ring, U., Gessner, K., and Thomson, S.: Variations in fault-slip data and
cooling history reveal corridor of heterogeneous backarc extension in the
eastern Aegean Sea region, Tectonophysics, 700, 108–130, 2017.
Robert, U.: Les roches volcaniques de l'île de Patmos (Dodecanese
Grece), These 3e cycle, Univ. Paris, 159 pp., 1973.
Roche, V., Conand, C., Jolivet, L., and Augier, R.: Tectonic evolution of
Leros (Dodecanese, Greece) and correlations between the Aegean Domain and
the Menderes Massif, J. Geol. Soc., 175, 836–849, 2018.
Roche, V., Jolivet, L., Papanikolaou, D., Bozkurt, E., Menant, A., and
Rimmelé, G.: Slab fragmentation beneath the Aegean/Anatolia transition
zone: Insights from the tectonic and metamorphic evolution of the Eastern
Aegean region, Tectonophysics, 754, 101–129, 2019.
Smith, M. E., Singer, B. S., Carroll, A. R., and Fournelle, J. H.: Precise
dating of biotite in distal volcanic ash: Isolating subtle alteration using
laser incremental heating and electron microprobe techniques,
Am. Mineral., 93, 784–795, 2008.
Soder, C., Altherr, R., and Romer, R. L.: Mantle metasomatism at the edge of
a retreating subduction zone: Late Neogene lamprophyres from the Island of
Kos, Greece, J. Petrol., 57, 1705–1728, 2016.
Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakcı, N., and
Langereis, C. G.: Structural evidence for strike-slip deformation in the
İzmir–Balıkesir transfer zone and consequences for late Cenozoic
evolution of western Anatolia (Turkey), J. Geodyn., 65,
94–116, 2013.
Uzel, B., Langereis, C. G., Kaymakci, N., Sözbilir, H., Özkaymak,
Ç., and Özkaptan, M.: Paleomagnetic evidence for an inverse rotation
history of Western Anatolia during the exhumation of Menderes core
complex, Earth Planet. Sc. Lett., 414, 108–125, 2015.
Uzel, B., Kuiper, K., Sözbilir, H., Kaymakci, N., Langereis, C. G., and
Boehm, K.: Miocene geochronology and stratigraphy of western Anatolia:
Insights from new dataset, Lithos, 352, 105305, https://doi.org/10.1016/j.lithos.2019.105305, 2020.
Van Hinsbergen, D. J. J., and Schmid, S. M.: Map view restoration of
Aegean-West Anatolian accretion and extension since the Eocene, Tectonics,
31, https://doi.org/10.1029/2012TC003132, 2012.
Wijbrans, J. R. and McDougall, I.: Metamorphic evolution of the Attic
Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing
age spectrum measurements, J. Metamorph. Geol., 6, 571–594,
1988.
Wyers, G. P.: Petrogenesis of calc-alkaline and alkaline magmas from
the southern and eastern Aegean Sea, Greece, The Ohio State University,
1987a.
Wyers, G. P.: Geochemistry of a transitional ne-trachybasalt–Q-trachyte
lava series from Patmos (Dodecanesos), Greece: further evidence for
fractionation, mixing and assimilation, Contrib. Mineral.
Petr., 97, 279–291, 1987b.
Wyers, G. P. and Barton, M.: Petrology and evolution of transitional
alkaline–sub alkaline lavas from Patmos, Dodecanesos, Greece: evidence for
fractional crystallization, magma mixing and assimilation, Contrib.
Mineral. Petr., 93, 297–311, 1986.
Short summary
The island of Patmos is situated in the southern Aegean Sea (Greece), just north of the present locus of active volcanism. The island is almost entirely built up of volcanic rocks that are 6.6 to 5.2 million years old. We obtain these ages with 40Ar / 39Ar dating technique on sanidine and biotite minerals. Our new age data indicate a geologically brief volcanic period (lasting less than 1.5 million years) that can be divided into three volcanic intervals and correlated to tectonics.
The island of Patmos is situated in the southern Aegean Sea (Greece), just north of the present...