Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-251-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-251-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cyclostratigraphy of the Middle to Upper Ordovician successions of the Armorican Massif (western France) using portable X-ray fluorescence
Matthias Sinnesael
CORRESPONDING AUTHOR
Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Department of Geology, Ghent University, Krijgslaan 281/S9, 9000 Ghent, Belgium
IMCCE, CNRS, Observatoire de Paris, PSL University, Sorbonne Université, 77 Avenue Denfert-Rochereau, 75014 Paris, France
Alfredo Loi
Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Blocco A – 09042, Monserrato, Italy
Marie-Pierre Dabard
Géosciences UMR6118 CNRS/Université Rennes, Campus de Beaulieu, 35042 Rennes CEDEX, France
deceased
Thijs R. A. Vandenbroucke
Department of Geology, Ghent University, Krijgslaan 281/S9, 9000 Ghent, Belgium
Philippe Claeys
Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Related authors
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Matthias Sinnesael, Miroslav Zivanovic, David De Vleeschouwer, Philippe Claeys, and Johan Schoukens
Geosci. Model Dev., 9, 3517–3531, https://doi.org/10.5194/gmd-9-3517-2016, https://doi.org/10.5194/gmd-9-3517-2016, 2016
Short summary
Short summary
Classical spectral analysis often relies on methods based on (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This drawback is circumvented by using a polynomial approach (ACE v.1 model) to estimate instantaneous amplitude and frequency in orbital components. The model is illustrated and validated using a synthetic insolation signal and tested on two case studies: a benthic δ18O record and a magnetic susceptibility record.
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
Morgane Philippe, Jean-Louis Tison, Karen Fjøsne, Bryn Hubbard, Helle A. Kjær, Jan T. M. Lenaerts, Reinhard Drews, Simon G. Sheldon, Kevin De Bondt, Philippe Claeys, and Frank Pattyn
The Cryosphere, 10, 2501–2516, https://doi.org/10.5194/tc-10-2501-2016, https://doi.org/10.5194/tc-10-2501-2016, 2016
Short summary
Short summary
The reconstruction of past snow accumulation rates is crucial in the context of recent climate change and sea level rise. We measured ~ 250 years of snow accumulation using a 120 m ice core drilled in coastal East Antarctica, where such long records are very scarce. This study is the first to show an increase in snow accumulation, beginning in the 20th and particularly marked in the last 50 years, thereby confirming model predictions of increased snowfall associated with climate change.
Sietske J. Batenburg, David De Vleeschouwer, Mario Sprovieri, Frederik J. Hilgen, Andrew S. Gale, Brad S. Singer, Christian Koeberl, Rodolfo Coccioni, Philippe Claeys, and Alessandro Montanari
Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, https://doi.org/10.5194/cp-12-1995-2016, 2016
Short summary
Short summary
The relative contributions of astronomical forcing and tectonics to ocean anoxia in the Cretaceous are unclear. This study establishes the pacing of Late Cretaceous black cherts and shales. We present a 6-million-year astrochronology from the Furlo and Bottaccione sections in Italy that spans the Cenomanian–Turonian transition and OAE2. Together with a new radioisotopic age for the mid-Cenomanian event, we show that astronomical forcing determined the timing of these carbon cycle perturbations.
Matthias Sinnesael, Miroslav Zivanovic, David De Vleeschouwer, Philippe Claeys, and Johan Schoukens
Geosci. Model Dev., 9, 3517–3531, https://doi.org/10.5194/gmd-9-3517-2016, https://doi.org/10.5194/gmd-9-3517-2016, 2016
Short summary
Short summary
Classical spectral analysis often relies on methods based on (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This drawback is circumvented by using a polynomial approach (ACE v.1 model) to estimate instantaneous amplitude and frequency in orbital components. The model is illustrated and validated using a synthetic insolation signal and tested on two case studies: a benthic δ18O record and a magnetic susceptibility record.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
C. Nehme, S. Verheyden, S. R. Noble, A. R. Farrant, D. Sahy, J. Hellstrom, J. J. Delannoy, and P. Claeys
Clim. Past, 11, 1785–1799, https://doi.org/10.5194/cp-11-1785-2015, https://doi.org/10.5194/cp-11-1785-2015, 2015
Short summary
Short summary
The Levant is a key area to study palaeoclimatic responses over G-IG cycles. A precisely dated MIS 5 stalagmite (129–84ka) from Kanaan Cave, Lebanon, with growth rate and isotopic records variations indicate a warm humid phase at the last interglacial (~129-125ka). A shift in δ18O values (125-122ka) is driven by the source effect of the eastern Med. during sapropel 5 (S5). Low growth rates and high δ18O-δ13C values (~122-84ka) mark the onset of glacial inception and transition to drier phase.
M. Van Rampelbergh, S. Verheyden, M. Allan, Y. Quinif, H. Cheng, L. R. Edwards, E. Keppens, and P. Claeys
Clim. Past, 11, 789–802, https://doi.org/10.5194/cp-11-789-2015, https://doi.org/10.5194/cp-11-789-2015, 2015
M. Van Rampelbergh, S. Verheyden, M Allan, Y. Quinif, E. Keppens, and P. Claeys
Clim. Past, 10, 1871–1885, https://doi.org/10.5194/cp-10-1871-2014, https://doi.org/10.5194/cp-10-1871-2014, 2014
Thijs R. A. Vandenbroucke, Sarah E. Gabbott, Florentin Paris, Richard J. Aldridge, and Johannes N. Theron
J. Micropalaeontol., 28, 53–66, https://doi.org/10.1144/jm.28.1.53, https://doi.org/10.1144/jm.28.1.53, 2009
Related subject area
Stratigraphic/cyclostratigraphic
Evaluating manual versus automated benthic foraminiferal δ18O alignment techniques for developing chronostratigraphies in marine sediment records
Bayesian integration of astrochronology and radioisotope geochronology
A Bayesian approach to integrating radiometric dating and varve measurements in intermittently indistinct sediment
Jennifer L. Middleton, Julia Gottschalk, Gisela Winckler, Jean Hanley, Carol Knudson, Jesse R. Farmer, Frank Lamy, Lorraine E. Lisiecki, and Expedition 383 Scientists
Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, https://doi.org/10.5194/gchron-6-125-2024, 2024
Short summary
Short summary
We present oxygen isotope data for a new sediment core from the South Pacific and assign ages to our record by aligning distinct patterns in observed oxygen isotope changes to independently dated target records with the same patterns. We examine the age uncertainties associated with this approach caused by human vs. automated alignment and the sensitivity of outcomes to the choice of alignment target. These efforts help us understand the timing of past climate changes.
Robin B. Trayler, Stephen R. Meyers, Bradley B. Sageman, and Mark D. Schmitz
Geochronology, 6, 107–123, https://doi.org/10.5194/gchron-6-107-2024, https://doi.org/10.5194/gchron-6-107-2024, 2024
Short summary
Short summary
Developing models that relate stratigraphic position to time are important because they allow the rock record to be understood in terms of absolute time, allowing global comparisons. We developed a novel method for developing these models (called age–depth models) that uses two different types of chronologic information, dated rocks, and records of variations in the Earth's orbit (astrochronology). The resulting models are very precise, which can improve understanding of past climates.
Stephanie H. Arcusa, Nicholas P. McKay, Charlotte Wiman, Sela Patterson, Samuel E. Munoz, and Marco A. Aquino-López
Geochronology, 4, 409–433, https://doi.org/10.5194/gchron-4-409-2022, https://doi.org/10.5194/gchron-4-409-2022, 2022
Short summary
Short summary
Annually banded lake sediment can track environmental change with high resolution in locations where alternatives are not available. Yet, information about chronology is often affected by poor appearance. Traditional methods struggle with these records. To overcome this obstacle we demonstrate a Bayesian approach that combines information from radiocarbon dating and laminations on cores from Columbine Lake, Colorado, expanding possibilities for producing high-resolution records globally.
Cited articles
Adams, J. A. S. and Weaver, C. E.: Thorium-to-Uranium ratios as indicators of sedimentary processes: example of concept of geochemical facies, Am. Assoc. Petr. Geol. B., 42, 387–430, https://doi.org/10.1306/0BDA5A89-16BD-11D7-8645000102C1865D, 1958.
Beckhoff, B., Kanngiesser, B., Langhoff, N., Wedell, R., and Wolff, H. (Eds.): Handbook of Practical X-Ray Fluorescence Analysis, Springer, Berlin, New York, https://doi.org/10.1007/978-3-540-36722-2, 2006.
Berger, A. and Loutre, M. F.: Astronomical forcing through geological time, in: Orbital Forcing and Cyclic Sequences, edited by: DeBoer, P. L. and Smith, D. G., Int. As. Sed., 15–24, https://doi.org/10.1002/9781444304039.ch2, 1994.
Botquelen, A., Loi, A., Gourvennec, R., Leone, F., and Dabard, M.-P.: Formation et signification paléo-environnementale des concentrations coquillières: exemples de l'Ordovicien de Sardaigne et du Dévonien du Massif armoricain, C. R. Palevol., 3, 353–360, https://doi.org/10.1016/j.crpv.2004.06.003, 2004.
Botquelen, A., Gourvennec, R., Loi, A., Pillola, G. L., and Leone, F.: Replacements of benthic associations in a sequence stratigraphic framework, examples from the Upper Ordovician of Sardinia and Lower Devonian of the Massif Armoricain, Palaeogeogr. Palaeocl., 239, 286–310, https://doi.org/10.1016/j.palaeo.2006.01.016, 2006.
Catuneanu, O., Abreu, V., Bhattachary, J. P., Blum, M., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. S. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamentier, H. W., Pratt, B. R., Sarg, J. F., Shanley, K. W., Steel, R. J., Strasser, A., Tucker, M. E., and Winker, C.: Towards the standardization of sequence stratigraphy, Earth-Sci. Rev., 92, 1–33, https://doi.org/10.1016/j.earscirev.2008.10.003, 2009.
Cohen, K. M., Finney, S. M., Gibbard, P. L., and Fan, J.-X.: The ICS International Chronostratigraphic Chart, Episodes, 36, 199–204, https://doi.org/10.18814/epiiugs/2013/v36i3/002, 2013.
Cooper, R. A. and Sadler, P. M.: The Ordovician Period, in: The Geologic Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, 489–523, https://doi.org/10.1016/B978-0-444-59425-9.00020-2, 2012.
Cramer, B. D., Vandenbroucke, T. R. A., and Ludvigson, G. A.: High-Resolution Event Stratigraphy (HiRES) and the quantification of stratigraphic uncertainty: Silurian examples of the quest for precision in stratigraphy, Earth-Sci. Rev., 141, 136–153, https://doi.org/10.1016/j.earscirev.2014.11.011, 2015.
Dabard, M.-P. and Loi, A.: Environmental control on concretion-forming processes: Examples from Paleozoic terrigenous sediments of the North Gondwana margin, Armorican Massif (Middle Ordovician and Middle Devonian) and SW Sardinia (Late Ordovician), Sediment. Geol., 267–268, 93–103, https://doi.org/10.1016/j.sedgeo.2012.05.013, 2012.
Dabard, M.-P., Loi, A., and Paris, F.: Relationship between phosphogenesis and sequence architecture: Sequence stratigraphy and biostratigraphy in the Middle Ordovician of the Armorican Massif (NW France), Palaeogeogr. Palaeocl., 248, 339–356, https://doi.org/10.1016/j.palaeo.2006.12.011, 2007.
Dabard, M.-P., Loi, A., Paris, F., Ghienne, J. F., Pistis, M., and Vidal, M.: Sea-level curve for the Middle to early Late Ordovician in the Armorican Massif (western France): Icehouse third-order glacio-eustatic cycles, Palaeogeogr. Palaeocl., 436, 96–111, https://doi.org/10.1016/j.palaeo.2015.06.038, 2015.
de Winter, N. J., Sinnesael, M., Makarona, C., Vansteenberge, S., and Claeys, P.: Trace element analyses of carbonates using portable and micro-X-ray fluorescence: Performance and optimization of measurement parameters and strategies, J. Anal. Atom. Spectrom., 32, 1211–1223, https://doi.org/10.1039/C6JA00361C, 2017.
Elrick, M., Reardon, D., Labor, W., Martin, J., Desrochers, A., and Pope, M.: Orbital-scale climate change and glacioeustasy during the early Late Ordovician (pre-Hirnantian) determined from δ18O values in marine apatite, Geology, 41, 775–778, https://doi.org/10.1130/G34363.1, 2013.
Gambacorta, G., Menichetti, E., Trincianti, E., and Torricelli, S.: Orbital control on cyclical primary productivity and benthic anoxia: Astronomical tuning of the Telychian Stage (Early Silurian), Palaeogeogr. Palaeocl., 495, 152–162, https://doi.org/10.1016/j.palaeo.2018.01.003, 2018.
Ghienne, J.-F., Desrochers, A., Vandenbroucke, T. R. A., Achab, A., Asselin, E., Dabard, M.-P., Farley, C., Loi, A., Paris, F., Wickson, S., and Veizer, J.: A Cenozoic-style scenario for the end-Ordovician glaciation, Nat. Commun., 5, 4485, https://doi.org/10.1038/ncomms5485, 2014.
Ghobadi Pour, M., Popov, L., and Cherns, L.: Climatic changes and astrochronology: an Ordovician perspective, Journal of Climate Change Research, 1, 89–109, https://doi.org/10.30488/CCR.2020.255527.1030, 2020.
Goldman, D., Sadler, P. M., Leslie, S. A., Melchin, M. J., Agterberg, F. P., and Gradstein, F. M.: The Ordovician Period, in: The Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, 631–694, https://doi.org/10.1016/B978-0-12-824360-2.00020-6, 2020.
Guillocheau, F.: Les dépôts de tempêtes. Le modèle de l'Ordovicien moyen ouestarmoricain, Unpublished PhD Thesis, Université de Bretagne occidentale, Brest, France, 1983.
Guillocheau, F. and Hoffert, M.: Zonation des dépôts de tempêtes en milieu de plateforme: le modèle des plates-formes nord-gondwanienne et armoricaine, CR Acad. Sci., 307, 1909–1916, 1988.
Hilgen, F. J., Hinnov, L. A., Abdul Aziz, H., Abels, H. A., Batenburg, S., Bosmans, J. H. C., de Boer, B., Hüsing, S. K., Kuiper, K. F., Lourens, L. J., Rivera, T., Tuenter, E., Van de Wal, R. S. W., Wotzlaw, J.-F., and Zeeden, C.: Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy, Geol. Soc. Spec. Publ., 404, 157–197, https://doi.org/10.1144/SP404.12, 2015.
Hinnov, L. A.: Cyclostratigraphy and Astrochronology in 2018, Chap. 1. Stratigraphy & Timescales, Elsevier, 1–80, https://doi.org/10.1016/bs.sats.2018.08.004, 2018.
Hoang, N. H., Mogaverno, F., and Laskar, J.: Chaotic diffusion of the fundamental frequencies in the Solar System, Astron. Astrophys., 654, A156, https://doi.org/10.1051/0004-6361/202140989, 2021.
Karlstrom, K. E., Mohr, M. T., Schmitz, M. D., Sundberg, F. A., Rowland, S. M., Blakey, R., Foster, J. R., Crossey, L. J., Dehler, C. M., and Hagadorn, J. W.: Redefining the Tonto Group of Grand Canyon and recalibrating the Cambrian time scale, Geology, 48, 425–430, https://doi.org/10.1130/G46755.1, 2019.
Landing, E., Schmitz, M. D., Geyer, G., Trayler, R. B., and Bowring, S. A.: Precise early Cambrian U–Pb zircon dates bracket the oldest trilobites and archaeocyaths in Moroccan West Gondwana, Geol. Mag., 158, 219–238, https://doi.org/10.1017/S0016756820000369, 2021.
Lantink, M. L., Davies, J. H. F. L., Mason, P. R. D., Schaltegger, U., and Hilgen, F. J.: Climate control on banded iron formations linked to orbital eccentricity, Nat. Geosci., 12, 369–374, https://doi.org/10.1038/s41561-019-0332-8, 2019.
Laskar, J.: A numerical experiment on the chaotic behaviour of the Solar System, Nature, 338, 237–238, https://doi.org/10.1038/338237a0, 1989.
Laskar, J.: Astrochronology, in: The Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, 139–158, https://doi.org/10.1016/C2020-1-02369-3, 2020.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levard, B.: A longterm numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Liao, S., Huyskens, M. H., Yin, Q.-Z., and Schmitz, B.: Absolute dating of the L-chondrite parent body breakup with high-precision U–Pb zircon geochronology from Ordovician limestone, Earth Planet. Sc. Lett., 547, 116442, https://doi.org/10.1016/j.epsl.2020.116442, 2020.
Lindskog, A., Costa, M. M., Rasmussen, C. M. Ø., Connelly, J. N., and Eriksson, M. E.: Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification, Nat. Commun., 8, 14066, https://doi.org/10.1038/ncomms14066, 2017.
Loi, A. and Dabard, M.-P.: Stratigraphic significance of siliceous-argillaceous nodules in Ordovician formations of the Armorican Massif (France) and Sardinia (Italy), Acta Univ. Carol. Geol. 43, 89–92, 1999.
Loi, A. and Dabard, M.-P.,: Controls of sea level fluctuations on the formation of Ordovician siliceous nodules in terrigenous offshore environments, Sediment. Geol., 153, 65–84, https://doi.org/10.1016/S0037-0738(02)00102-1, 2002.
Loi, A., Dabard, M.-P., Chauvel, J. J., Le Hérissé, A., Pleiber, G., and Cotten, J.: Siliceous-aluminous nodules: a result of the sedimentary condensation on a distal platform, CR Acad. Sci. II A, 328, 599–605, 1999.
Loi, A., Ghienne, J. F., Dabard, M.-P., Paris, F., Botquelen, A., Christ, N., Elaouas-Debbaj, Z., Gorini, A., Vidal, M., Videt, B., and Destombes, J.: The Late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession: The Bou Ingarf section (Anti-Atlas, Southern Morocco), Palaeogeogr. Palaeocl., 296, 332–358, https://doi.org/10.1016/j.palaeo.2010.01.018, 2010.
Long, D. F. G.: Tempestite frequency curves: a key to Late Ordovician and Early Silurian subsidence, sea-level change, and orbital forcing in the Anticosti foreland basin, Quebec, Canada, Can. J. Earth Sci., 44, 413–431, https://doi.org/10.1139/e06-099, 2007.
Martinez, M., Kotov, S., De Vleeschouwer, D., Pas, D., and Pälike, H.: Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series, Clim. Past, 12, 1765–1783, https://doi.org/10.5194/cp-12-1765-2016, 2016.
Meyers, S. R.: Astrochron: An R Package for Astrochronology, http://cran.r-project.org/package=astrochron (last access: November 2021), 2014.
Meyers, S. R.: The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization, Paleoceanography, 30, 1625–1640, https://doi.org/10.1002/2015PA002850, 2015.
Meyers, S. R.: Cyclostratigraphy and the problem of astrochronologic testing, Earth-Sci. Rev., 190, 190–223, https://doi.org/10.1016/j.earscirev.2018.11.015, 2019.
Montanez, I. P.: Current synthesis of the penultimate icehouse and its imprint on the Upper Devonian through Permian stratigraphic record, Geol. Soc. Spec. Publ., 512, 213–245, https://doi.org/10.1144/SP512-2021-124, 2021.
Noorbergen, L. J., Abels, H. A., Hilgen, F. J., Robson, B. E., De Jong, E., Dekkers, M. J., Krijgsman, W., Smit, J., Collinson, M. E., and Kuiper, K. F.: Conceptual models for short-eccentricity-scale climate control on peat formation in a lower Palaeocene fluvial system, north-eastern Montana (USA), Sedimentology, 65, 775–808, https://doi.org/10.1111/sed.12405, 2018.
Olsen, P. E., Laskar, J., Kent, D. V., Kinney, S. T., Reynols, D. J., Sha, J., and Whiteside, J. H.: Mapping Solar System chaos with the Geological Orrery, P. Natl. Acad. Sci. USA, 116, 10664–10673, https://doi.org/10.1073/pnas.1813901116, 2019.
Paris, F.: Les Chitinozoaires dans le Paléozoïque du Sud-Ouest de l'Europe (Cadre géologique – Etude systématique – Biostratigraphie), Mém. Soc. Géol. Minéral. Bretagne 26, 412 pp., https://gallica.bnf.fr/ark:/12148/bpt6k9687188b/f9.item (last access: 5 April 2022), 1981.
Paris, F.: The Ordovician chinitizoan biozones of the Northern Gondwana domain, Rev. Palaeobot. Palyno., 66, 181–209, https://doi.org/10.1016/0034-6667(90)90038-K, 1990.
Paris, F., Robardet, M., Dabard, M.-P., Feist, R., Ghienne, J.-F., Guillocheau, F., LE Hérissé, A., Loi, A., Mélou, M., Servais, T., Shergold, J., Vidal, M., and Vizcaïno, D.: Ordovician sedimentary rocks of France, Acta Univ. Carol. Geol., 43, 85–88, 1999.
Pistis, M., Loi, A., Dabard, M.-P., Melis, E., and Leone, F.: Stacking Pattern and composition of shelf deposits: Heavy minerals enrichment (placers) of the Ordovician of Sardinia and Brittany – Relazione tra architettura deposizionale e composizione nei depositi di piattaforma terrigena: Gli accumuli a minerali pesanti (placers) dell'Ordoviciano della Sardegna e della Bretagna, Rend. Online Soc. Geol. Ital., 3, 643–644, 2008.
Pistis, M., Loi, A., and Dabard, M.-P.: Influence of relative sea-level variations on the genesis of palaeoplacers, the examples of the Sarrabus (Sardinia, Italy) and the Armorican Massif (Western France), C. R. Geosci., 348, 150–157, https://doi.org/10.1016/j.crte.2015.09.006, 2016.
Pistis, M., Loi, A., and Dabard, M.-P.: Gamma-ray facies in marine palaeoplacer deposits on the Punta Serpeddi Formation (Ordovician of SE Sardinia, Italy), Journal of Mediterranean Earth Sciences, 10, 155–158, https://doi.org/10.3304/JMES.2018.007, 2018.
Pohl, A., Donnadieu, Y., Le Hir, G., Ladant, J., Dumas, C., Alvarez-Solas, J., and Vandenbroucke, T. R. A.: Glacial onset predated Late Ordovician climate cooling, Paleoceanography, 31, 800–821, https://doi.org/10.1002/2016PA002928, 2016.
R Core Team: R: A Language and Environment for Statistical Computing: Vienna, R Foundation for Statistical Computing, http://www.r-project.org (last access: 5 April 2022), 2021.
Rasmussen, C. M. Ø., Ullmann, C. V., Jakobsen, K. G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M. E., Dronov, A., Frei, R., Korte, C., Nielsen, A. T., and Harper, D. A. T.: Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse, Sci. Rep.-UK, 6, 18884, https://doi.org/10.1038/srep18884, 2016.
Sherman, J.: The theoretical derivation of fluorescent X-ray intensities from mixtures, Spectrochim. Acta, 7, 283–306, https://doi.org/10.1016/0371-1951(55)80041-0, 1956.
Sinnesael, M., de Winter, N., Snoeck, C., Montanari, A., and Claeys, P.: An integrated pelagic carbonate multi-proxy study using portable X-ray fluorescence (pXRF): Maastrichtian strata from the Bottaccione Gorge, Gubbio, Italy, Cretaceous Res., 91, 20–32, https://doi.org/10.1016/j.cretres.2018.04.010, 2018a.
Sinnesael, M., Zivanovic, M., De Vleeschouwer, D., and Claeys, P.: Spectral moments in cyclostratigraphy: Advantages and disadvantages compared to more classic approaches, Paleoceanography and Paleoclimatology, 33, 493–510, https://doi.org/10.1029/2017PA003293, 2018b.
Sinnesael, M., De Vleeschouwer, D., Zeeden, C., Batenburg, S. J., Da Silva, A.-C., de Winter, N. J., Dinarès-Turell, J., Drury, A. J., Gambacorta, G., Hilgen, F., Hinnov, L., Hudson, A. J. L., Kemp, D. B., Lantink, M., Laurin, J., Li, M., Liebrand, D., Ma, C., Meyers, S., Monkenbusch, J., Montanari, A., Nohl, T., Pälike, H., Pas, D., Ruhl, M., Thibault, N., Vahlenkamp, M., Valero, L., Wouters, S., Wu, H., and Claeys, P.: The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls, Earth-Sci. Rev., 199, 102965, https://doi.org/10.1016/j.earscirev.2019.102965, 2019.
Sinnesael, M., McLaughlin, P. I., Desrochers, A., Mauviel, A., De Weirdt, J., Claeys, P., and Vandenbroucke, T. R. A.: Precession-driven climate cycles and time scale prior to the Hirnantian glacial maximum, Geology, 49, 1295–1300, https://doi.org/10.1130/G49083.1, 2021.
Sutcliffe, O. E., Dowdeswell, J. A., Whittington, R. J., Theron, J. N., and Craig J.: Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth's orbit, Geology, 28, 967–970, https://doi.org/10.1130/0091-7613(2000)28<967:CTLOGA>2.0.CO;2, 2000.
Thomson, D. J.: Spectrum estimation and harmonic analysis, P. IEEE, 70, 1055–1096, https://doi.org/10.1109/PROC.1982.12433, 1982.
Triantafyllou, A., Mattielli, N., Clerbois, S., Da Silva, A. C., Kaskes, P., Claeys, P., Devleeschouwer, X., and Brkojewitsch, G.: Optimizing multiple non-invasive techniques (PXRF, pMS, IA) to characterize coarse-grained igneous rocks used as building stones, J. Archaeol. Sci., 129, 105376, https://doi.org/10.1016/j.jas.2021.105376, 2021.
Turner, B. R., Armstrong, H. A., Wilson, C. R., and Makhlouf, I. M.: High frequency eustatic sea-level changes during the Middle to early Late Ordovician of southern Jordan: Indirect evidence for a Darriwilian Ice Age in Gondwana, Sediment. Geol., 251–252, 34–48, https://doi.org/10.1016/j.sedgeo.2012.01.002, 2012.
Vandenbroucke, T. R. A., Armstrong, H. A., Williams, M., Paris, F., Zalasiewicz, J. A., Sabbe, K., Nõlvak, J., Challands, T. J., Verniers, J., and Servais, T.: Polar front shift and atmospheric CO2 during the glacial maximum of the early Paleozoic icehouse, P. Natl. Acad. Sci. USA, 107, 14983–14986, https://doi.org/10.1073/pnas.1003220107, 2010.
Vaucher, R., Dashtgard, S. E., Horng, C. S., Zeeden, C., Dillinger, A., Pan, Y. Y., Setiaji, R. A., Chi, W. R., and Löwemark, L.: Insolation-paced sea level and sediment flux during the early Pleistocene in Southeast Asia, Sci. Rep.-UK, 11, 16707, https://doi.org/10.1038/s41598-021-96372-x, 2021.
Vidal, M., Dabard, M.-P., Gourvennec, R., Le Hérissé, A, Loi, A., Paris, F., Plusquellec, Y., and Racheboeuf, P. R.: The Paleozoic formations from the Crozon Peninsula (Brittany, France) – Le Paléozoïque de la presqu'île de Crozon, Massif armoricain (France), Géologie de la france, no. 1, 2011, 3–45, http://geolfrance.brgm.fr/paleozoique-presquile-crozon-massif-armoricain-france (last access: 5 April 2022), 2011a.
Vidal, M., Loi, A., Dabard, M.-P., and Botquelen, A.: A Palaeozoic open shelf benthic assemblage in a protected marine environment, Palaeogeogr. Palaeocl., 306, 27–40, https://doi.org/10.1016/j.palaeo.2011.03.025, 2011b.
Waltham, D.: Milankovitch Period Uncertainties and Their Impact On Cyclostratigraphy, J. Sediment. Res., 85, 990–998, https://doi.org/10.2110/jsr.2015.66, 2015.
Weedon, G. P.: Time-Series Analysis and Cyclostratigraphy; Examining Stratigraphic Records of Environmental Cycles, Cambridge University Press, Cambridge, UK, ISBN 0521620015, 2003.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Zeeden, C., Hilgen, F., Westerhold, T., Lourens, L., Röhl, U., and Bickert, T.: Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926 between 5 and 14.4 Ma, Palaeogeogr. Palaeocl., 369, 430–451, https://doi.org/10.1016/j.palaeo.2012.11.009, 2013.
Zhong, Y., Wu, H., Zhang, Y., Zhang, S., Yang, T., Li, H., and Cao, L.: Astronomical calibration of the Middle Ordovician of the Yangtze Block, South China, Palaeogeogr. Palaeocl., 505, 86–99, https://doi.org/10.1016/j.palaeo.2018.05.030, 2018.
Short summary
We used new geochemical measurements to study the expression of astronomical climate cycles recorded in the Ordovician (~ 460 million years ago) geological sections of the Crozon Peninsula (France). This type of geological archive is not often studied in this way, but as they become more important going back in time, a better understanding of their potential astronomical cycles is crucial to advance our knowledge of deep-time climate dynamics and to construct high-resolution timescales.
We used new geochemical measurements to study the expression of astronomical climate cycles...