Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-143-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-143-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short communication: Modeling competing effects of cooling rate, grain size, and radiation damage in low-temperature thermochronometers
David M. Whipp
Department of Geosciences and Geography, University of Helsinki, 00014 University of Helsinki, Helsinki, Finland
Geological Survey of Canada – Atlantic, Natural Resources Canada, Dartmouth, B2Y 4A2, Canada
Isabelle Coutand
Department of Earth and Environmental Sciences, Dalhousie University, Halifax, B3H 4R2, Canada
Richard A. Ketcham
Department of Geological Sciences, Jackson School of Geoscience, University of Texas, Austin, TX 78712, USA
Related authors
Matthias Nettesheim, Todd A. Ehlers, David M. Whipp, and Alexander Koptev
Solid Earth, 9, 1207–1224, https://doi.org/10.5194/se-9-1207-2018, https://doi.org/10.5194/se-9-1207-2018, 2018
Short summary
Short summary
In this modeling study, we investigate rock uplift at plate corners (syntaxes). These are characterized by a unique bent geometry at subduction zones and exhibit some of the world's highest rock uplift rates. We find that the style of deformation changes above the plate's bent section and that active subduction is necessary to generate an isolated region of rapid uplift. Strong erosion there localizes uplift on even smaller scales, suggesting both tectonic and surface processes are important.
Marie Bergelin, Greg Balco, and Richard A. Ketcham
EGUsphere, https://doi.org/10.5194/egusphere-2025-3033, https://doi.org/10.5194/egusphere-2025-3033, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
We developed a faster and simpler way to measure helium gas in rocks to determine how long they have been exposed at Earth's surface. Instead of separating minerals within the rocks by hand, our method uses heat to release gas from specific minerals. This reduces time, cost, and physical work, making it easier to collect large amounts of data when studying landscape change or when only small rock samples are available.
Richard A. Ketcham
EGUsphere, https://doi.org/10.5194/egusphere-2025-901, https://doi.org/10.5194/egusphere-2025-901, 2025
Short summary
Short summary
This technical note develops and demonstrates an improvement in how to calculate the temperatures experienced by rocks as they come to the Earth surface due to erosion in mountainous regions. The solution is fast and flexible, and works even in areas where erosion rates have varied through time. The new method has been added to software used to interpret geochronologic data to help discern the history of mountain ranges.
Murat T. Tamer, Ling Chung, Richard A. Ketcham, and Andrew J. W. Gleadow
Geochronology, 7, 45–58, https://doi.org/10.5194/gchron-7-45-2025, https://doi.org/10.5194/gchron-7-45-2025, 2025
Short summary
Short summary
We present the first new image-based study to reveal how choices made by different analysts affect the results obtained by fission-track analysis. Participants analyzed an identical image dataset with varying grain quality. Experienced analysts tend to select lower numbers of unsuitable grains and conduct lower numbers of invalid length measurements. Fission-track studies need image data repositories, teaching modules, guidelines, an open science culture, and new approaches for calibration.
Alyssa J. McKanna, Isabel Koran, Blair Schoene, and Richard A. Ketcham
Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, https://doi.org/10.5194/gchron-5-127-2023, 2023
Short summary
Short summary
Acid leaching is commonly used to remove damaged portions of zircon crystals prior to U–Pb dating. However, a basic understanding of the microstructural processes that occur during leaching is lacking. We present the first 3D view of zircon dissolution based on X-ray computed tomography data acquired before and after acid leaching. These data are paired with images of etched grain surfaces and Raman spectral data. We also reveal exciting opportunities for imaging radiation damage zoning in 3D.
Richard A. Ketcham and Murat T. Tamer
Geochronology, 3, 433–464, https://doi.org/10.5194/gchron-3-433-2021, https://doi.org/10.5194/gchron-3-433-2021, 2021
Short summary
Short summary
We introduce a new model of how etching reveals damage tracks left by fissioning atoms, which accounts for variable along-track etching rates. This complete characterization explains many observations, including community difficulty in obtaining consistent track length measurements. It also provides a quantitative basis for optimizing etching procedures, discerning more about how radiation damage anneals, and ultimately deriving more reproducible fission-track ages and thermal histories.
Emily H. G. Cooperdock, Richard A. Ketcham, and Daniel F. Stockli
Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, https://doi.org/10.5194/gchron-1-17-2019, 2019
Short summary
Short summary
(U–Th) / He chronometry relies on accurate grain-specific size and shape measurements. Using > 100 apatite grains to compare
assumed2-D versus
true3-D grain shapes measured by a microscope and X-ray computed tomography, respectively, we find that volume and surface area both differ by ~ 25 % between the two techniques and directly affect mass and concentration measurements. But we found a very small effect on the FT correction (2 %) and no discernible impact on mean sample age or dispersion.
Matthias Nettesheim, Todd A. Ehlers, David M. Whipp, and Alexander Koptev
Solid Earth, 9, 1207–1224, https://doi.org/10.5194/se-9-1207-2018, https://doi.org/10.5194/se-9-1207-2018, 2018
Short summary
Short summary
In this modeling study, we investigate rock uplift at plate corners (syntaxes). These are characterized by a unique bent geometry at subduction zones and exhibit some of the world's highest rock uplift rates. We find that the style of deformation changes above the plate's bent section and that active subduction is necessary to generate an isolated region of rapid uplift. Strong erosion there localizes uplift on even smaller scales, suggesting both tectonic and surface processes are important.
Related subject area
Helium diffusion systems
Technical note: An analytical approach for (U–Th) ∕ He dating of goethite by sample encapsulation in quartz ampoules under vacuum, with an example from the Amerasian Basin, Arctic Ocean
U and Th zonation in apatite observed by synchrotron X-ray fluorescence tomography and implications for the (U–Th) ∕ He system
The Geometric Correction Method for zircon (U–Th) ∕ He chronology: correcting systematic error and assigning uncertainties to alpha-ejection corrections and eU concentrations
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
A practical method for assigning uncertainty and improving the accuracy of alpha-ejection corrections and eU concentrations in apatite (U–Th) ∕ He chronology
Cosmogenic 3He paleothermometry on post-LGM glacial bedrock within the central European Alps
A revised alpha-ejection correction calculation for (U–Th) ∕ He thermochronology dates of broken apatite crystals
Short communication: Mechanism and prevention of irreversible trapping of atmospheric He during mineral crushing
Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th) ∕ He age data and reproducibility
Olga Valentinovna Yakubovich, Natalia Pavlovna Konstantinova, Maria Olegovna Anosova, Mary Markovna Podolskaya, and Elena Valerevna Adamskaya
Geochronology, 6, 653–664, https://doi.org/10.5194/gchron-6-653-2024, https://doi.org/10.5194/gchron-6-653-2024, 2024
Short summary
Short summary
Goethite is one of the most common Fe-(oxy)hydroxide minerals that is formed during hydrolyzation of rocks, implying it is a desired mineral for dating various surface and subsurface geological processes. Nowadays (U–Th) / He dating of goethite is widely used in geochronological studies. Here, in the example of goethite from the Chukchi Borderland, we introduce a new, simple methodological approach for accurate (U–Th) / He dating of goethite.
Francis J. Sousa, Stephen E. Cox, E. Troy Rasbury, Sidney R. Hemming, Antonio Lanzirotti, and Matthew Newville
Geochronology, 6, 553–570, https://doi.org/10.5194/gchron-6-553-2024, https://doi.org/10.5194/gchron-6-553-2024, 2024
Short summary
Short summary
We have discovered a new way of measuring the three-dimensional distribution of radioactive elements in individual crystals by shining a very bright light on apatite crystals at the Advanced Photon Source at Argonne National Laboratory. This allows us to learn about the rates and timing of geologic processes and to help resolve problems that previously were unsolvable because we had no way to make this type of measurement.
Spencer D. Zeigler, Morgan Baker, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 6, 199–226, https://doi.org/10.5194/gchron-6-199-2024, https://doi.org/10.5194/gchron-6-199-2024, 2024
Short summary
Short summary
(U–Th)/He chronology relies on accurate measurements of zircon grain dimensions, but the systematic error and uncertainty associated with those measurements have been unquantified until now. We build on the work of Zeigler et al. (2023) and present the zircon Geometric Correction Method, a simple solution to correcting the error and quantifying the geometric uncertainty in eU and dates. Including this geometric correction and uncertainty matters for data evaluation and interpretation.
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023, https://doi.org/10.5194/gchron-5-323-2023, 2023
Short summary
Short summary
The U–Th–He method is a technique to determine the cooling history of minerals. Traditional approaches to U–Th–He dating are time-consuming and require handling strong acids and radioactive solutions. This paper presents an alternative approach in which samples are irradiated with protons and subsequently analysed by laser ablation mass spectrometry. Unlike previous in situ U–Th–He dating attempts, the new method does not require any absolute concentration measurements of U, Th, or He.
Spencer D. Zeigler, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 197–228, https://doi.org/10.5194/gchron-5-197-2023, https://doi.org/10.5194/gchron-5-197-2023, 2023
Short summary
Short summary
(U–Th) / He dating relies on proper characterization of apatite crystal dimensions so that eU concentrations and dates can be calculated accurately and precisely, but there is systematic error and uncertainty in geometric measurements. By comparing 2D microscopy to
true3D measurements, we present a simple solution to correcting the error and quantifying the geometric uncertainty in eU and dates. Including this geometric correction and uncertainty matters for data evaluation and interpretation.
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022, https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary
Short summary
We apply quartz 3He paleothermometry along two deglaciation profiles in the European Alps to reconstruct temperature evolution since the Last Glacial Maximum. We observe a 3He thermal signal clearly colder than today in all bedrock surface samples exposed prior the Holocene. Current uncertainties in 3He diffusion kinetics do not permit distinguishing if this signal results from Late Pleistocene ambient temperature changes or from recent ground temperature variation due to permafrost degradation.
John J. Y. He and Peter W. Reiners
Geochronology, 4, 629–640, https://doi.org/10.5194/gchron-4-629-2022, https://doi.org/10.5194/gchron-4-629-2022, 2022
Short summary
Short summary
Apatite helium thermochronology is a method that dates the time at which a rock (and the apatite crystals contained within) cooled below a certain temperature by measuring radioactive parent isotopes (uranium and thorium) and daughter isotopes (helium). This paper proposes a revision to a commonly used calculation that corrects raw data to account for instances when the analyzed apatite crystals are fragmented. It demonstrates the improved accuracy and precision of the proposed revision.
Stephen E. Cox, Hayden B. D. Miller, Florian Hofmann, and Kenneth A. Farley
Geochronology, 4, 551–560, https://doi.org/10.5194/gchron-4-551-2022, https://doi.org/10.5194/gchron-4-551-2022, 2022
Short summary
Short summary
Noble gases are largely excluded from minerals during rock formation, but they are produced by certain radioactive decay schemes and trapped in mineral lattices. However, they are present in the atmosphere, which means that they can be adsorbed or trapped by physical processes. We present details of a troublesome trapping mechanism for helium during sample crushing and show when it can be ignored and how it can be easily avoided during common laboratory procedures.
Emily H. G. Cooperdock, Richard A. Ketcham, and Daniel F. Stockli
Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, https://doi.org/10.5194/gchron-1-17-2019, 2019
Short summary
Short summary
(U–Th) / He chronometry relies on accurate grain-specific size and shape measurements. Using > 100 apatite grains to compare
assumed2-D versus
true3-D grain shapes measured by a microscope and X-ray computed tomography, respectively, we find that volume and surface area both differ by ~ 25 % between the two techniques and directly affect mass and concentration measurements. But we found a very small effect on the FT correction (2 %) and no discernible impact on mean sample age or dispersion.
Cited articles
Ault, A. K., Gautheron, C., and King, G. E.: Innovations in (U–Th) He, fission track, and trapped charge thermochronometry with applications to earthquakes, weathering, surface-mantle connections, and the growth and decay of mountains, Tectonics, 38, 3705–3739, https://doi.org/10.1029/2018TC005312, 2019.
Braun, J.: Pecube: A new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography, Comput. Geosci., 29, 787–794, https://doi.org/10.1016/S0098-3004(03)00052-9, 2003.
Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon-Labric, T., and Prigent, C.: Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE, Tectonophysics, 524, 1–28, https://doi.org/10.1016/j.tecto.2011.12.035, 2012.
Cogné, N., Gallagher, K., and Cobbold, P. R.: Post-rift reactivation of the onshore margin of southeast Brazil: Evidence from apatite (U–Th) He and fission-track data, Earth Planet. Sc. Lett., 309, 118–130, https://doi.org/10.1016/j.epsl.2011.06.025, 2011.
Cooperdock, E. H. G., Ketcham, R. A., and Stockli, D. F.:
Resolving the effects of 2-D versus 3-D grain measurements on
apatite (U–Th) He age data and reproducibility, Geochronology,
1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, 2019.
Coutand, I., Whipp, Jr., D. M., Grujic, D., Bernet, M., Fellin, M. G., Bookhagen, B., Landry, K. R., Ghalley, S. K., and Duncan, C.: Geometry and kinematics of the Main Himalayan Thrust and Neogene crustal exhumation in the Bhutanese Himalaya derived from inversion of multithermochronologic data, J. Geophys. Res.-Sol. Ea., 119, 1446–1481, https://doi.org/10.1002/2013JB010891, 2014.
Danišík, M., Sachsenhofer, R. F., Privalov, V. A., Panova, E. A., Frisch, W., and Spiegel, C.: Low-temperature thermal evolution of the Azov Massif (Ukrainian Shield–Ukraine)—Implications for interpreting (U–Th) He and fission track ages from cratons, Tectonophysics, 456, 171–179, https://doi.org/10.1016/j.tecto.2008.04.022, 2008.
Flowers, R. M. and Kelley, S. A.: Interpreting data dispersion and “inverted” dates in apatite (U–Th) He and fission-track datasets: an example from the US midcontinent, Geochim. Cosmochim. Ac., 75, 5169–5186, https://doi.org/10.1016/j.gca.2011.06.016, 2011.
Flowers, R. M., Ketcham, R. A., Shuster, D. L., and Farley, K. A.: Apatite (U–Th) He thermochronometry using a radiation damage accumulation and annealing model, Geochim. Cosmochim. Ac., 73, 2347–2365, https://doi.org/10.1016/j.gca.2009.01.015, 2009.
Gallagher, K.: Transdimensional inverse thermal history modeling for quantitative thermochronology, J. Geophys. Res., 117, B02408, https://doi.org/10.1029/2011JB008825, 2012.
Gautheron, C., Tassan-Got, L., Ketcham, R. A., and Dobson, K. J.: Accounting for long alpha-particle stopping distances in (U–Th–Sm) He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion, Geochim. Cosmochim. Ac., 96, 44–56, https://doi.org/10.1016/j.gca.2012.08.016, 2012.
Guenthner, W. R.: Implementation of an alpha damage annealing model for zircon (U-Th) He thermochronology with comparison to a zircon fission track annealing model, Geochem. Geophy. Geosy., 22, e2019GC008757, https://doi.org/10.1029/2019GC008757, 2021.
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., and Giester, G.: Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th) He thermochronology, Am. J. Sci., 313, 145–198, https://doi.org/10.2475/03.2013.01, 2013.
Hansen, K. and Reiners, P. W.: Low temperature thermochronology of the southern East Greenland continental margin: evidence from apatite (U–Th) He and fission track analysis and implications for intermethod calibration, Lithos, 92, 117–136, https://doi.org/10.1016/j.lithos.2006.03.039, 2006.
Johnson, J. E., Flowers, R. M., Baird, G. B., and Mahan, K. H.: “Inverted” zircon and apatite (U–Th) He dates from the Front Range, Colorado: high-damage zircon as a low-temperature (<50 ∘C) thermochronometer, Earth Planet. Sc. Lett., 466, 80–90, https://doi.org/10.1016/j.epsl.2017.03.002, 2017.
Hourigan, J. K., Reiners, P. W., and Brandon, M. T.: U-Th zonation-dependent alpha-ejection in (U-Th) He chronometry, Geochim. Cosmochim. Ac., 69, 3349–3365, https://doi.org/10.1016/j.gca.2005.01.024, 2005.
Ketcham, R. A.: Forward and inverse modeling of low-temperature thermochronometry data, Rev. Mineral. Geochem., 58, 275–314, https://doi.org/10.2138/rmg.2005.58.11, 2005.
Ketcham, R. A., Donelick, R. A., and Carlson, W. D.: Variability of apatite fission-track annealing kinetics III: Extrapolation to geological time scales, Am. Mineral., 84, 1235–1255, https://doi.org/10.2138/am-1999-0903, 1999.
Ketcham, R. A., Donelick, R. A., and Donelick, M. B.: AFTSolve: A program for multi-kinetic modeling of apatite fission-track data, Geol. Mat. Res., 2, electronic, http://www.minsocam.org/gmr/papers/v2/v2n1/v2n1abs.html (last access: 14 March 2022), 2000.
Ketcham, R. A., Gautheron, C., and Tassan-Got, L.: Accounting for long alpha-particle stopping distances in (U–Th–Sm) He geochronology: Refinement of the baseline case, Geochim. Cosmochim. Ac., 75, 7779–7791, https://doi.org/10.1016/j.gca.2011.10.011, 2011.
Ketcham, R. A., Mora, A., and Parra, M.: Deciphering exhumation and burial history with multi-sample down-well thermochronometric inverse modelling, Basin Res., 30, 48–64, https://doi.org/10.1111/bre.12207, 2018.
Kohn, B. P., Lorencak, M., Gleadow, A. J., Kohlmann, F., Raza, A., Osadetz, K. G., and Sorjonen-Ward, P.: A reappraisal of low-temperature thermochronology of the eastern Fennoscandia Shield and radiation-enhanced apatite fission-track annealing, Geol. Soc. Spec. Publ., 324, 193–216, https://doi.org/10.1144/SP324.15, 2009.
Lorencak, M., Kohn, B. P., Osadetz, K. G., and Gleadow, A. J. W.: Combined apatite fission track and (U–Th) He thermochronometry in a slowly cooled terrane: results from a 3440-m-deep drill hole in the southern Canadian Shield, Earth Planet. Sc. Lett., 227, 87–104, https://doi.org/10.1016/j.epsl.2004.08.015, 2004.
Meesters, A. G. C. A. and Dunai, T. J.: Solving the production–diffusion equation for finite diffusion domains of various shapes: Part II. Application to cases with α-ejection and nonhomogeneous distribution of the source, Chem. Geol., 186, 57–73, https://doi.org/10.1016/S0009-2541(01)00423-5, 2002a.
Meesters, A. G. C. A. and Dunai, T. J.: Solving the production–diffusion equation for finite diffusion domains of various shapes: Part I. Implications for low-temperature (U–Th) He thermochronology, Chem. Geol., 186, 333–344, https://doi.org/10.1016/S0009-2541(01)00422-3, 2002b.
Reiners, P. W. and Brandon, M. T.: Using thermochronology to understand orogenic erosion, Annu. Rev. Earth Pl. Sc., 34, 419–466, https://doi.org/10.1146/annurev.earth.34.031405.125202, 2006.
Reiners, P. W. and Farley, K. A.: Influence of crystal size on apatite (U–Th) He thermochronology: an example from the Bighorn Mountains, Wyoming, Earth Planet. Sc. Lett., 188, 413–420, https://doi.org/10.1016/S0012-821X(01)00341-7, 2001.
Ricketts, J. W., Kelley, S. A., Karlstrom, K. E.,
Schmandt, B., Donahue, M. S., and van Wijk, J.: Synchronous opening
of the Rio Grande rift along its entire length at 25–10 Ma
supported by apatite (U-Th) He and fission-track thermochronology,
and evaluation of possible driving mechanisms, Geol. Soc. Am. Bull., 128, 397–424, https://doi.org/10.1130/B31223.1, 2016.
Shuster, D. L. and Farley, K. A.: The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite, Geochim. Cosmochim. Ac., 73, 183–196, https://doi.org/10.1016/j.gca.2008.10.013, 2009.
Shuster, D. L., Flowers, R. M., and Farley, K. A.: The influence of natural radiation damage on helium diffusion kinetics in apatite, Earth Planet. Sc. Lett., 249, 148–161, https://doi.org/10.1016/j.epsl.2006.07.028, 2006.
Thomson, S. N. and Ring, U.: Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey, Tectonics, 25, TC3005, https://doi.org/10.1029/2005TC001833, 2006.
Toraman, E., Teyssier, C., Whitney, D. L., Fayon, A. K., Thomson, S. N., and Reiners, P. W.: Low-temperature thermochronologic record of Eocene migmatite dome emplacement and late Cenozoic landscape development, Shuswap core complex, British Columbia, Tectonics, 33, 1616–1635, https://doi.org/10.1002/2013TC003442, 2014.
Whipp, D. M. and Ketcham, R. A.: tcplotter: a Python package for creating and customizing thermochronometer age and closure temperature plots (v0.2.1), Zenodo [code], https://doi.org/10.5281/zenodo.6341671, 2022 (code available at: https://mybinder.org/v2/gh/HUGG/tcplotter/v0.2.1?urlpath=lab/tree/tcplotter.ipynb, last access: 9 March 2022).
Wolf, R. A., Farley, K. A., and Silver, L. T.: Helium diffusion and low-temperature thermochronometry of apatite, Geochim. Cosmochim. Ac., 60, 4231–4240, https://doi.org/10.1016/S0016-7037(96)00192-5, 1996.
Short summary
Multi-thermochronometry, in which methods such as (U-Th)/He dating of zircon and apatite and apatite fission track dating are combined, is used to reconstruct rock thermal histories. Our ability to reconstruct thermal histories and interpret the geological significance of measured ages requires modeling. Here we use forward models to explore effects of grain size and chemistry on cooling ages and closure temperatures for the (U-Th)/He decay systems in apatite and zircon.
Multi-thermochronometry, in which methods such as (U-Th)/He dating of zircon and apatite and...