Articles | Volume 7, issue 3
https://doi.org/10.5194/gchron-7-369-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-369-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Discordance dating: A new approach for dating alteration events
Jesse R. Reimink
CORRESPONDING AUTHOR
Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
Renan Beckman
Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
Erik Schoonover
Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
Max Lloyd
Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
Joshua Garber
Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
Joshua H. F. L. Davies
Département des sciences de la Terre et de l'atmosphère/GEOTOP, Université du Québec à Montréal, Montréal, CA, USA
Alexander Cerminaro
Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
Department of Geosciences, Texas Tech University, 1200 Memorial Circle, Lubbock, TX, USA
Morgann G. Perrot
Département des sciences de la Terre et de l'atmosphère/GEOTOP, Université du Québec à Montréal, Montréal, CA, USA
Department of Earth and Planetary Sciences, McGill University, Montréal, CA, USA
Andrew Smye
Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
Related authors
No articles found.
Jesse B. Walters, Joshua M. Garber, Aratz Beranoaguirre, Leo J. Millonig, Axel Gerdes, Tobias Grützner, and Horst R. Marschall
Geochronology, 7, 309–333, https://doi.org/10.5194/gchron-7-309-2025, https://doi.org/10.5194/gchron-7-309-2025, 2025
Short summary
Short summary
Garnet U–Pb dating is useful for dating geologic events. However, contamination by U-rich minerals included in garnet is a risk. Inclusions are often spotted by high-U spikes or large errors in the age. We dated garnets in metamorphic rocks and calculated ages 10–15 Myr older than expected, reflecting contamination by the mineral zircon. We provide recommendations for identifying contamination and suggest that the bulk dating of zircon inclusions in garnet may also provide valuable information.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahan Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1001, https://doi.org/10.5194/egusphere-2025-1001, 2025
Short summary
Short summary
We present the first community evaluation of the reproducibility of U–Pb zircon geochronology by ID-TIMS. Eleven labs in the experiment analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon. This removed geological bias inherent to using natural zircon grain populations and allowed focussing the study on final lab preparation and mass spectrometry. We discuss remaining sources of inter-lab bias and propose areas of improvement of analytical methods.
Cited articles
Andersen, T.: Correction of common lead in U–Pb analyses that do not report 204Pb, Chem. Geol., 192, 59–79, https://doi.org/10.1016/s0009-2541(02)00195-x, 2002.
Andersen, T. and Elburg, M. A.: Open-system behaviour of detrital zircon during weathering: an example from the Palaeoproterozoic Pretoria Group, South Africa, Geol. Mag., 159, 561–576, https://doi.org/10.1017/S001675682100114X, 2022.
Anderson, A. J., Hanchar, J. M., Hodges, K. V., and van Soest, M. C.: Mapping radiation damage zoning in zircon using Raman spectroscopy: Implications for zircon chronology, Chem. Geol., 538, 119494, https://doi.org/10.1016/j.chemgeo.2020.119494, 2020.
Brenner, D. C., Passey, B. H., Holder, R. M., and Viete, D. R.: Clumped-Isotope Geothermometry and Carbonate U–Pb Geochronology of the Alta Stock Metamorphic Aureole, Utah, USA: Insights on the Kinetics of Metamorphism in Carbonates, Geochem. Geophy. Geosy., 22, e2020GC009238, https://doi.org/10.1029/2020GC009238, 2021.
Bromfield, C. S., Erickson, A. J., Haddadin, M. A., and Mehnert, H. H.: Potassium-argon ages of intrusion, extrusion, and associated ore deposits, Park City mining district, Utah, Econom. Geol., 72, 837–848, https://doi.org/10.2113/gsecongeo.72.5.837, 1977.
Caulfield, J. T., Allen, C. M., Ubide, T., Nguyen, A., and Cathey, H. E.: Compositional heterogeneity in 91500, GJ-1/89 and TEMORA-2 zircon reference materials, Chem. Geol., 674, 122580, https://doi.org/10.1016/j.chemgeo.2024.122580, 2025.
Cipar, J. H., Garber, J. M., Kylander-Clark, A. R. C., and Smye, A. J.: Active crustal differentiation beneath the Rio Grande Rift, Nat. Geosci., 13, 758–763, https://doi.org/10.1038/s41561-020-0640-z, 2020.
Clemens-Knott, D. and Gevedon, M.: Using discordant U-Pb zircon data to re-evaluate the El Paso terrane: Late Paleozoic tectonomagmatic evolution of east-central California (USA) and intense hydrothermal activity in the Jurassic Sierra Nevada arc, Geosphere, 19, 531–557, https://doi.org/10.1130/GES02547.1, 2023.
Cook, S. J., Bowman, J. R., and Forster, C. B.: Contact metamorphism surrounding the Alta Stock; finite element model simulation of heat- and 18O 16O mass-transport during prograde metamorphism, Am. J. Sci., 297, 1–55, https://doi.org/10.2475/ajs.297.1.1, 1997.
Corfu, F.: Atlas of Zircon Textures, Rev. Mineral. Geochem., 53, 469–500, https://doi.org/10.2113/0530469, 2003.
Crittenden, M., Stuckless, J., Kistler, R., and Stern, T.: Radiometric dating of intrusive rocks in the Cottonwood area, Utah, U.S. Geological Survey, J. Res. US Geol. Surv., 1, 173–178, 1973.
Davis, D. W.: Optimum linear regression and error estimation applied to U-Pb data, Can. J. Earth Sci., 19, 2141–2149, https://doi.org/10.1139/e82-188, 1982.
Davis, G. L., Hart, S. R., and Tilton, G. R.: Some effects of contact metamorphism on zircon ages, Earth Planet. Sc. Lett., 5, 27–34, https://doi.org/10.1016/S0012-821X(68)80006-8, 1968.
Garber, J. M., Smye, A. J., Feineman, M. D., Kylander-Clark, A. R. C., and Matthews, S.: Decoupling of zircon U–Pb and trace-element systematics driven by U diffusion in eclogite-facies zircon (Monviso meta-ophiolite, W. Alps), Contrib. Mineral. Petrol., 175, 55, https://doi.org/10.1007/s00410-020-01692-2, 2020.
Gehrels, G.: Detrital Zircon U-Pb Geochronology Applied to Tectonics, Annu, Rev. Earth Planet. Sc. Lett., 42, 127–149, https://doi.org/10.1146/annurev-earth-050212-124012, 2014.
Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R. T., and van Bronswijk, W.: Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions, Contrib. Mineral. Petrol., 141, 53–65, https://doi.org/10.1007/s004100000202, 2001.
Geisler, T., Pidgeon, R. T., van Bronswijk, W., and Kurtz, R.: Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions, Chem. Geol., 191, 141–154, https://doi.org/10.1016/s0009-2541(02)00153-5, 2002.
Geisler, T., Schaltegger, U., and Tomaschek, F.: Re-equilibration of Zircon in Aqueous Fluids and Melts, Elements, 3, 43–50, https://doi.org/10.2113/gselements.3.1.43, 2007.
Grauert, B., Seitz, M. G., and Soptrajanova, G.: Uranium and lead gain of detrital zircon studied by isotopic analyses and fission-track mapping, Earth Planet. Sci. Lett., 21, 389–399, https://doi.org/10.1016/0012-821X(74)90178-2, 1974.
Härtel, B., Jonckheere, R., Wauschkuhn, B., and Ratschbacher, L.: The closure temperature(s) of zircon Raman dating, Geochronology, 3, 259–272, https://doi.org/10.5194/gchron-3-259-2021, 2021.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: 238U 235U systematics in terrestrial uranium-bearing minerals, Science, 335, 1610–1614, 2012.
Hoskin, P. W. O. and Black, L. P.: Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon, J. Metamorph. Geol., 18, 423–439, https://doi.org/10.1046/j.1525-1314.2000.00266.x, 2002.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M.: Precision Measurement of Half-Lives and Specific Activities of U235 and U238, Phys. Rev. C, 4, 1889–1906, https://doi.org/10.1103/physrevc.4.1889, 1971.
Kirkland, C. L., Abello, F., Danišík, M., Gardiner, N. J., and Spencer, C.: Mapping temporal and spatial patterns of zircon U-Pb disturbance: A Yilgarn Craton case study, Gondwana Res., 52, 39–47, https://doi.org/10.1016/j.gr.2017.08.004, 2017.
Kirkland, C. L., Johnson, T. E., Kinny, P. D., and Kapitany, T.: Modelling U-Pb discordance in the Acasta Gneiss: Implications for fluid–rock interaction in Earth's oldest dated crust, Gondwana Res., 77, 223–237, https://doi.org/10.1016/j.gr.2019.07.017, 2020.
Kowallis, B. J., Ferguson, J., and Jorgensen, G. J.: Uplift along the salt lake segment of the Wasatch fault from apatite and zircon fission track dating in the little Cottonwood stock, Int. J. Rad. Appl. Instrum. Pt. D, 17, 325–329, https://doi.org/10.1016/1359-0189(90)90054-2, 1990.
Kusiak, M. A., Dunkley, D. J., Wirth, R., Whitehouse, M. J., Wilde, S. A., and Marquardt, K.: Metallic lead nanospheres discovered in ancient zircons, P. Natl. Acad. Sci. USA, 112, 201415264, https://doi.org/10.1073/pnas.1415264112, 2015.
Kusiak, M. A., Wirth, R., Wilde, S. A., and Pidgeon, R. T.: Metallic lead (Pb) nanospheres discovered in Hadean and Eoarchean zircon crystals at Jack Hills, Sci. Rep., 13, 895, https://doi.org/10.1038/s41598-023-27843-6, 2023.
Lipp, A. and Vermeesch, P.: Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions, Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023, 2023.
Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, J. Am. Stat. Assoc., 46, 68–78, https://doi.org/10.2307/2280095, 1951.
Matthews, W., Guest, B., and Madronich, L.: Latest Neoproterozoic to Cambrian detrital zircon facies of western Laurentia, Geosphere, 14, 243–264, https://doi.org/10.1130/GES01544.1, 2017.
Mattinson, J., M.: Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples, Chem. Geol., 275, 186–198, https://doi.org/10.1016/j.chemgeo.2010.05.007, 2010.
McNaughton, N. J., Rasmussen, B., and Fletcher, I. R.: SHRIMP Uranium-Lead Dating of Diagenetic Xenotime in Siliciclastic Sedimentary Rocks, Science, 285, 78–80, https://doi.org/10.1126/science.285.5424.78, 1999.
Mezger, K. and Krogstad, E. J.: Interpretation of discordant U-Pb zircon ages: An evaluation, J. Metamorph. Geol., 15, 127–140, https://doi.org/10.1111/j.1525-1314.1997.00008.x, 1997.
Moore, J. N. and Kerrick, D. M.: Equilibria in siliceous dolomites of the Alta aureole, Utah, Am. J. Sci., 276, 502–524, https://doi.org/10.2475/ajs.276.4.502, 1976.
Morris, G. A., Kirkland, C. L., and Pease, V.: Orogenic paleofluid flow recorded by discordant detrital zircons in the Caledonian foreland basin of northern Greenland, Lithosphere, 7, 138–143, https://doi.org/10.1130/l420.1, 2015.
Moser, D. E., Davis, W. J., Reddy, S. M., Flemming, R. L., and Hart, R. J.: Zircon U–Pb strain chronometry reveals deep impact-triggered flow, Earth Planet. Sc. Lett., 277, 73–79, https://doi.org/10.1016/j.epsl.2008.09.036, 2009.
Moser, D. E., Cupelli, C. L., Barker, I. R., Flowers, R. M., Bowman, J. R., Wooden, J., and Hart, J. R.: New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U–Pb and (U–Th) He analysis of the Vredefort domeThis article is one of a series of papers published in this Special Issue on the theme of Geochronology in honour of Tom Krogh, Can. J. Earth Sci., 48, 117–139, https://doi.org/10.1139/e11-011, 2011.
Nasdala, L., Pidgeon, R. T., Wolf, D., and Irmer, G.: Metamictization and U-PB isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study, Mineral. Petrol., 62, 1–27, https://doi.org/10.1007/BF01173760, 1998.
Nasdala, L., Hanchar, J. M., Rhede, D., Kennedy, A. K., and Váczi, T.: Retention of uranium in complexly altered zircon: An example from Bancroft, Ontario, Chem. Geol., 269, 290–300, https://doi.org/10.1016/j.chemgeo.2009.10.004, 2010.
Olierook, H. K. H., Kirkland, C. L., Barham, M., Daggitt, M. L., Hollis, J., and Hartnady, M.: Extracting meaningful U-Pb ages from core–rim mixtures, Gondwana Res., 92, 102–112, https://doi.org/10.1016/j.gr.2020.12.021, 2021.
Pidgeon, R. T., O'Neil, J. R., and Silver, L. T.: Uranium and Lead Isotopic Stability in a Metamict Zircon under Experimental Hydrothermal Conditions, Science, 154, 1538–1540, https://doi.org/10.1126/science.154.3756.1538, 1966.
Pidgeon, R. T., Nemchin, A. A., and Whitehouse, M. J.: The effect of weathering on U-Th-Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia, Geochim. Cosmochim. Ac., 197, 1–62, https://doi.org/10.1016/j.gca.2016.10.005, 2016.
Powerman, V. I., Buyantuev, M. D., and Ivanov, A. V.: A review of detrital zircon data treatment, and launch of a new tool “Dezirteer” along with the suggested universal workflow, Chem. Geol., 583, 120437, https://doi.org/10.1016/j.chemgeo.2021.120437, 2021.
Rasmussen, K. L., Falck, H., Elongo, V., Reimink, J., Luo, Y., Pearson, D. G., Ootes, L., Creaser, R. A., and Lecumberri-Sanchez, P.: The source of tungsten-associated magmas in the northern Canadian Cordillera and implications for the basement, Geology, 51, 657–662, https://doi.org/10.1130/G51042.1, 2023.
Reddy, S. M., Timms, N. E., Trimby, P., Kinny, P. D., Buchan, C., and Blake, K.: Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness, Geology, 34, 257–260, https://doi.org/10.1130/g22110.1, 2006.
Reimink, J. R., Davies, J. H. F. L., Waldron, J. W. F., and Rojas, X.: Dealing with discordance: a novel approach for analysing U–Pb detrital zircon datasets, J. Geol. Soc., 173, https://doi.org/10.1144/jgs2015-114, 2016.
Reimink, J. R. and Schoonover, E.: A Shiny App for Discordance Dating [data set], https://discordance.geosc.psu.edu/discordance_app/, last access: 9 Auust 2023.
Reimink, J. R., Beckman, R., Schoonover, E., Lloyd, M., Garber, J., Davies, J. H. F. L., Cerminaro, A., Perrot, M. G., and Smye, A. J.: Reference Material and Sample Zircon U-Pb-TE datasets and Modeling code for discordance dating, Zenodo [data set and code], https://doi.org/10.5281/zenodo.13972611, 2024.
Resentini, A., Andò, S., Garzanti, E., Malusà, M. G., Pastore, G., Vermeesch, P., Chanvry, E., and Dall'Asta, M.: Zircon as a provenance tracer: Coupling Raman spectroscopy and UPb geochronology in source-to-sink studies, Chem. Geol., 555, 119828, https://doi.org/10.1016/j.chemgeo.2020.119828, 2020.
Salje, E. K. H., Chrosch, J., and Ewing, R. C.: Is “metamictization” of zircon a phase transition?, Am. Mineral., 84, 1107–1116, https://doi.org/10.2138/am-1999-7-813, 1999.
Schoene, B.: U–Th–Pb Geochronology, Treat. Geochem., 4, 341–378, https://doi.org/10.1016/B978-0-08-095975-7.00310-7, 2014.
Schoonover, E., Garber, J. M., Smye, A. J., Kylander-Clark, A., and Reimink, J. R.: Snapshots of magmatic evolution revealed by zircon depth profiling, Earth Planet. Sc. Lett., 647, 118987, https://doi.org/10.1016/j.epsl.2024.118987, 2024.
Seydoux-Guillaume, A.-M., Bingen, B., Paquette, J.-L., and Bosse, V.: Nanoscale evidence for uranium mobility in zircon and the discordance of U–Pb chronometers, Earth Planet. Sc. Lett., 409, 43–48, https://doi.org/10.1016/j.epsl.2014.10.044, 2015.
Sharman, G. R. and Malkowski, M. A.: Modeling apparent Pb loss in zircon U–Pb geochronology, Geochronology, 6, 37–51, https://doi.org/10.5194/gchron-6-37-2024, 2024.
Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sc. Lett., 26, 207–221, https://doi.org/10.1016/0012-821x(75)90088-6, 1975.
Stearns, M. A., Bartley, J. M., Bowman, J. R., Forster, C. W., Beno, C. J., Riddle, D. D., Callis, S. J., and Udy, N. D.: Simultaneous Magmatic and Hydrothermal Regimes in Alta–Little Cottonwood Stocks, Utah, USA, Recorded Using Multiphase U-Pb Petrochronology, Geosciences, 10, 129, https://doi.org/10.3390/geosciences10040129, 2020.
Trachenko, K., Dove, M. T., and Salje, E. K. H.: Large swelling and percolation in irradiated zircon, J. Phys.-Condens. Matter, 15, L1, https://doi.org/10.1088/0953-8984/15/2/101, 2002.
Ulusoy, İ., Sarıkaya, M. A., Schmitt, A. K., Şen, E., Danišík, M., and Gümüş, E.: Volcanic eruption eye-witnessed and recorded by prehistoric humans, Quaternary Sci. Rev., 212, 187–198, https://doi.org/10.1016/j.quascirev.2019.03.030, 2019.
Vermeesch, P.: On the visualisation of detrital age distributions, Chem. Geol., 312/313, 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021, 2012.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vermeesch, P.: On the treatment of discordant detrital zircon U–Pb data, Geochronology, 3, 247–257, https://doi.org/10.5194/gchron-3-247-2021, 2021.
York, D.: Least squares fitting of a straight line with correlated errors, Earth Planet. Sc. Lett., 5, 320–324, https://doi.org/10.1016/s0012-821x(68)80059-7, 1968.
Zhang, M., Salje, E. K. H., Farnan, I., Graeme-Barber, A., Daniel, P., Ewing, R. C., Clark, A. M., and Leroux, H.: Metamictization of zircon: Raman spectroscopic study, J. Phys.-Condens. Matter, 12, 1915, https://doi.org/10.1088/0953-8984/12/8/333, 2000.
Zi, J.-W., Rasmussen, B., Muhling, J. R., and Fletcher, I. R.: In situ U-Pb and geochemical evidence for ancient Pb-loss during hydrothermal alteration producing apparent young concordant zircon dates in older tuffs, Geochim. Cosmochim. Ac., 320, 324–338, https://doi.org/10.1016/j.gca.2021.11.038, 2022.
Short summary
This article presents a new method to date geological events affecting sedimentary rocks. This method relies on the potential for the zircon U-Pb system to be disturbed during fluid-flow, alteration, and metamorphic events in sedimentary rocks. This article presents synthetic datasets for benchmarking the accuracy and precision of the discordance dating method, as well as data from detrital zircons found in the contact metamorphic aureole surround the Alta stock.
This article presents a new method to date geological events affecting sedimentary rocks. This...