Articles | Volume 3, issue 2
https://doi.org/10.5194/gchron-3-415-2021
https://doi.org/10.5194/gchron-3-415-2021
Short communication/technical note
 | 
02 Aug 2021
Short communication/technical note |  | 02 Aug 2021

Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers

Yang Li and Pieter Vermeesch

Related authors

FAIR fission track analysis with geochron@home
Pieter Vermeesch, Tim Band, Jiangping He, Rex Galbraith, and Andrew Carter
EGUsphere, https://doi.org/10.5194/egusphere-2025-4948,https://doi.org/10.5194/egusphere-2025-4948, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Carbonate 206Pb ∕ 238U problems and potential 207Pb ∕ 235U fixes
Pieter Vermeesch, Noah McLean, Anton Vaks, Tzahi Golan, Sebastian F. M. Breitenbach, and Randall Parrish
Geochronology, 7, 459–473, https://doi.org/10.5194/gchron-7-459-2025,https://doi.org/10.5194/gchron-7-459-2025, 2025
Short summary
Errorchrons and anchored isochrons in IsoplotR
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024,https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023,https://doi.org/10.5194/gchron-5-323-2023, 2023
Short summary
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023,https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary

Cited articles

Connelly, J., Bollard, J., and Bizzarro, M.: Pb–Pb chronometry and the early solar system, Geochim. Cosmochim. Ac., 201, 345–363, 2017. a
Dalrymple, G. B., Lanphere, M. A., and Pringle, M. S.: Correlation diagrams in 40Ar/39Ar dating: Is there a correct choice?, Geophys. Res. Lett., 15, 589–591, 1988. a, b
Harrison, T. M., Heizler, M. T., McKeegan, K. D., and Schmitt, A. K.: In situ 40K40Ca 'double-plus' SIMS dating resolves Klokken feldspar 40K40Ar paradox, Earth Planet. Sc. Lett., 299, 426–433, 2010. a
Kendall, B., Creaser, R. A., and Selby, D.: Re–Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation, Geology, 34, 729–732, 2006. a
Ludwig, K. R.: Calculation of uncertainties of U-Pb isotope data, Earth Planet. Sc. Lett., 46, 212–220, 1980. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
A conventional isochron is a straight-line fit to two sets of isotopic ratios, D/d and P/d, where P is the radioactive parent, D is the radiogenic daughter, and d is a second isotope of the daughter element. The slope of this line is proportional to the age of the system. An inverse isochron is a linear fit through d/D and P/D. The horizontal intercept of this line is inversely proportional to the age. The latter approach is preferred when d<D, which is the case in Re–Os and K–Ca geochronology.
Share