Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-351-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-351-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Analytical protocols and performance for apatite and zircon (U–Th) ∕ He analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020
Cécile Gautheron
CORRESPONDING AUTHOR
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Rosella Pinna-Jamme
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Alexis Derycke
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Floriane Ahadi
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Caroline Sanchez
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Frédéric Haurine
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Gael Monvoisin
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Damien Barbosa
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Guillaume Delpech
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Joseph Maltese
CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay, France
Philippe Sarda
CNRS, GEOPS, Université Paris-Saclay, 91405 Orsay, France
Laurent Tassan-Got
CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay, France
Related authors
Karina P. P. Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Eur. J. Mineral., 35, 383–395, https://doi.org/10.5194/ejm-35-383-2023, https://doi.org/10.5194/ejm-35-383-2023, 2023
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on sub-millimeter grains that allows us to quantify the hematite and goethite content and hematite / goethite ratio of grains prior to (U–Th) / He geochronological analysis. (U–Th) / He data performed on different aliquots with different acquisition times show no remarkable differences in age, opening a new way to investigate the (U–Th) / He data evolution in supergene lateritic duricrusts.
Marianna Corre, Arnaud Agranier, Martine Lanson, Cécile Gautheron, Fabrice Brunet, and Stéphane Schwartz
Geochronology, 4, 665–681, https://doi.org/10.5194/gchron-4-665-2022, https://doi.org/10.5194/gchron-4-665-2022, 2022
Short summary
Short summary
This study is focused on the accurate measurement of U and Th by wet chemistry and laser ablation methods to improve (U–Th)/He dating of magnetite and spinel. The low U–Th content and the lack of specific U–Th standards significantly limit the accuracy of (U–Th)/He dating. Obtained U–Th results on natural and synthetic magnetite and aluminous spinel samples analyzed by wet chemistry methods and LA-ICP-MS sampling have important implications for the (U–Th)/He method and dates interpretation.
Karina Patricia Prazeres Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-9, https://doi.org/10.5194/gchron-2022-9, 2022
Preprint withdrawn
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on inframilimetric grains that allows to quantify the hematite and goethite content and hematite/goethite ratio of grains prior to (U-Th)/He geochronological analysis. (U-Th)/He data performed on different aliquots with different acquisition time shows no remarkable differences in age, opening a new way to investigate the (U-Th)/He data evolution in supergene lateritic duricrusts.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, Edouard Regnier, Gaël Monvoisin, Christian Grenz, Pieter van Beek, and Christophe Rabouille
Biogeosciences, 21, 711–729, https://doi.org/10.5194/bg-21-711-2024, https://doi.org/10.5194/bg-21-711-2024, 2024
Short summary
Short summary
The study provides new insights by examining the short-term impact of winter floods on biogeochemical sediment processes near the Rhône River (NW Mediterranean Sea). This is the first winter monitoring of sediment and porewater in deltaic areas. The coupling of these data with a new model enables us to quantify the evolution of biogeochemical processes. It also provides new perspectives on the benthic carbon cycle in river deltas considering climate change, whereby flooding should intensify.
Karina P. P. Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Eur. J. Mineral., 35, 383–395, https://doi.org/10.5194/ejm-35-383-2023, https://doi.org/10.5194/ejm-35-383-2023, 2023
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on sub-millimeter grains that allows us to quantify the hematite and goethite content and hematite / goethite ratio of grains prior to (U–Th) / He geochronological analysis. (U–Th) / He data performed on different aliquots with different acquisition times show no remarkable differences in age, opening a new way to investigate the (U–Th) / He data evolution in supergene lateritic duricrusts.
Marianna Corre, Arnaud Agranier, Martine Lanson, Cécile Gautheron, Fabrice Brunet, and Stéphane Schwartz
Geochronology, 4, 665–681, https://doi.org/10.5194/gchron-4-665-2022, https://doi.org/10.5194/gchron-4-665-2022, 2022
Short summary
Short summary
This study is focused on the accurate measurement of U and Th by wet chemistry and laser ablation methods to improve (U–Th)/He dating of magnetite and spinel. The low U–Th content and the lack of specific U–Th standards significantly limit the accuracy of (U–Th)/He dating. Obtained U–Th results on natural and synthetic magnetite and aluminous spinel samples analyzed by wet chemistry methods and LA-ICP-MS sampling have important implications for the (U–Th)/He method and dates interpretation.
Karina Patricia Prazeres Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-9, https://doi.org/10.5194/gchron-2022-9, 2022
Preprint withdrawn
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on inframilimetric grains that allows to quantify the hematite and goethite content and hematite/goethite ratio of grains prior to (U-Th)/He geochronological analysis. (U-Th)/He data performed on different aliquots with different acquisition time shows no remarkable differences in age, opening a new way to investigate the (U-Th)/He data evolution in supergene lateritic duricrusts.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Cited articles
Allard, T., Gautheron, C., Bressan-Riffel, S., Balan, E., Selo, M.,
Fernandes, B. S., Pinna-Jamme, R., Derycke, A., Morin, G., Taitson Bueno, G.,
and Do Nascimento, N. R.: Combined dating of goethites and kaolinites from
ferruginous duricrusts. Deciphering the Late Neogene erosion history of
Central Amazonia, Chem. Geol., 479, 136–150,
https://doi.org/10.1016/j.chemgeo.2018.01.004, 2018.
Ault, A. K., Gautheron, C., and King, G. E.: Innovations in (U–Th) He, fission‐track, and trapped‐charge thermochronometry with applications to earthquakes, weathering, surface‐mantle connections, and the growth and decay of mountains, Tectonics, 38, 3705–3739, https://doi.org/10.1029/2018TC005312, 2019.
Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., and
Fitzgerald, P.: Natural age dispersion arising from the analysis of broken
crystals, Part I. Theoretical basis and implications for the apatite
(U-Th) He thermochronometer, Geochim. Cosmochim. Acta, 122, 478–497,
https://doi.org/10.1016/j.gca.2013.05.041, 2013.
Burnard, P. G. and Farley, K. A.: Calibration of pressure-dependent
sensitivity and discrimination in Nier-type noble gas ion sources, Geochem.
Geophy. Geosy., 1, 1022, https://doi.org/10.1029/2000GC000038, 2000.
Cooperdock, E. H. G., Ketcham, R. A., and Stockli, D. F.: Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th) He age data and reproducibility, Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, 2019.
Cros, A., Gautheron, C., Pagel, M., Berthet, P., Tassan-Got, L., Douville,
E., Pinna-Jamme, R., and Sarda, P.: 4He behavior in calcite filling viewed by (U-Th) He dating, 4He diffusion and crystallographic studies, Geochim. Cosmochim. Acta, 125, 414–432, https://doi.org/10.1016/j.gca.2013.09.038,
2014.
Dobson, K. J., Stuart, F. M., and Dempster, T. J.: U and Th zonation in Fish
Canyon Tuff zircons: Implications for a zircon (U-Th) He standard, Geochim. Cosmochim. Acta, 72, 4745–4755, https://doi.org/10.1016/j.gca.2008.07.015, 2008.
Evans, N. J., Byrne, J. P., Keegan, J. T., and Dotter, L. E.: Determination of
uranium and thorium in zircon, apatite, and fluorite: Application to laser
(U-Th) He thermochronology, J. Ana. Chem., 60, 1300–1307, 2005.
Farley, K. A.: Helium diffusion from apatite: general behavior as illustrated
by Durango fluorapatite, J. Geophy. Res., 105, 2903–2914, 2000.
Farley, K. A.: (U-Th) He dating: Techniques, calibrations, and applications, in: geochemistry, edited by: Porcelli, D., Ballentine, C. J., and Wieler, R., Noble Gases in Geochemistry and
Cosmochemistry, 819–844, https://doi.org/10.2138/rmg.2002.47.18, 2002.
Farley, K. A., Wolf, R. A., and Silver, L. T.: The effects of long alpha-stopping on (U-Th)/He ages, Geochim. Cosmochim. Acta, 21, 4223–4229, https://doi.org/10.1016/S0016-7037(96)00193-7, 1996.
Fechtig, H. and Kalbitzer, S.: Diffusion of argon in
potassium-bearing solids, in: Potassium-Argon Dating, edited by: Zahringer, O. S. a. J., Springer, Berlin, Heidelberg, Germany, 68–106, 1966.
Flowers, R., Ketcham, R. A., Shuster, D., and Farley, K. A.: Apatite
(U-Th) He thermochronology using a radiation damage accumulation and
annealing model, Geochim. Cosmochim. Acta, 73, 2347–2365, https://doi.org/10.1016/j.gca.2009.01.015, 2009.
Foeken, J. P. T., Stuart, F. M., Dobson, K. J., Persano, C., and Vilbert, D.: A diode laser system for heating minerals for (U-Th) He chronometry, Geochem. Geophys., 7, 1–9, https://doi.org/10.1029/2005GC001190, 2006.
Gautheron, C. and Tassan-Got, L.: A Monte Carlo approach of diffusion
applied to noble gas/ helium thermochronology, Chem. Geol., 273, 212–224,
https://doi.org/10.1016/j.chemgeo.2010.02.023, 2010.
Gautheron, C. and Zeitler, P. K.: Noble Gases Deliver Cool Dates from Hot
Rocks, Elements, 16, 303–309, https://doi.org/10.2138/gselements.16.5.303, 2020.
Gautheron, C., Tassan-Got, L., Ketcham, R. A., and Dobson, K. J.: Accounting
for long alpha-particle stopping distances in (U-Th-Sm) He geochronology: 3D
modeling of diffusion, zoning, implantation, and abrasion, Geochim.
Cosmochim. Acta, 96, 44–56, https://doi.org/10.1016/j.gca.2012.08.016,
2012.
Gautheron, C., Djimbi, D. M., Roques, J., Balout, H., Ketcham, R. A.,
Simoni, E., Pik, R., Seydoux-Guillaume, A. M., and Tassan-Got, L.: A
multi-method, multi-scale theoretical study of He and Ne diffusion in
zircon, Geochim. Cosmoch. Acta, 268, 348–367, https://doi.org/10.1016/j.gca.2019.10.007, 2020.
Gautheron, C. E., Tassan-Got, L., Barbarand, J., and Pagel, M.: Effect of
alpha-damage annealing on apatite (U-Th) He thermochronology, Chem.
Geol., 266, 166–179, https://doi.org/10.1016/j.chemgeo.2009.06.001, 2009.
Gerin, C., Gautheron, C., Oliviero, E., Bachelet, C., Djimbi, D. M.,
Seydoux-Guillaume, A. M., Tassan-Got, L., Sarda, P., Roques, J., and
Garrido, F.: Influence of vacancy damage on He diffusion in apatite
investigated at atomic to mineralogical scales, Geochim. Cosmoch. Acta, 197,
87–103, https://doi.org/10.1016/j.gca.2016.10.018, 2017.
Gleadow, A., Harrisson, M., Kohn, B. P., Lugo-Zazuta, R., and Phillips, D.:
The Fish Canyon Tuff: A new look at an old low-temperature thermochronology
standard, Earth Planet. Sci. Lett., 424, 95–108,
https://doi.org/10.1016/j.epsl.2015.05.003, 2015.
Glotzbach, C., Lang, K. A., Avdievitch, N. N., and Ehlers, T.: Increasing
the accuracy of (U-Th(-Sm)) He dating with 3D grain modelling, Chem. Geol.,
506, 113–125, https://doi.org/10.1016/j.chemgeo.2018.12.032, 2019.
Goldsmith, A. S., Ketcham, R. A., and Stockli, D.: Simulating effects of
heterogeneous 4He concentration profiles and radiation damage annealing on whole-grain zircon diffusivity analyses, Geochim. Cosmochim. Acta, 284,
239–253, https://doi.org/10.1016/j.gca.2020.05.033, 2020.
Guenthner, W., Reiners, P. W., Ketcham, R., Nasdala, L., and Giester, G.:
Helium diffusion in natural zircon: radiation damage, anisotropy, and the
interpretation of zircon (U-Th) He thermochronology, Am. J. Sci., 313, 145–198, https://doi.org/10.2475/03.2013.01, 2013.
Guenthner, W. R., Reiners, P. W., DeCelles, P. G., and Kendall, J.:
Sevier belt exhumation in central Utah constrained from complex zircon
(U-Th) He data sets: Radiation damage and He inheritance effects on
partially reset detrital zircons, GSA Bulletin, 1, B31032,
https://doi.org/10.1130/B31032.1, 2014.
Guenthner, W. R., Reiners, P. W., and Chowdhury, U.: Isotope dilution analysis of Ca and Zr in apatite and zircon (U-Th) He chronometry, Geochem. Geophys.,
17, 1623–1640, https://doi.org/10.2475/03.2013.01, 2016.
Herman, F., Braun, J., Senden, T. J., and Dunlap, W. J.: (U-Th) He
chronometry: Mapping 3D geometry using micro-X-ray tomography and solving
the associated production-diffusion equation, Chem. Geol., 242, 126–136,
https://doi.org/10.1016/j.chemgeo.2007.03.009, 2007.
House, M. A., Farley, K. A., and Stockli, D.: Helium chronometry of apatite
and titanite Nd-YAG laser heating, Earth Planet. Sci. Lett., 183, 365–368,
2000.
Ketcham, R. A., Gautheron, C., and Tassan-Got, L.: Accounting for long
alpha-particle stopping distances in (U-Th-Sm) He geochronology: refinement
of the baseline case, Geochim. Cosmochim. Acta, 75, 7779–7791,
https://doi.org/10.1016/j.gca.2011.10.011, 2011.
Ketcham, R. A., van der Beek, P., Barbarand, J., Bernet, M., and Gautheron,
C.: Reproducibility of Thermal History Reconstruction From Apatite
Fission-Track and (U-Th) He Data, Geochem. Geophys., 19, 2411–2436,
https://doi.org/10.1029/2018GC007555, 2018.
McDowell, F. W., McIntosh, W. C., and Farley, K. A.: A precise
40Ar-39Ar reference age for the Durango apatite (U-Th) He and
fission-track dating standard, Chem. Geol., 214, 249–263,
https://doi.org/10.1016/j.chemgeo.2004.10.002, 2005.
Naeser, C. W., Zimmermann, R. A., and Cebula, G. T.: Fission-track dating of
apatite and zircon: An interlaboratory comparison, Nucl. Tracks, 5, 65–72, https://doi.org/10.1016/0191-278X(81)90027-5,
1981.
Reiners, P. W.: Zircon (U-Th) He thermochronometry, Reviews in Mineralogy and Geochemistry, 58, 151–179, https://doi.org/10.2138/rmg.2005.58.6, 2005.
Reiners, P. W. and Brandon, M. T.: Using thermochronology to understand
orogenic erosion, Ann. Rev. Earth. Planet. Sci., 34, 419–466,
https://doi.org/10.1146/annurev.earth.34.031405.125202, 2006.
Reiners, P. W. and Farley, K. A.: Influence of crystal size on apatite
(U + Th) He thermochronology: an example from the Bighorn Mountains,
Wyoming, Earth Planet. Sci. Lett., 188, 413–420, https://doi.org/10.1016/S0012-821X(01)00341-7, 2001.
Reiners, P. W. and Nicolescu, S.: Measurement of parent nuclides for
(U–Th) He chronometry by solution sector ICP-MS, ARHDL Report 1, 1–33, available at: https://www.geo.arizona.edu/~reiners/arhdl/arhdl_reports.htm (last access: 31 May 2021), 2007.
Reiners, P. W., Farley, K. A., and Hiskes, H. J.: He diffusion and (U-Th) He
thermochronology of zircon: initial results from Fish Canyon Tuff and Gold
Butte, Tectonophysics, 349, 297–308,
https://doi.org/10.1016/S0040-1951(02)00058-6, 2002.
Révillon, S. and Hureau-Mazaudier, D.: Improvements in Digestion Protocols
for Trace Element and Isotope Determinations in Stream and Lake Sediment
Reference Materials (JSd-1, JSd-2, JSd-3, JLk-1 and LKSD-1), Geostand. Geoanal. Res., 33, 397–413,
https://doi.org/10.1111/j.1751-908X.2009.00008.x, 2009.
Schmitz, M. D. and Bowring, S. A.: U-Pb zircon and titanite systematics of
the Fish Canyon Tuff: an assessment of high precision U-Pb geochronology and
its application to young volcanic rocks, Geochim. Cosmochim. Acta, 65,
2571–2587, https://doi.org/10.1016/S0016-7037(01)00616-0, 2001.
Schneider, S., Hammerschmidt, K., Rosenberg, C. L., Gardes, A., Frei, D., and
Bertrand, A.: U–Pb ages of apatite in the western Tauern Window (Eastern
Alps): Tracing the onset of collision-related exhumation in the European
plate, Earth Planet. Sci. Lett., 418, 53–65,
https://doi.org/10.1016/j.epsl.2015.02.020, 2015.
Shuster, D., Flowers, R., and Farley, K. A.: The influence of natural
radiation damage on helium diffusion kinetics in apatite, Earth Planet. Sci.
Lett., 249, 148–161, https://doi.org/10.1016/j.epsl.2006.07.028, 2006.
Tagami, T., Farley, K. A., and Stockli, D. F.: (U + Th) He geochronology of
single zircon grains of known Terciary eruption age, Earth Planet. Sci.
Lett., 207, 57–67, https://doi.org/10.1016/S0012-821X(02)01144-5, 2003.
Tibari, B. Tibari, B., Vacherat, A., Stab, M., Pik, R., Yeghicheyan, D., and
Hild, P.: An Alternative Protocol for Single Zircon Dissolution with
Application to (U-Th-Sm) He Thermochronometry, Geostand.
Geoanal. Res., 40, 365–375,
https://doi.org/10.1111/j.1751-908X.2016.00375.x, 2016.
Vermeesch, P.: RadialPlotter: A Java application for fission track,
luminescence and other radial plots, Radiat. Meas., 44, 409–410,
2009.
Yanga, Y.-H., Wua, F.-Y., Yanga, J.-H., Chew, D.M., Xie, L.-W., Chua, Z.-Y.,
Zhang, Y.-B., and Huang, C.: Sr and Nd isotopic compositions of apatite
reference materials used inU–Th–Pb geochronology, Chem. Geol., 385, 35–55,
https://doi.org/10.1016/j.chemgeo.2014.07.012, 2014.
Yokoyama, T., Makishima, A., and Nakamura, E.: Evaluation of the coprecipitation
of incompatible trace elements with fluoride during silicate rock
dissolution by acid digestion, Chem. Geol., 157, 175–187,
https://doi.org/10.1016/S0009-2541(98)00206-X, 1999.
Ziegler, J. F.: SRIM-2008 The stopping range of ions in matter, United States
Naval Academy, Annapolis, USA, 2008.
Short summary
Apatite and zircon (U–Th) / He thermochronology is now a mainstream tool to reconstruct Earth's evolution through the history of cooling and exhumation over the first dozen kilometers. The geological implications of these data rely on the precision of measurements of He, U, Th, and Sm contents in crystals. This technical note documents the methods for He thermochronology developed at the GEOPS laboratory, Paris-Saclay University, that allow (U–Th) / He data to be obtained with precision.
Apatite and zircon (U–Th) / He thermochronology is now a mainstream tool to reconstruct Earth's...