Preprints
https://doi.org/10.5194/gchron-2022-23
https://doi.org/10.5194/gchron-2022-23
11 Oct 2022
 | 11 Oct 2022
Status: this preprint was under review for the journal GChron. A final paper is not foreseen.

Origin of Great Unconformity Obscured by Thermochronometric Uncertainty

Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter

Abstract. Thermochronology provides a unique perspective on the magnitude of rock that is eroded during, and the timing of, unconformities in the rock record. Recently, thermochronology has been used to stoke a long-standing debate about the origin of the Great Unconformity, a global erosional event that represents a time period of almost a billion years at the end of the Precambrian. The (U–Th)/He in zircon system is particularly well suited to provide this perspective because it is very sensitive to long durations of time at relatively low temperatures (< 200–250 °C). However, the diffusion kinetics of 4He in zircon change dramatically as a result of radiation damage to the crystal lattice. Therefore, our ability to resolve thermal histories is fundamentally limited by how well we know parameters controlling helium diffusion and their uncertainties. Currently, there is no estimate of how these uncertainties impact the inferred thermal histories. Here we determine uncertainties in the Zircon Radiation Damage and Annealing Model (ZRDAAM, Guenthner et al. 2013) that describes changes in 4He diffusion kinetics as a function of radiation damage. We show that the dispersion in predicted zircon (U-Th)/He ages for a given thermal history can be 100s Ma for a specific amount of radiation damage and that thermal histories are less well resolved than previously appreciated. Additional diffusion experiments and calibration with natural laboratories would provide better constraints on diffusion kinetic parameters.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on gchron-2022-23', Alexis Ault, 14 Nov 2022
  • CC1: 'Comment on gchron-2022-23', Kalin McDannell, 16 Nov 2022
  • RC2: 'Comment on gchron-2022-23', Kip Hodges, 21 Nov 2022
  • RC3: 'Comment on gchron-2022-23', Rebecca Flowers, 22 Nov 2022
  • RC4: 'Systematic uncertainty and thermochronology of the Great Unconformity? A review of Fox et al. 2022, gchron-2022-23', Brenhin Keller, 22 Nov 2022
  • RC5: 'Comment on gchron-2022-23', William Guenthner, 28 Nov 2022

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on gchron-2022-23', Alexis Ault, 14 Nov 2022
  • CC1: 'Comment on gchron-2022-23', Kalin McDannell, 16 Nov 2022
  • RC2: 'Comment on gchron-2022-23', Kip Hodges, 21 Nov 2022
  • RC3: 'Comment on gchron-2022-23', Rebecca Flowers, 22 Nov 2022
  • RC4: 'Systematic uncertainty and thermochronology of the Great Unconformity? A review of Fox et al. 2022, gchron-2022-23', Brenhin Keller, 22 Nov 2022
  • RC5: 'Comment on gchron-2022-23', William Guenthner, 28 Nov 2022
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter

Viewed

Total article views: 1,399 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,048 312 39 1,399 27 30
  • HTML: 1,048
  • PDF: 312
  • XML: 39
  • Total: 1,399
  • BibTeX: 27
  • EndNote: 30
Views and downloads (calculated since 11 Oct 2022)
Cumulative views and downloads (calculated since 11 Oct 2022)

Viewed (geographical distribution)

Total article views: 1,345 (including HTML, PDF, and XML) Thereof 1,345 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Nov 2024
Download

This preprint has been withdrawn.

Short summary
The Great Unconformity represents an enormous amount of time lost from the sedimentary record. Its origin is debated, in part, due to different approaches used to interpret zircon (U–Th)/He ages. This thermochronometric system is ideal for this problem because the temperature sensitivity varies according to radiation damage. Here we explore the uncertainty associated with the radiation damage model and show how this limits our ability to resolve the origin of the Great Unconformity.