Articles | Volume 8, issue 1
https://doi.org/10.5194/gchron-8-63-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-8-63-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving crystallization and eruption age estimation using U-Th disequilibrium dating of young volcanic zircon
Institute of Geochemistry and Petrology, ETH, Zürich, Switzerland
Marcel Guillong
Institute of Geochemistry and Petrology, ETH, Zürich, Switzerland
Chetan Nathwani
Institute of Geochemistry and Petrology, ETH, Zürich, Switzerland
Kurumi Iwahashi
Institute of Geochemistry and Petrology, ETH, Zürich, Switzerland
Geological Survey of Japan, AIST, Tsukuba, Japan
Razvan-Gabriel Popa
Institute of Geochemistry and Petrology, ETH, Zürich, Switzerland
Olivier Bachmann
Institute of Geochemistry and Petrology, ETH, Zürich, Switzerland
Related authors
No articles found.
Chetan Nathwani, Dawid Szymanowski, Lorenzo Tavazzani, Sava Markovic, Adrianna L. Virmond, and Cyril Chelle-Michou
Geochronology, 7, 15–33, https://doi.org/10.5194/gchron-7-15-2025, https://doi.org/10.5194/gchron-7-15-2025, 2025
Short summary
Short summary
We performed a statistical analysis of high-precision U–Pb zircon age distributions. This reveals that volcanic and porphyry zircon age distributions are skewed to younger ages, whereas plutonic age distributions are skewed to older ages. We show that this is caused by truncation of zircon crystallisation by magma evacuation rather than differences in magmatic flux. Our contribution has key implications for modelling of magma dynamics and eruption ages using zircon age distributions.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
Cited articles
Bachmann, O.: Timescales Associated with Large Silicic Magma Bodies, in: Timescales of Magmatic Processes: From Core to Atmosphere, edited by: Dosseto, A., Turner, S. P., and Van Orman, J. A., Blackwell Publishing Ltd, https://doi.org/10.1002/9781444328509.ch10, 2010. a
Bachmann, O. and Huber, C.: Silicic magma reservoirs in the Earth's crust, American Mineralogist, 101, 2377–2404, https://doi.org/10.2138/am-2016-5675, 2016. a
Bachmann, O., Charlier, B. L., and Lowenstern, J. B.: Zircon crytallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc), Geology, 35, 73–76, https://doi.org/10.1130/G23151A.1, 2007a. a, b
Bachmann, O., Oberli, F., Dungan, M. A., Meier, M., Mundil, R., and Fischer, H.: 40Ar/39Ar and U-Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: Evidence for an extended crystallization history, Chem. Geol., 236, 134–166, https://doi.org/10.1016/j.chemgeo.2006.09.005, 2007b. a
Bacon, C. R.: Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts, Geochim. Cosmochim. Ac., 53, 1055–1066, https://doi.org/10.1016/0016-7037(89)90210-X, 1989. a
Barboni, M. and Bernal, J. P.: Warm magma storage in a continental rift: Insights from U/Th zircon dating and geochemistry of the Salton Buttes, Chem. Geol., 690, https://doi.org/10.1016/j.chemgeo.2025.122866, 2025. a
Bell, E. A. and Kirkpatrick, H. M.: Effects of crustal assimilation and magma mixing on zircon trace element relationships across the Peninsular Ranges Batholith, Chem. Geol., 586, 120616, https://doi.org/10.1016/j.chemgeo.2021.120616, 2021. a
Bindeman, I. N. and Melnik, O. E.: Zircon survival, rebirth and recycling during crustal melting, magma crystallization, and mixing based on numerical modelling, J. Petrol., 57, 437–460, 2016. a
Björke, J. K.: Fluid-rhyolite interaction in geothermal systems, Torfajökull Iceland – secondary surface mineralogy and fluid chemistry upon phase segregation and fluid mixing, MS thesis, University of Iceland, Reykjavík, Iceland, http://hdl.handle.net/1946/5534 (last access: 12 May 2025), 2010. a
Blundy, J. and Wood, B.: Mineral-melt partitioning of uranium, thorium and their daughters, Reviews in Mineralogy and Geochemistry, 52, 59–123, 2003. a
Boehnke, P., Watson, E. B., Trail, D., Harrison, T. M., and Schmitt, A. K.: Zircon saturation re-revisited, Chem. Geol., 351, 324–334, https://doi.org/10.1016/j.chemgeo.2013.05.028, 2013. a
Burnham, A. D.: Key concepts in interpreting the concentrations of the rare earth elements in zircon, Chem. Geol., 551, https://doi.org/10.1016/j.chemgeo.2020.119765, 2020. a, b
Burnham, A. D. and Berry, A. J.: An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity, Geochim. Cosmochim. Ac., 95, 196–212, https://doi.org/10.1016/j.gca.2012.07.034, 2012. a, b
Cashman, K. V., Sparks, R. S. J., and Blundy, J. D.: Vertically extensive and unstable magmatic systems: A unified view of igneous processes, Science, 355, https://doi.org/10.1126/science.aag3055, 2017. a
Castellanos Melendez, M. P., Di Muro, A., Laurent, O., Kuiper, K., Wijbrans, J. R., and Bachmann, O.: Explosive volcanism of Piton des Neiges (Reunion Island) and excess age dispersion in sanidine: Insights into magma chamber processes in a hotspot setting, Chem. Geol., 632, https://doi.org/10.1016/j.chemgeo.2023.121539, 2023. a
Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., et al.: Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, Earth Planet. Sc. Lett., 371, 82–91, 2013. a, b
Cisneros de León, A., Danišík, M., Schmitt, A. K., Schindlbeck-Belo, J. C., Kutterolf, S., Mittal, T., Garrison, J. M., and Sims, K. W.: Refining the Eruption Chronology of Atitlán Caldera Through Zircon Double-Dating, Geochem. Geophys. Geosy., 26, https://doi.org/10.1029/2024GC011953, 2025. a
Coombs, M. L. and Vazquez, J. A.: Cogenetic late Pleistocene rhyolite and cumulate diorites from Augustine Volcano revealed by SIMS 238U-230Th dating of zircon, and implications for silicic magma generation by extraction from mush, Geochem. Geophys. Geosy., 15, 4846–4865, https://doi.org/10.1002/2014GC005589, 2014. a
Costa, F.: Chapter 1 Residence Times of Silicic Magmas Associated with Calderas, Elsevier, https://doi.org/10.1016/S1871-644X(07)00001-0, 2008. a
Danišík, M., Lowe, D. J., Schmitt, A. K., Friedrichs, B., Hogg, A. G., and Evans, N. J.: Sub-millennial eruptive recurrence in the silicic Mangaone Subgroup tephra sequence, New Zealand, from Bayesian modelling of zircon double-dating and radiocarbon ages, Quaternary Science Reviews, 246, 106517, https://doi.org/10.1016/j.quascirev.2020.106517, 2020. a
Efron, B.: Bootstrap methods: another look at the jackknife, in: Breakthroughs in statistics: Methodology and distribution, Springer, 569–593, https://doi.org/10.1007/978-1-4612-4380-9_41, 1992. a
Ellis, B. S., Mark, D. F., Troch, J., Bachmann, O., Guillong, M., Kent, A. J., and von Quadt, A.: Split-grain 40Ar/39Ar dating: Integrating temporal and geochemical data from crystal cargoes, Chem. Geol., 457, 15–23, 2017. a
Fournier, R. O.: Geochemistry and Dynamics of the Yellowstone National Park Hydrothermal System, Annual Review of Earth and Planetary Sciences, 17, 13–53, https://doi.org/10.1146/annurev.ea.17.050189.000305, 1989. a
Friedrich, W. L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., and Talamo, S.: Santorini eruption radiocarbon dated to 1627-1600 BC, Science, 312, 548–548, 2006. a
Friedrichs, B., Atıcı, G., Danišík, M., Atakay, E., Çobankaya, M., Harvey, J. C., Yurteri, E., and Schmitt, A. K.: Late Pleistocene eruptive recurrence in the post-collisional Mt. Hasan stratovolcanic complex (Central Anatolia) revealed by zircon double-dating, J. Volcanol. Geoth. Res., 404, https://doi.org/10.1016/j.jvolgeores.2020.107007, 2020. a, b
Gillespie, J., Klein, B. Z., Moore, J., Müntener, O., and Baumgartner, L. P.: A dendritic growth mechanism for producing oscillatory zoning in igneous zircon, Geology, 53, 171–175, https://doi.org/10.1130/g52641.1, 2025. a, b
Groen, M. and Storey, M.: An astronomically calibrated 40Ar/39Ar age for the North Atlantic Z2 Ash: Implications for the Greenland ice core timescale, Quaternary Science Reviews, 293, https://doi.org/10.1016/j.quascirev.2022.107526, 2022. a, b, c
Guillou, H., Scao, V., Nomade, S., Van Vliet-Lanoë, B., Liorzou, C., and Guðmundsson, A.: 40Ar/39Ar dating of the Thorsmork ignimbrite and Icelandic sub-glacial rhyolites, Quaternary Science Reviews, 209, 52–62, https://doi.org/10.1016/j.quascirev.2019.02.014, 2019. a, b
Hajdas, I., Ascough, P., Garnett, M. H., Fallon, S. J., Pearson, C. L., Quarta, G., Spalding, K. L., Yamaguchi, H., and Yoneda, M.: Radiocarbon dating, Nature Reviews Methods Primers, 1, 62, https://doi.org/10.1038/s43586-021-00058-7, 2021. a
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals, Science, 335, 1610–1614, https://doi.org/10.1126/science.1215507, 2012. a
Horstwood, M. S., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J. F., Condon, D. J., and Schoene, B.: Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting, Geostandard. Geoanal. Res., 40, 311–332, https://doi.org/10.1111/j.1751-908X.2016.00379.x, 2016. a, b
Ito, H.: Simultaneous U–Pb and U–Th dating using LA-ICP-MS for young (< 0.4 Ma) minerals: A reappraisal of the double dating approach, Minerals, 14, 436, https://doi.org/10.3390/min14040436, 2024. a, b, c
Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A.: The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology, Chem. Geol., 211, 47–69, https://doi.org/10.1016/j.chemgeo.2004.06.017, 2004. a
Jaffey, A., Flynn, K., Glendenin, L., Bentley, W. C., and Essling, A.: Precision measurement of half-lives and specific activities of U235 and U238, Physical Review C, 4, 1889, https://doi.org/10.1103/PhysRevC.4.1889, 1971. a
Jeong, Y. J., Jung, M. J., Ahn, U. S., and sik Cheong, A. C.: Laser ablation MC-ICPMS U-Th and U-Th-Pb dating of Quaternary zircons from Jeju Island, Korea, Journal of Analytical Science and Technology, 15, https://doi.org/10.1186/s40543-024-00427-3, 2024. a
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A. W.: GeoReM: a new geochemical database for reference materials and isotopic standards, Geostandard. Geoanal. Res., 29, 333–338, 2005. a
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., et al.: Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines, Geostandard. Geoanal. Res., 35, 397–429, 2011. a
Keller, C. B., Boehnke, P., and Schoene, B.: Temporal variation in relative zircon abundance throughout Earth history, Geochemical Perspectives Letters, 3, 179–189, https://doi.org/10.7185/geochemlet.1721, 2017. a
Keller, F., Guillong, M., Popa, R. G., and Bachmann, O.: In Situ 230Th/238U Geochronology of Young Volcanic Rocks on Inclusion-Bearing Ilmenite, Geostandard. Geoanal. Res., 46, 465–475, https://doi.org/10.1111/ggr.12447, 2022. a
Kelley, S.: K-Ar and Ar-Ar dating, Reviews in Mineralogy and Geochemistry, 47, https://doi.org/10.2138/rmg.2002.47.17, 2002a. a
Kelley, S.: Excess argon in K–Ar and Ar–Ar geochronology, Chem. Geol., 188, 1–22, 2002b. a
Kennedy, A. K., Wotzlaw, J. F., Schaltegger, U., Crowley, J. L., and Schmitz, M.: Eocene zircon reference material for microanalysis of U-Th-Pb isotopes and trace elements, Canadian Mineralogist, 52, 409–421, https://doi.org/10.3749/canmin.52.3.409, 2014. a
Kirkland, C. L., Smithies, R. H., Taylor, R. J., Evans, N., and McDonald, B.: Zircon Th/U ratios in magmatic environs, Lithos, 212–215, 397–414, https://doi.org/10.1016/j.lithos.2014.11.021, 2015. a, b, c
Klein, B. Z. and Eddy, M. P.: What’s in an age? Calculation and interpretation of ages and durations from U-Pb zircon geochronology of igneous rocks, Geol. Soc. Am. Bull., 136, 93–109, https://doi.org/10.1130/B36686.1, 2024. a
Lee, J. K. W., Williams, I. S., and Ellis, D. J.: Pb, U and Th diffusion in natural zircon, Letters to Nature, 390, 159–162, 1997. a
Liang, Y., Krawczynski, M. J., Mclean, N. M., Carpenter, P. K., Touran, J. P., and Cocciadiferro, A. N.: Temperature dependence of uranium and thorium partitioning in igneous zircons, Geochim. Cosmochim. Ac., https://doi.org/10.1016/j.gca.2025.06.027, 2025. a
Locher, V., Popa, R. G., Guillong, M., and Bachmann, O.: Insights into caldera cycles obtained from the eruption ages and chemistry of the youngest products of Nisyros volcano, South Aegean Arc, J. Volcanol. Geoth. Res., 460, https://doi.org/10.1016/j.jvolgeores.2025.108281, 2025. a, b
Matthews, K. A., Murrell, M. T., Goldstein, S. J., Nunn, A. J., and Norman, D. E.: Uranium and Thorium Concentration and Isotopic Composition in Five Glass (BHVO-2G, BCR-2G, NKT-1G, T1-G, ATHO-G) and Two Powder (BHVO-2, BCR-2) Reference Materials, Geostandard. Geoanal. Res., 35, 227–234, https://doi.org/10.1111/j.1751-908X.2010.00080.x, 2011. a
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: Equation of state calculations by fast computing machines, the Journal of Chemical Physics, 21, 1087–1092, 1953. a
Moles, J. D., McGarvie, D., Stevenson, J. A., Sherlock, S. C., Abbott, P. M., Jenner, F. E., and Halton, A. M.: Widespread tephra dispersal and ignimbrite emplacement from a subglacial volcano (Torfajökull, Iceland), Geology, 47, 577–580, https://doi.org/10.1130/G46004.1, 2019. a, b, c
Moser, Z.: moserzoe/UThPb-ZirChron: Zenodo release UThPb- ZirChron, Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.16926790, 2025. a, b, c, d
Nakamura, M.: Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption, Geology, 23, 807–810, https://doi.org/10.1130/0091-7613(1995)023<0807:CMOCMA>2.3.CO;2, 1995. a, b
Noguchi, S., Toramaru, A., and Nakada, S.: Relation between microlite textures and discharge rate during the 1991–1995 eruptions at Unzen, Japan, J. Volcanol. Geoth. Res., 175, 141–155, 2008. a
Ogliore, R. C., Huss, G. R., and Nagashima, K.: Ratio estimation in SIMS analysis, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 269, 1910–1918, https://doi.org/10.1016/j.nimb.2011.04.120, 2011. a
Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., and Maas, R.: Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction, Geochem. Geophys. Geosy., 11, https://doi.org/10.1029/2009GC002618, 2010. a, b
Piochi, M., Cantucci, B., Montegrossi, G., and Currenti, G.: Hydrothermal alteration at the san vito area of the campi flegrei geothermal system in italy: Mineral review and geochemical modeling, Minerals, 11, https://doi.org/10.3390/min11080810, 2021. a
Pollard, T., Woodhead, J., Hellstrom, J., Engel, J., Powell, R., and Drysdale, R.: DQPB: software for calculating disequilibrium U-Pb ages, Geochronology, 5, 181–196, https://doi.org/10.5194/gchron-5-181-2023, 2023. a, b, c, d
Popa, R. G., Guillong, M., Bachmann, O., Szymanowski, D., and Ellis, B.: U-Th zircon dating reveals a correlation between eruptive styles and repose periods at the Nisyros-Yali volcanic area, Greece, Chem. Geol., 555, https://doi.org/10.1016/j.chemgeo.2020.119830, 2020. a, b, c
Ratschbacher, B. C., Keller, C. B., and Cooper, K. M.: Insights Into Magma Reservoir Dynamics From a Global Comparison of Volcanic and Plutonic Zircon Trace Element Variability in Individual Hand Samples, Geochem. Geophys. Geosy., 25, https://doi.org/10.1029/2024GC011681, 2024. a
Reid, M. R., Coath, C. I. D., Harrison, T. M., and Mckeegan, K. D.: Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th-238U ion microprobe dating of young zircons, Earth Planet. Sc. Lett., 50, 27–39, https://doi.org/10.1016/S0012-821X(97)00077-0, 1997. a, b
Reiners, P. W., Farley, K. A., and Hickes, H. J.: He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte, Tectonophysics, 297–308, https://doi.org/10.1016/S0040-1951(02)00058-6, 2002. a
Sakata, S.: A practical method for calculating the U-Pb age of Quaternary zircon: Correction for common Pb and initial disequilibria, Geochemical Journal, 52, 281–286, https://doi.org/10.2343/geochemj.2.0508, 2018. a, b, c
Sakata, S., Hirakawa, S., Iwano, H., Danhara, T., Guillong, M., and Hirata, T.: A new approach for constraining the magnitude of initial disequilibrium in Quaternary zircons by coupled uranium and thorium decay series dating, Quaternary Geochronology, 38, 1–12, https://doi.org/10.1016/j.quageo.2016.11.002, 2017. a, b, c, d, e, f
Sambridge, M., Mosegaard, K., and Carlo, M.: Monte Carlo Methods in Geophysical Inverse Problems, Rev. Geophys, 40, 1009, https://doi.org/10.1029/2000RG000089, 2002. a
Schaltegger, U., Schmitt, A. K., and Horstwood, M. S.: U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities, Chem. Geol., https://doi.org/10.1016/j.chemgeo.2015.02.028, 2015. a
Schärer, U.: The effect of initial230Th disequilibrium on young UPb ages: the Makalu case, Himalaya, Earth Planet. Sc. Lett., 67, 191–204, 1984. a
Schmitt, A. K., Stockli, D. F., Lindsay, J. M., Robertson, R., Lovera, O. M., and Kislitsyn, R.: Episodic growth and homogenization of plutonic roots in arc volcanoes from combined U-Th and (U-Th)/He zircon dating, Earth Planet. Sc. Lett., 295, 91–103, https://doi.org/10.1016/j.epsl.2010.03.028, 2010. a, b, c, d, e, f, g
Schmitt, A. K., Sliwinski, J., Caricchi, L., Bachmann, O., Riel, N., Kaus, B. J., de Léon, A. C., Cornet, J., Friedrichs, B., Lovera, O., Sheldrake, T., and Weber, G.: Zircon age spectra to quantify magma evolution, Geosphere, 19, 1006–1031, https://doi.org/10.1130/GES02563.1, 2023. a, b
Schmitz, M. D. and Bowring, S. A.: U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks, Geochim. Cosmochim. Ac., 65, 2571–2587, 2001. a
Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring, S. A., Khadri, S. F., and Gertsch, B.: U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction, Science, 347, 182–184, https://doi.org/10.1126/science.aaa0118, 2015. a
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J.: Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis, Chem. Geol., 249, 1–35, https://doi.org/10.1016/j.chemgeo.2007.11.005, 2008. a
Sliwinski, J. T., Guillong, M., Horstwood, M. S., and Bachmann, O.: Quantifying long-term reproducibility of zircon reference materials by U-Pb LA-ICP-MS dating, Geostandard. Geoanal. Res., 46, 401–409, 2022. a
Smith, P. E., York, D., Chen, Y., and Evensen, N. M.: Single crystal 40Ar-39Ar dating of a Late Quaternary paroxysm on Kos, Greece: Concordance of terrestrial and marine ages, Geophys. Res. Lett., 23, 3047–3050, https://doi.org/10.1029/96GL02759, 1996. a, b, c
Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sc. Lett., 26, 207–221, 1975. a
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008. a, b
Tera, F. and Wasserburg, G.: U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks, Earth Planet. Sc. Lett., 14, 281–304, 1972. a
Troch, J., Ellis, B. S., Schmitt, A. K., Bouvier, A. S., and Bachmann, O.: The dark side of zircon: textural, age, oxygen isotopic and trace element evidence of fluid saturation in the subvolcanic reservoir of the Island Park-Mount Jackson Rhyolite, Yellowstone (USA), Contrib. Mineral. Petr., 173, https://doi.org/10.1007/s00410-018-1481-2, 2018. a
Troll, V. R., Donaldson, C. H., and Emeleus, C. H.: Pre-eruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Centre, Scotland, Contrib. Mineral. Petr., 147, 722–739, https://doi.org/10.1007/s00410-004-0584-0, 2004. a
Tukey, J. W.: Exploratory data analysis, Reading/Addison-Wesley, ISBN 0-201-07616-0, 1977. a
Watson, E. B.: Dissolution, growth and survival of zircons during crustal fusion: Kinetic principals, geological models and implications for isotopic inheritance, Earth Env. Sci. T. R. So., 87, 43–56, https://doi.org/10.1017/S0263593300006465, 1996. a
Watson, E. B. and Liang, Y.: A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks, American Mineralogist, 80, 1179–1187, 1995. a
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C., and Spiegel, W.: Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses, Geostandards Newsletter, 19, 1–23, https://doi.org/10.1111/j.1751-908X.1995.tb00147.x, 1995. a, b
Short summary
To improve U-Th zircon dating, we optimized a U-Th-Pb double-dating strategy for young zircon (150–300 ka). We found that the overall U-Th age spectrum is consistent whether assuming a constant melt composition or constant U/Th fractionation between zircon and melt, but testing the representability of the measured glass with the youngest isochron intercept proved essential. A Bayesian model with a uniform prior distribution gave the most accurate estimates of eruption timing for U-Th datasets.
To improve U-Th zircon dating, we optimized a U-Th-Pb double-dating strategy for young zircon...