Articles | Volume 4, issue 1
Geochronology, 4, 143–152, 2022
https://doi.org/10.5194/gchron-4-143-2022
Geochronology, 4, 143–152, 2022
https://doi.org/10.5194/gchron-4-143-2022
Short communication/technical note
22 Mar 2022
Short communication/technical note | 22 Mar 2022

Short communication: Modeling competing effects of cooling rate, grain size, and radiation damage in low-temperature thermochronometers

David M. Whipp et al.

Related authors

The influence of upper-plate advance and erosion on overriding plate deformation in orogen syntaxes
Matthias Nettesheim, Todd A. Ehlers, David M. Whipp, and Alexander Koptev
Solid Earth, 9, 1207–1224, https://doi.org/10.5194/se-9-1207-2018,https://doi.org/10.5194/se-9-1207-2018, 2018
Short summary

Related subject area

Helium diffusion systems
Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th) ∕ He age data and reproducibility
Emily H. G. Cooperdock, Richard A. Ketcham, and Daniel F. Stockli
Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019,https://doi.org/10.5194/gchron-1-17-2019, 2019
Short summary

Cited articles

Ault, A. K., Gautheron, C., and King, G. E.: Innovations in (U–Th) / He, fission track, and trapped charge thermochronometry with applications to earthquakes, weathering, surface-mantle connections, and the growth and decay of mountains, Tectonics, 38, 3705–3739, https://doi.org/10.1029/2018TC005312, 2019. 
Braun, J.: Pecube: A new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography, Comput. Geosci., 29, 787–794, https://doi.org/10.1016/S0098-3004(03)00052-9, 2003. 
Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon-Labric, T., and Prigent, C.: Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE, Tectonophysics, 524, 1–28, https://doi.org/10.1016/j.tecto.2011.12.035, 2012. 
Cherniak, D. J. and Watson, E. B., Diffusion in zircon, Rev. Mineral. Geochem., 53, 113–143, https://doi.org/10.2113/0530113, 2003. 
Cogné, N., Gallagher, K., and Cobbold, P. R.: Post-rift reactivation of the onshore margin of southeast Brazil: Evidence from apatite (U–Th) / He and fission-track data, Earth Planet. Sc. Lett., 309, 118–130, https://doi.org/10.1016/j.epsl.2011.06.025, 2011. 
Download
Short summary
Multi-thermochronometry, in which methods such as (U-Th)/He dating of zircon and apatite and apatite fission track dating are combined, is used to reconstruct rock thermal histories. Our ability to reconstruct thermal histories and interpret the geological significance of measured ages requires modeling. Here we use forward models to explore effects of grain size and chemistry on cooling ages and closure temperatures for the (U-Th)/He decay systems in apatite and zircon.