Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-33-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-33-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A simplified isotope dilution approach for the U–Pb dating of speleogenic and other low-232Th carbonates by multi-collector ICP-MS
Andrew J. Mason
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Oxford, South Parks Road,
Oxford, OX1 3AN, United Kingdom
Anton Vaks
Department of Earth Sciences, University of Oxford, South Parks Road,
Oxford, OX1 3AN, United Kingdom
present address: Geological Survey of Israel, 32 Yeshayahu
Leibowitz Street, 9692100 Jerusalem, Israel
Sebastian F. M. Breitenbach
Department of Geography and Environmental Sciences, Northumbria
University, Ellison Place, Newcastle upon Tyne, NE1 8ST, United Kingdom
John N. Hooker
Department of Earth Sciences, University of Oxford, South Parks Road,
Oxford, OX1 3AN, United Kingdom
present address: School of Mathematics, Science and Engineering, University of the Incarnate Word, 4301 Broadway, San Antonio, Texas 78209, USA
Gideon M. Henderson
Department of Earth Sciences, University of Oxford, South Parks Road,
Oxford, OX1 3AN, United Kingdom
Related authors
No articles found.
Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, and Sebastian F. M. Breitenbach
Clim. Past, 21, 1533–1551, https://doi.org/10.5194/cp-21-1533-2025, https://doi.org/10.5194/cp-21-1533-2025, 2025
Short summary
Short summary
We use cave rocks to reconstruct northern Siberian climate in 8.68 ± 0.09 Ma. We show that when the global average temperature was about 4.5 °C warmer than today (similar to what is expected in the coming decades should carbon emissions continue unabated), the Siberian Arctic temperature increased by more than 18 °C.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025, https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Short summary
Geochronological, cryolithological, paleoecological, and modeling data reconstruct the Last Interglacial (LIG) climate around the New Siberian Islands and reveal significantly warmer conditions compared to today. The critical challenges in predicting future ecosystem responses lie in the fact that the land–ocean distribution during the LIG was markedly different from today, affecting the degree of continentality, which played a major role in modulating climate and ecosystem dynamics.
Jade Margerum, Julia Homann, Stuart Umbo, Gernot Nehrke, Thorsten Hoffmann, Anton Vaks, Aleksandr Kononov, Alexander Osintsev, Alena Giesche, Andrew Mason, Franziska A. Lechleitner, Gideon M. Henderson, Ola Kwiecien, and Sebastian F. M. Breitenbach
Clim. Past, 21, 661–677, https://doi.org/10.5194/cp-21-661-2025, https://doi.org/10.5194/cp-21-661-2025, 2025
Short summary
Short summary
We analyse a southern Siberian stalagmite to reconstruct soil respiration, wildfire, and vegetation trends during the Last Interglacial (LIG) (124.1–118.8 ka) and the Holocene (10–0 ka). Wildfires were more prevalent during the LIG than the Holocene and were supported by fire-prone species, low soil respiration, and a greater difference between summer and winter temperature. We show that vegetation type and summer/winter temperature contrast are strong drivers of Siberian wildfires.
Pieter Vermeesch, Noah McLean, Anton Vaks, Tzahi Golan, Sebastian F. M. Breitenbach, and Randall Parris
EGUsphere, https://doi.org/10.5194/egusphere-2025-432, https://doi.org/10.5194/egusphere-2025-432, 2025
Short summary
Short summary
U-Pb dating of cave sediments has provided important new time constraints on the evolution of cave-dwelling organisms (including early humans), and of Earth's climate during the past 5 million years. This paper shows that the most common type of U-Pb dating, which uses 238U and 206Pb, can be inaccurate beyond 2 million years ago. It proposes an alternative type of U-Pb dating, using 235U and 207Pb, as a more accurate alternative.
Sina Panitz, Michael Rogerson, Jack Longman, Nick Scroxton, Tim J. Lawson, Tim C. Atkinson, Vasile Ersek, James Baldini, Lisa Baldini, Stuart Umbo, Mahjoor A. Lone, Gideon M. Henderson, and Sebastian F. M. Breitenbach
Clim. Past, 21, 261–278, https://doi.org/10.5194/cp-21-261-2025, https://doi.org/10.5194/cp-21-261-2025, 2025
Short summary
Short summary
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this study, we use speleothems (cave deposits, e.g. stalagmites) in the British Isles to help constrain the extent of past glaciations in both time and space. Speleothems require liquid water to grow, and therefore their presence indicates the absence of ice above the cave. By dating these speleothems, we can improve existing reconstructions of past ice sheets.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Perach Nuriel, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Anton Vaks, Ciprian Stremtan, Martin Šala, Nick M. W. Roberts, and Andrew R. C. Kylander-Clark
Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, https://doi.org/10.5194/gchron-3-35-2021, 2021
Short summary
Short summary
This contribution presents a new reference material, ASH-15 flowstone with an age of 2.965 ± 0.011 Ma (95 % CI), to be used for in situ U–Pb dating of carbonate material. The new age analyses include the use of the EARTHTIME isotopic tracers and a large number of sub-samples (n = 37) with small aliquots (1–7 mg) each that are more representative of laser-ablation spot analysis. The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Cited articles
Bajo, P., Drysdale, R., Woodhead, J., Hellstrom, J., and Zanchetta, G.:
High-resolution U-Pb dating of an Early Pleistocene stalagmite from Corchia
Cave (central Italy), Quat. Geochronol., 14, 5–17,
https://doi.org/10.1016/j.quageo.2012.10.005, 2012.
Belshaw, N. S., Freedman, P. A., O'Nions, R. K., Frank, M., and Guo, Y.: A
new variable dispersion double-focusing plasma mass spectrometer with
performance illustrated for Pb isotopes, Int. J. Mass Spectrom., 181,
51–58, https://doi.org/10.1016/S1387-3806(98)14150-7, 1998.
Cheng, H., Edwards, R. L., Murrell, M. T., and Benjamin, T. M.:
Uranium-thorium-protactinium dating systematics, Geochim. Cosmochim. Ac.,
62, 3437–3452, https://doi.org/10.1016/S0016-7037(98)00255-5, 1998.
Cheng, H., Lawrence Edwards, R., Shen, C. C., Polyak, V. J., Asmerom, Y.,
Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and
Calvin Alexander, E.: Improvements in 230Th dating, 230Th and
234U half-life values, and U-Th isotopic measurements by
multi-collector inductively coupled plasma mass spectrometry, Earth Planet.
Sc. Lett., 371–372, 82–91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
Cliff, R. A., Spötl, C., and Mangini, A.: U-Pb dating of speleothems from
Spannagel Cave, Austrian Alps: A high resolution comparison with U-series
ages, Quat. Geochronol., 5, 452–458, https://doi.org/10.1016/j.quageo.2009.12.002,
2010.
Edwards, R. L., Gallup, C. D., and Cheng, H.: Uranium-series Dating of Marine
and Lacustrine Carbonates, Rev. Mineral. Geochem., 52, 363–405,
https://doi.org/10.2113/0520363, 2003.
Faure, G.: Principles of Isotope Geology, John Wiley & Sons, New York,
1986.
Getty, S. R., Asmerom, Y., Quinn, T. M., and Budd, A. F.: Accelerated
Pleistocene coral extinctions in the Caribbean Basin shown by uranium-lead
(U-Pb) dating, Geology, 29, 639–642,
https://doi.org/10.1130/0091-7613(2001)029<0639:APCEIT>2.0.CO;2,
2001.
Heaman, L. and Parrish, R.: U-Pb Geochrononology of Accessory Minerals, in:
Short course Handbook on Applications of Radiogenic Isotope Systems to
Problems in Geology, edited by: Heaman, L. and Ludden, J. N.,
Mineralogical Association of Canada, 59–102, 1991.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.:
Systematics in Terrestrial Uranium-Bearing Minerals, Science, 335,
1610LP–1614, https://doi.org/10.1126/science.1215507, 2012.
Kronfeld, J., Vogel, J. C., and Talma, A. S.: A new explanation for extreme
disequilibria in a dolomitic aquifer, Earth Planet. Sc.
Lett., 123, 81–93, https://doi.org/10.1016/0012-821X(94)90259-3, 1994.
Li, Q., Parrish, R. R., Horstwood, M. S. A., and Mcarthur, J. M.: U–Pb
dating of cements in Mesozoic ammonites, Chem. Geol., 376, 76–83,
https://doi.org/10.1016/j.chemgeo.2014.03.020, 2014.
Lin, Y., Jochum, K. P., Scholz, D., Hoffmann, D. L., Stoll, B., Weis, U., and
Andreae, M. O.: In-situ high spatial resolution LA-MC-ICPMS 230Th/U
dating enables detection of small-scale age inversions in speleothems, Solid
Earth Sci., 2, 1–9, https://doi.org/10.1016/j.sesci.2016.12.003, 2017.
Ludwig, K. R.: Effect of initial radioactive-daughter disequilibrium on U-Pb
isotope apparent ages of young minerals, J. Res., 5, 663–667, 1977.
Ludwig, K. R.: On the treatment of concordant uranium-lead ages, Geochim.
Cosmochim. Acta, 62, 665–676, https://doi.org/10.1016/S0016-7037(98)00059-3, 1998.
Mason, A. J. and Henderson, G. M.: Correction of multi-collector-ICP-MS
instrumental biases in high-precision uranium-thorium chronology, Int. J.
Mass Spectrom., 295, 26–35, https://doi.org/10.1016/j.ijms.2010.06.016, 2010.
Mason, A. J., Henderson, G. M. and Vaks, A.: An acetic acid-based extraction
protocol for the recovery of U, Th and Pb from calcium carbonates for
U-(Th)-Pb geochronology, Geostand. Geoanal. Res., 37, 261–275,
https://doi.org/10.1111/j.1751-908X.2013.00219.x, 2013.
Moorbath, S., Taylor, P. N., Orpen, J. L., Treloar, P., and Wilson, J. F.:
First direct radiometric dating of Archaean stromatolitic limestone, Nature,
326, 865–867, https://doi.org/10.1038/326865a0, 1987.
Nuriel, P., Rosenbaum, G., Zhao, J.-X., Feng, Y., Golding, S. D., Villemant,
B., and Weinberger, R.: U-Th dating of striated fault planes, Geology, 40,
647–650, https://doi.org/10.1130/G32970.1, 2012.
Pickering, R., Kramers, J. D., Partridge, T., Kodolanyi, J., and Pettke, T.:
Quaternary Geochronology U – Pb dating of calcite – aragonite layers in
speleothems from hominin sites in South Africa by MC-ICP-MS, Quat.
Geochronol., 5, 544–558, https://doi.org/10.1016/j.quageo.2009.12.004, 2010.
Plagnes, V., Causse, C., Genty, D., Paterne, M., and Blamart, D.: A
discontinuous climatic record from 187 to 74 ka from a speleothem of the
Clamouse Cave (south of France), Earth Planet. Sc. Lett., 201, 87–103,
https://doi.org/10.1016/S0012-821X(02)00674-X, 2002.
Rasbury, E. T. and Cole, J. M.: Directly dating geologic events: U-Pb dating
of carbonates, Rev. Geophys., 47, 1–27,
https://doi.org/10.1029/2007RG000246, 2009.
Rasbury, E. T., Hanson, G. N., Meyers, W. J., and Saller, A. H.: Dating of
the time of sedimentation using U-Pb ages for paleosol calcite, Geochim.
Cosmochim. Ac., 61, 1525–1529,
https://doi.org/10.1016/S0016-7037(97)00043-4, 1997.
Richards, D. A., Bottrell, S. H., Cliff, R. A., Ströhle, K., and Rowe, P.
J.: U-Pb dating of a speleothem of Quaternary age, Geochim. Cosmochim. Ac.,
62, 3683–3688, https://doi.org/10.1016/S0016-7037(98)00256-7, 1998.
Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood,
M. S. A., and Condon, D. J.: A calcite reference material for LA-ICP-MS U-Pb
geochronology, Geochem. Geophy. Geosy., 18, 2807–2814,
https://doi.org/10.1002/2016GC006784, 2017.
Scholz, D. and Hoffmann, D.: 230Th/U-dating of fossil corals and speleothems, E&G Quaternary Sci. J., 57, 52–76, https://doi.org/10.3285/eg.57.1-2.3, 2008.
Spooner, P. T., Chen, T., Robinson, L. F., and Coath, C. D.: Rapid
uranium-series age screening of carbonates by laser ablation mass
spectrometry, Quat. Geochronol., 31, 28–39,
https://doi.org/10.1016/j.quageo.2015.10.004, 2016.
Steiger, R. H. and Jäger, E.: Subcommission on geochronology: Convention
on the use of decay constants in Geo- and Cosmochronology, Earth Planet.
Sc. Lett., 36, 359–362, https://doi.org/10.1016/0012-821X(77)90060-7, 1977.
Stirling, C. H., Andersen, M. B., Potter, E. K., and Halliday, A. N.:
Low-temperature isotopic fractionation of uranium, Earth Planet. Sc. Lett.,
264, 208–225, https://doi.org/10.1016/j.epsl.2007.09.019, 2007.
Szymanowski, D. and Schoene, B.: U-Pb ID-TIMS geochronology using ATONA
amplifiers, J. Anal. Atom. Spectrom., 35, 1207–1216,
https://doi.org/10.1039/d0ja00135j, 2020.
Thomas, A. L., Fujita, K., Iryu, Y., Bard, E., Cabioch, G., Camoin, G.,
Cole, J. E., Deschamps, P., Durand, N., Hamelin, B., Heindel, K., Henderson,
G. M., Mason, A. J., Matsuda, H., Ménabréaz, L., Omori, A., Quinn,
T., Sakai, S., Sato, T., Sugihara, K., Takahashi, Y., Thouveny, N., Tudhope,
A. W., Webster, J., Westphal, H., and Yokoyama, Y.: Assessing subsidence
rates and paleo water-depths for Tahiti reefs using U-Th chronology of
altered corals, Mar. Geol., 295–298, 86–94,
https://doi.org/10.1016/j.margeo.2011.12.006, 2012.
Vaks, A., Woodhead, J., Bar-matthews, M., Ayalon, A., Cliff, R. A., and
Zilberman, T.: Pliocene – Pleistocene climate of the northern margin of
Saharan – Arabian Desert recorded in speleothems from the Negev Desert,
Israel, Earth Planet. Sc. Lett., 368, 88–100,
https://doi.org/10.1016/j.epsl.2013.02.027, 2013a.
Vaks, A., Gutareva, O. S., Breitenbach, S. F. M., Avirmed, E., Mason, A. J.,
Thomas, A. L., Osinzev, A. V, Kononov, A. M., and Henderson, G. M.:
Speleothems reveal 500,000-year history of Siberian permafrost, Science, 61), 183–186, https://doi.org/10.1126/science.122872, 2013b.
Vaks, A., Mason, A. J., Breitenbach, S. F. M., Kononov, A. M., Osinzev, A.
V., Rosensaft, M., Borshevsky, A., Gutareva, O. S., and Henderson, G. M.:
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice,
Nature, 577, 221–225, https://doi.org/10.1038/s41586-019-1880-1, 2020.
Wang, Z. S., Rasbury, E. T., Hanson, G. N., and Meyers, W. J.: Using the U-Pb
system of calcretes to date the time of sedimentation of clastic sedimentary
rocks, Geochim. Cosmochim. Ac., 62, 2823–2835,
https://doi.org/10.1016/S0016-7037(98)00201-4, 1998.
Weyer, S., Anbar, A. D., Gerdes, A., Gordon, G. W., Algeo, T. J. and Boyle,
E. A.: Natural fractionation of , Geochim. Cosmochim.
Ac., 72, 345–359, https://doi.org/10.1016/j.gca.2007.11.012, 2008.
Woodhead, J. and Petrus, J.: Exploring the advantages and limitations of in situ U–Pb carbonate geochronology using speleothems, Geochronology, 1, 69–84, https://doi.org/10.5194/gchron-1-69-2019, 2019.
Woodhead, J. and Pickering, R.: Beyond 500 ka: Progress and prospects in
the U/Pb chronology of speleothems, and their application to
studies in palaeoclimate, human evolution, biodiversity and tectonics,
Chem. Geol., 322–323, 290–299, https://doi.org/10.1016/j.chemgeo.2012.06.017, 2012.
Woodhead, J., Hellstrom, J., Maas, R., Drysdale, R., Zanchetta, G., Devine,
P., and Taylor, E.: U – Pb geochronology of speleothems by MC-ICPMS, Quat.
Geochronol., 1, 208–221, https://doi.org/10.1016/j.quageo.2006.08.002, 2006.
York, D.: Least squares fitting of a straight line with correlated errors,
Earth Planet. Sc. Lett., 5, 320–324, https://doi.org/10.1016/S0012-821X(68)80059-7, 1969.
Short summary
A novel technique for the uranium–lead dating of geologically young carbonates is described and tested. The technique expands our ability to date geological events such as fault movements and past climate records.
A novel technique for the uranium–lead dating of geologically young carbonates is described and...