Articles | Volume 3, issue 2
https://doi.org/10.5194/gchron-3-415-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-415-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers
Yang Li
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
Viewed
Total article views: 2,866 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 Feb 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,825 | 962 | 79 | 2,866 | 65 | 77 |
- HTML: 1,825
- PDF: 962
- XML: 79
- Total: 2,866
- BibTeX: 65
- EndNote: 77
Total article views: 1,772 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Aug 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,224 | 491 | 57 | 1,772 | 56 | 69 |
- HTML: 1,224
- PDF: 491
- XML: 57
- Total: 1,772
- BibTeX: 56
- EndNote: 69
Total article views: 1,094 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 Feb 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
601 | 471 | 22 | 1,094 | 9 | 8 |
- HTML: 601
- PDF: 471
- XML: 22
- Total: 1,094
- BibTeX: 9
- EndNote: 8
Viewed (geographical distribution)
Total article views: 2,866 (including HTML, PDF, and XML)
Thereof 2,604 with geography defined
and 262 with unknown origin.
Total article views: 1,772 (including HTML, PDF, and XML)
Thereof 1,654 with geography defined
and 118 with unknown origin.
Total article views: 1,094 (including HTML, PDF, and XML)
Thereof 950 with geography defined
and 144 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
33 citations as recorded by crossref.
- Errorchrons and anchored isochrons in IsoplotR P. Vermeesch 10.5194/gchron-6-397-2024
- Laser ablation (in situ) Lu-Hf geochronology of epidote group minerals J. Yu et al. 10.1007/s00410-024-02143-y
- Microstructures, geochemistry, and geochronology of mica fish: Review and advances B. Ribeiro et al. 10.1016/j.jsg.2023.104947
- An Ediacaran orogeny in subglacial East Antarctica is uncovered by detrital garnet geochronology S. Verhaert et al. 10.1038/s43247-024-01467-8
- Apatite laser ablation Lu Hf geochronology: A new tool to date mafic rocks M. Kharkongor et al. 10.1016/j.chemgeo.2023.121630
- From microanalysis to supercontinents: Insights from the Rio Apa Terrane into the Mesoproterozoic SW Amazonian Craton evolution during Rodinia assembly B. Ribeiro et al. 10.1111/jmg.12641
- Testing the reproducibility of in situ Lu Hf dating using Lu-rich garnet from the Tørdal pegmatites, southern Norway S. Glorie et al. 10.1016/j.chemgeo.2024.122038
- First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland K. Szentpéteri et al. 10.5194/ejm-36-433-2024
- Eoarchean granulite-facies metamorphism in the Itsaq Gneiss Complex, southwest Greenland J. Alfing et al. 10.1016/j.epsl.2024.118977
- Lu–Hf, Sm–Nd, and U–Pb isotopic coupling and decoupling in apatite J. Gillespie et al. 10.1016/j.gca.2022.09.038
- The unroofing of Archean crustal domes as recorded by detrital zircon and apatite A. Clarke et al. 10.1016/j.precamres.2023.107132
- Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials S. Glorie et al. 10.5194/gchron-6-21-2024
- Double dating sedimentary sequences using new applications of in-situ laser ablation analysis D. Subarkah et al. 10.1016/j.lithos.2024.107649
- Molybdenite Reference Materials for In SituLA‐ICP‐MS/MS Re‐Os Geochronology R. Tamblyn et al. 10.1111/ggr.12550
- Innovation in apatite Lu-Hf geochronology opens new opportunity for copper systems in southern Australia during the Nuna destruction J. Yu et al. 10.1007/s00126-024-01327-7
- Provenance and tectonic intricacies revealed by in situ Rb-Sr dating of detrital micas D. Sathish Kumar et al. 10.1016/j.chemgeo.2024.122482
- Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation S. Glorie et al. 10.1144/SP537-2022-205
- The World’s Highest-Grade Cobalt Mineralization at Bou Azzer Associated With Gondwana Supercontinent Breakup, Serpentinite and Kellwasser Hydrocarbon Source Rocks N. Saintilan et al. 10.2475/001c.91400
- Decoding Calymmian juvenile mafic magmatism in the Ribeira Belt, Brazil: Evidence for a long-lived arc system along the margin of Columbia F. Faleiros et al. 10.1016/j.precamres.2024.107588
- Garnet Lu-Hf speed dating: A novel method to rapidly resolve polymetamorphic histories A. Simpson et al. 10.1016/j.gr.2023.04.011
- Implications for Ediacaran biological evolution from the ca. 602 Ma Lantian biota in China C. Yang et al. 10.1130/G49734.1
- In situ Lu–Hf geochronology of calcite A. Simpson et al. 10.5194/gchron-4-353-2022
- Paleoarchean metamorphism in the Acasta Gneiss Complex: Constraints from phase equilibrium modelling and in situ garnet Lu–Hf geochronology J. Kaempf et al. 10.1111/jmg.12759
- In situ Lu–Hf dating of allanite by LA-ICP-MS/MS: Implications for geochronology S. Wu et al. 10.1016/j.chemgeo.2024.122383
- Episodic alteration within a gold-bearing Archean shear zone revealed by in situ biotite Rb–Sr dating A. Zametzer et al. 10.1016/j.precamres.2022.106872
- Laser ablation (in situ) Lu-Hf dating of magmatic fluorite and hydrothermal fluorite-bearing veins S. Glorie et al. 10.1016/j.gsf.2023.101629
- Application of the 187Re-187Os geochronometer to crustal materials: Systematics, methodology, data reporting, and interpretation A. Rooney et al. 10.1130/B37294.1
- Carboniferous–Permian interglacial warming and volcanism temporally linked to the world's oldest alkaline lake deposit of the Fengcheng Formation, NW China D. Gong et al. 10.1016/j.palaeo.2024.112441
- First demonstration of in situ Lu–Hf dating using LA-ICP-MS/MS applied to monazite S. Wu et al. 10.1039/D4JA00258J
- Implications of new geochronological constraints on the Aberfeldy stratiform barite deposits, Scotland, for the depositional continuity and global correlation of the Neoproterozoic Dalradian Supergroup N. Moles & D. Selby 10.1016/j.precamres.2022.106925
- Origin and Significance of Age Variability in the Glauconite Reference Material GL‐O: Implications for In Situ Rb‐Sr Geochronology S. Löhr et al. 10.1111/ggr.12588
- Testing in-situ apatite Lu–Hf dating in polymetamorphic mafic rocks: a case study from Palaeoproterozoic southern Australia D. Brown et al. 10.1007/s00410-024-02117-0
- Apatite Triple Dating (Lu–Hf, U–Pb, FT) Constrains Deformation and Cooling in the Coompana and Madura Provinces, Western Australia A. Bedoya et al. 10.2113/2023/lithosphere_2023_292
33 citations as recorded by crossref.
- Errorchrons and anchored isochrons in IsoplotR P. Vermeesch 10.5194/gchron-6-397-2024
- Laser ablation (in situ) Lu-Hf geochronology of epidote group minerals J. Yu et al. 10.1007/s00410-024-02143-y
- Microstructures, geochemistry, and geochronology of mica fish: Review and advances B. Ribeiro et al. 10.1016/j.jsg.2023.104947
- An Ediacaran orogeny in subglacial East Antarctica is uncovered by detrital garnet geochronology S. Verhaert et al. 10.1038/s43247-024-01467-8
- Apatite laser ablation Lu Hf geochronology: A new tool to date mafic rocks M. Kharkongor et al. 10.1016/j.chemgeo.2023.121630
- From microanalysis to supercontinents: Insights from the Rio Apa Terrane into the Mesoproterozoic SW Amazonian Craton evolution during Rodinia assembly B. Ribeiro et al. 10.1111/jmg.12641
- Testing the reproducibility of in situ Lu Hf dating using Lu-rich garnet from the Tørdal pegmatites, southern Norway S. Glorie et al. 10.1016/j.chemgeo.2024.122038
- First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland K. Szentpéteri et al. 10.5194/ejm-36-433-2024
- Eoarchean granulite-facies metamorphism in the Itsaq Gneiss Complex, southwest Greenland J. Alfing et al. 10.1016/j.epsl.2024.118977
- Lu–Hf, Sm–Nd, and U–Pb isotopic coupling and decoupling in apatite J. Gillespie et al. 10.1016/j.gca.2022.09.038
- The unroofing of Archean crustal domes as recorded by detrital zircon and apatite A. Clarke et al. 10.1016/j.precamres.2023.107132
- Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials S. Glorie et al. 10.5194/gchron-6-21-2024
- Double dating sedimentary sequences using new applications of in-situ laser ablation analysis D. Subarkah et al. 10.1016/j.lithos.2024.107649
- Molybdenite Reference Materials for In SituLA‐ICP‐MS/MS Re‐Os Geochronology R. Tamblyn et al. 10.1111/ggr.12550
- Innovation in apatite Lu-Hf geochronology opens new opportunity for copper systems in southern Australia during the Nuna destruction J. Yu et al. 10.1007/s00126-024-01327-7
- Provenance and tectonic intricacies revealed by in situ Rb-Sr dating of detrital micas D. Sathish Kumar et al. 10.1016/j.chemgeo.2024.122482
- Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation S. Glorie et al. 10.1144/SP537-2022-205
- The World’s Highest-Grade Cobalt Mineralization at Bou Azzer Associated With Gondwana Supercontinent Breakup, Serpentinite and Kellwasser Hydrocarbon Source Rocks N. Saintilan et al. 10.2475/001c.91400
- Decoding Calymmian juvenile mafic magmatism in the Ribeira Belt, Brazil: Evidence for a long-lived arc system along the margin of Columbia F. Faleiros et al. 10.1016/j.precamres.2024.107588
- Garnet Lu-Hf speed dating: A novel method to rapidly resolve polymetamorphic histories A. Simpson et al. 10.1016/j.gr.2023.04.011
- Implications for Ediacaran biological evolution from the ca. 602 Ma Lantian biota in China C. Yang et al. 10.1130/G49734.1
- In situ Lu–Hf geochronology of calcite A. Simpson et al. 10.5194/gchron-4-353-2022
- Paleoarchean metamorphism in the Acasta Gneiss Complex: Constraints from phase equilibrium modelling and in situ garnet Lu–Hf geochronology J. Kaempf et al. 10.1111/jmg.12759
- In situ Lu–Hf dating of allanite by LA-ICP-MS/MS: Implications for geochronology S. Wu et al. 10.1016/j.chemgeo.2024.122383
- Episodic alteration within a gold-bearing Archean shear zone revealed by in situ biotite Rb–Sr dating A. Zametzer et al. 10.1016/j.precamres.2022.106872
- Laser ablation (in situ) Lu-Hf dating of magmatic fluorite and hydrothermal fluorite-bearing veins S. Glorie et al. 10.1016/j.gsf.2023.101629
- Application of the 187Re-187Os geochronometer to crustal materials: Systematics, methodology, data reporting, and interpretation A. Rooney et al. 10.1130/B37294.1
- Carboniferous–Permian interglacial warming and volcanism temporally linked to the world's oldest alkaline lake deposit of the Fengcheng Formation, NW China D. Gong et al. 10.1016/j.palaeo.2024.112441
- First demonstration of in situ Lu–Hf dating using LA-ICP-MS/MS applied to monazite S. Wu et al. 10.1039/D4JA00258J
- Implications of new geochronological constraints on the Aberfeldy stratiform barite deposits, Scotland, for the depositional continuity and global correlation of the Neoproterozoic Dalradian Supergroup N. Moles & D. Selby 10.1016/j.precamres.2022.106925
- Origin and Significance of Age Variability in the Glauconite Reference Material GL‐O: Implications for In Situ Rb‐Sr Geochronology S. Löhr et al. 10.1111/ggr.12588
- Testing in-situ apatite Lu–Hf dating in polymetamorphic mafic rocks: a case study from Palaeoproterozoic southern Australia D. Brown et al. 10.1007/s00410-024-02117-0
- Apatite Triple Dating (Lu–Hf, U–Pb, FT) Constrains Deformation and Cooling in the Coompana and Madura Provinces, Western Australia A. Bedoya et al. 10.2113/2023/lithosphere_2023_292
Latest update: 13 Dec 2024
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(1974 KB) - Full-text XML
Short summary
A conventional isochron is a straight-line fit to two sets of isotopic ratios, D/d and P/d, where P is the radioactive parent, D is the radiogenic daughter, and d is a second isotope of the daughter element. The slope of this line is proportional to the age of the system. An inverse isochron is a linear fit through d/D and P/D. The horizontal intercept of this line is inversely proportional to the age. The latter approach is preferred when d<D, which is the case in Re–Os and K–Ca geochronology.
A conventional isochron is a straight-line fit to two sets of isotopic ratios, D/d and P/d,...