Articles | Volume 3, issue 2
https://doi.org/10.5194/gchron-3-415-2021
https://doi.org/10.5194/gchron-3-415-2021
Short communication/technical note
 | 
02 Aug 2021
Short communication/technical note |  | 02 Aug 2021

Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers

Yang Li and Pieter Vermeesch

Related authors

(anchored) isochrons in IsoplotR
Pieter Vermeesch
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-5,https://doi.org/10.5194/gchron-2024-5, 2024
Preprint under review for GChron
Short summary
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023,https://doi.org/10.5194/gchron-5-323-2023, 2023
Short summary
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023,https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary
Origin of Great Unconformity Obscured by Thermochronometric Uncertainty
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-23,https://doi.org/10.5194/gchron-2022-23, 2022
Publication in GChron not foreseen
Short summary
An algorithm for U–Pb geochronology by secondary ion mass spectrometry
Pieter Vermeesch
Geochronology, 4, 561–576, https://doi.org/10.5194/gchron-4-561-2022,https://doi.org/10.5194/gchron-4-561-2022, 2022
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS
Erin E. Donaghy, Michael P. Eddy, Federico Moreno, and Mauricio Ibañez-Mejia
Geochronology, 6, 89–106, https://doi.org/10.5194/gchron-6-89-2024,https://doi.org/10.5194/gchron-6-89-2024, 2024
Short summary
Modeling apparent Pb loss in zircon U–Pb geochronology
Glenn R. Sharman and Matthew A. Malkowski
Geochronology, 6, 37–51, https://doi.org/10.5194/gchron-6-37-2024,https://doi.org/10.5194/gchron-6-37-2024, 2024
Short summary
Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024,https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023,https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary
ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023,https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary

Cited articles

Connelly, J., Bollard, J., and Bizzarro, M.: Pb–Pb chronometry and the early solar system, Geochim. Cosmochim. Ac., 201, 345–363, 2017. a
Dalrymple, G. B., Lanphere, M. A., and Pringle, M. S.: Correlation diagrams in 40Ar/39Ar dating: Is there a correct choice?, Geophys. Res. Lett., 15, 589–591, 1988. a, b
Harrison, T. M., Heizler, M. T., McKeegan, K. D., and Schmitt, A. K.: In situ 40K40Ca 'double-plus' SIMS dating resolves Klokken feldspar 40K40Ar paradox, Earth Planet. Sc. Lett., 299, 426–433, 2010. a
Kendall, B., Creaser, R. A., and Selby, D.: Re–Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation, Geology, 34, 729–732, 2006. a
Ludwig, K. R.: Calculation of uncertainties of U-Pb isotope data, Earth Planet. Sc. Lett., 46, 212–220, 1980. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
A conventional isochron is a straight-line fit to two sets of isotopic ratios, D/d and P/d, where P is the radioactive parent, D is the radiogenic daughter, and d is a second isotope of the daughter element. The slope of this line is proportional to the age of the system. An inverse isochron is a linear fit through d/D and P/D. The horizontal intercept of this line is inversely proportional to the age. The latter approach is preferred when d<D, which is the case in Re–Os and K–Ca geochronology.