Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-127-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-127-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemical abrasion: the mechanics of zircon dissolution
Los Alamos National Laboratory, EES-16, Los Alamos, NM 87545, USA
Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
Isabel Koran
Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
Blair Schoene
Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
Richard A. Ketcham
Jackson School of Geosciences, The University of Texas Austin, Austin, TX 78712, USA
Related authors
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
Murat Taner Tamer, Ling Chung, Richard A. Ketcham, and Andrew J. W. Gleadow
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-26, https://doi.org/10.5194/gchron-2024-26, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
We present the first new image-based study to reveal how choices made by different analysts affect the results obtained by fission-track analysis. Participants analyzed an identical image data set with varying grain quality. Experienced analysts tend to select lower rates of unsuitable grains and conduct lower rates of invalid length measurements. Fission-track studies need image data repositories, teaching modules, guidelines, an open science culture, and new approaches for calibration.
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
David M. Whipp, Dawn A. Kellett, Isabelle Coutand, and Richard A. Ketcham
Geochronology, 4, 143–152, https://doi.org/10.5194/gchron-4-143-2022, https://doi.org/10.5194/gchron-4-143-2022, 2022
Short summary
Short summary
Multi-thermochronometry, in which methods such as (U-Th)/He dating of zircon and apatite and apatite fission track dating are combined, is used to reconstruct rock thermal histories. Our ability to reconstruct thermal histories and interpret the geological significance of measured ages requires modeling. Here we use forward models to explore effects of grain size and chemistry on cooling ages and closure temperatures for the (U-Th)/He decay systems in apatite and zircon.
Richard A. Ketcham and Murat T. Tamer
Geochronology, 3, 433–464, https://doi.org/10.5194/gchron-3-433-2021, https://doi.org/10.5194/gchron-3-433-2021, 2021
Short summary
Short summary
We introduce a new model of how etching reveals damage tracks left by fissioning atoms, which accounts for variable along-track etching rates. This complete characterization explains many observations, including community difficulty in obtaining consistent track length measurements. It also provides a quantitative basis for optimizing etching procedures, discerning more about how radiation damage anneals, and ultimately deriving more reproducible fission-track ages and thermal histories.
Blair Schoene, Michael P. Eddy, C. Brenhin Keller, and Kyle M. Samperton
Geochronology, 3, 181–198, https://doi.org/10.5194/gchron-3-181-2021, https://doi.org/10.5194/gchron-3-181-2021, 2021
Short summary
Short summary
We compare two published U–Pb and 40Ar / 39Ar geochronologic datasets to produce eruption rate models for the Deccan Traps large igneous province. Applying the same approach to each dataset, the resulting models agree well, but the higher-precision U–Pb dataset results in a more detailed eruption model than the lower-precision 40Ar / 39Ar data. We explore sources of geologic uncertainty and reiterate the importance of systematic uncertainties in comparing U–Pb and 40Ar / 39Ar datasets.
C. Brenhin Keller, Patrick Boehnke, Blair Schoene, and T. Mark Harrison
Geochronology, 1, 85–97, https://doi.org/10.5194/gchron-1-85-2019, https://doi.org/10.5194/gchron-1-85-2019, 2019
Short summary
Short summary
The oldest known minerals on Earth are Hadean (> 4.0 Ga) zircons from the Jack Hills, Australia. We present the first application to such Hadean zircons of stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis (stepwise CA-ID-TIMS-TEA). We examine the evolution in the U–Pb age and trace element chemistry of zircon domains accessed by successive chemical abrasion steps in the context of the geologic history of the Jack Hills zircons.
Emily H. G. Cooperdock, Richard A. Ketcham, and Daniel F. Stockli
Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, https://doi.org/10.5194/gchron-1-17-2019, 2019
Short summary
Short summary
(U–Th) / He chronometry relies on accurate grain-specific size and shape measurements. Using > 100 apatite grains to compare
assumed2-D versus
true3-D grain shapes measured by a microscope and X-ray computed tomography, respectively, we find that volume and surface area both differ by ~ 25 % between the two techniques and directly affect mass and concentration measurements. But we found a very small effect on the FT correction (2 %) and no discernible impact on mean sample age or dispersion.
Related subject area
Longlived radio-isotope systems
µID-TIMS: spatially resolved high-precision U–Pb zircon geochronology
Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments
High-precision ID-TIMS cassiterite U–Pb systematics using a low-contamination hydrothermal decomposition: implications for LA-ICP-MS and ore deposit geochronology
Multimethod U–Pb baddeleyite dating: insights from the Spread Eagle Intrusive Complex and Cape St. Mary's sills, Newfoundland, Canada
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
Stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis of microfractured Hadean zircon
Sava Markovic, Jörn-Frederik Wotzlaw, Dawid Szymanowski, Joakim Reuteler, Peng Zeng, and Cyril Chelle-Michou
Geochronology, 6, 621–638, https://doi.org/10.5194/gchron-6-621-2024, https://doi.org/10.5194/gchron-6-621-2024, 2024
Short summary
Short summary
We present a pioneering method for high-precision U–Pb dating of individual growth zones in zircon. These micrometer zones in single grains can record key geological processes from magma priming prior to eruptions to planetary formation, yet dating them at high precision has so far been technically challenging. Our method employs two cutting-edge microbeam techniques to microsample these growth zones for high-precision dating, allowing us to tackle a number of outstanding research questions.
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
Simon Tapster and Joshua W. G. Bright
Geochronology, 2, 425–441, https://doi.org/10.5194/gchron-2-425-2020, https://doi.org/10.5194/gchron-2-425-2020, 2020
Short summary
Short summary
Cassiterite is the primary tin ore mineral and is associated with other elements needed for green technology. The mineral is deposited from hydrothermal fluids released from magmas. Because it is extremely acid resistant, there has been difficulty dissolving the mineral for isotopic analysis. To improve the understanding of the timing and models of formation processes, we use a novel method to dissolve and extract radiogenic isotopes of the uranium-to-lead decay scheme from cassiterite.
Johannes E. Pohlner, Axel K. Schmitt, Kevin R. Chamberlain, Joshua H. F. L. Davies, Anne Hildenbrand, and Gregor Austermann
Geochronology, 2, 187–208, https://doi.org/10.5194/gchron-2-187-2020, https://doi.org/10.5194/gchron-2-187-2020, 2020
Short summary
Short summary
Baddeleyite is commonly used for U–Pb dating, but textural complexities, alteration features and discordance often make age interpretation difficult. Based on this case study, we discuss strategies for obtaining more accurate baddeleyite ages by high-precision and high spatial resolution methods, including analytical challenges and discordance interpretation. An evaluation of microtextures allows us to distinguish among seven different types of baddeleyite–zircon intergrowths.
Lee F. White, Kimberly T. Tait, Sandra L. Kamo, Desmond E. Moser, and James R. Darling
Geochronology, 2, 177–186, https://doi.org/10.5194/gchron-2-177-2020, https://doi.org/10.5194/gchron-2-177-2020, 2020
Short summary
Short summary
The generation of highly precise and accurate ages requires crushing of the original sample so that individual mineral grains may be separated out for dating. Here, we use a focused ion beam to extract grains directly from a subset of a sample, effectively performing microsurgery to isolate individual crystals from the rock itself. This approach opens the door to high-precision dating for a variety of precious planetary materials that have previously been challenging to date.
C. Brenhin Keller, Patrick Boehnke, Blair Schoene, and T. Mark Harrison
Geochronology, 1, 85–97, https://doi.org/10.5194/gchron-1-85-2019, https://doi.org/10.5194/gchron-1-85-2019, 2019
Short summary
Short summary
The oldest known minerals on Earth are Hadean (> 4.0 Ga) zircons from the Jack Hills, Australia. We present the first application to such Hadean zircons of stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis (stepwise CA-ID-TIMS-TEA). We examine the evolution in the U–Pb age and trace element chemistry of zircon domains accessed by successive chemical abrasion steps in the context of the geologic history of the Jack Hills zircons.
Cited articles
Anderson, A. J., Hodges, K. V., and van Soest, M. C.: Empirical constraints
on the effects of radiation damage on helium diffusion in zircon, Geochim.
Cosmochim. Ac., 218, 308–322, https://doi.org/10.1016/j.gca.2017.09.006,
2017.
Anderson, A. J., Hanchar, J. M., Hodges, K. V., and van Soest, M. C.:
Mapping radiation damage zoning in zircon using Raman spectroscopy:
Implications for zircon chronology, Chem. Geol., 538, 119494,
https://doi.org/10.1016/j.chemgeo.2020.119494, 2020a.
Anderson, A. J., van Soest, M. C., Hodges, K. V., and Hanchar, J. M.: Helium
diffusion in zircon: Effects of anisotropy and radiation damage revealed by
laser depth profiling, Geochim. Cosmochim. Ac., 274, 45–62,
https://doi.org/10.1016/j.gca.2020.01.049, 2020b.
Barley, M. and Pickard, A.: An extensive, crustally-derived, 3325 to 3310 ma
silicic volcanoplutonic suite in the eastern Pilbara craton: evidence from
the Kelly Belt, Mcphee Dome and Corunna Downs Batholith, Precambrian
Res., 96, 41–62, 1999.
Basu, A. R., Chakrabarty, P., Szymanowski, D., Ibañez-Mejia, M.,
Schoene, B., Ghosh, N., and Georg, R. B.: Widespread silicic and alkaline
magmatism synchronous with the Deccan Traps flood basalts, India, Earth
Planet. Sc. Lett., 552, 116616, https://doi.org/10.1016/j.epsl.2020.116616,
2020.
Bowring, S. A. and Schmitz, M. D.: High-precision U-Pb zircon geochronology
and the stratigraphic record, in: Reviews in Mineralogy and Geochemistry
Zircon, Vol. 53, edited by: Hanchar, J. M. and Hoskin, P. W. O., 305–326,
https://doi.org/10.2113/0530305, 2003.
Chakoumakos, B. C., Murakami, T., Lumpkin, G. R., and Ewing, R. C.:
Alpha-decay induced fracturing in zircon: The transition from the
crystalline to the metamict state, Science, 236, 1556–1559, 1987.
Cherniak, D. J.: Diffusion of helium in radiation-damaged zircon, Chem.
Geol., 529, 119308, https://doi.org/10.1016/j.chemgeo.2019.119308, 2019.
Cooperdock, E. H. G. and Stockli, D. F.: Unraveling alteration histories in
serpentinites and associated ultramafic rocks with magnetite (U-Th)/He
geochronology, Geology, 44, 967–970, https://doi.org/10.1130/g38587.1,
2016.
Cooperdock, E. H. G. and Stockli, D. F.: Dating exhumed peridotite with
spinel (U–Th)/He chronometry, Earth Planet. Sc. Lett., 489, 219–227,
https://doi.org/10.1016/j.epsl.2018.02.041, 2018.
Cooperdock, E. H. G., Ketcham, R. A., and Stockli, D. F.: Resolving the effects of 2-D versus 3-D grain measurements on apatite age data and reproducibility, Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, 2019.
Cooperdock, E. H. G., Hofmann, F., Tibbetts, R. M. C., Carrera, A., Takase, A., and Celestian, A. J.: Technical note: Rapid phase identification of apatite and zircon grains for geochronology using X-ray micro-computed tomography, Geochronology, 4, 501–515, https://doi.org/10.5194/gchron-4-501-2022, 2022.
Crowningshield, R. and Nassau, K.: The Heat and Diffusion Treatment of
Natural and Synthetic Sapphires, J. Gemmology, 17, 528–541,
https://doi.org/10.15506/jog.1981.17.8.528, 1981.
Danišík, M., McInnes, B. I. A., Kirkland, C. L., McDonald, B. J.,
Evans, N. J., and Becker, T.: Seeing is believing: Visualization of He
distribution in zircon and implications for thermal history reconstruction
on single crystals, Sci. Adv., 3, e1601121,
https://doi.org/10.1126/sciadv.1601121, 2017.
Davydov, V. I., Crowley, J. L., Schmitz, M. D., and Poletaev, V. I.:
High-precision U-Pb zircon age calibration of the global Carboniferous time
scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine,
Geochem. Geophy. Geosy., 11, Q0AA04,
https://doi.org/10.1029/2009gc002736, 2010.
Ewing, R. C., Meldrum, A., Wang, L., Weber, W. J., and Corrales, L. R.:
Radiation effects in zircon, Rev. Mineral. Geochem., 53, 387–425,
https://doi.org/10.2113/0530387, 2003.
Finch, R. J. and Hanchar, J. M.: Structure and chemistry of zircon and
zircon-group minerals, Rev. Mineral. Geochem., 53, 1–25,
https://doi.org/10.2113/0530001, 2003.
Geisler, T., Pidgeon, R. T., van Bronswijk, W., and Pleysier, R.: Kinetics
of thermal recovery and recrystallization of partially metamict zircon: a
Raman spectroscopic study, Eur. J. Mineral., 13, 1163–1176,
https://doi.org/10.1127/0935-1221/2001/0013-1163, 2001a.
Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R. T., and van Bronswijk, W.: Leaching and differential recrystallization of metamict zircon under
experimental hydrothermal conditions, Contrib. Mineral. Petr., 141, 53–65,
https://doi.org/10.1007/s004100000202, 2001b.
Geisler, T., Pidgeon, R. T., van Bronswijk, W., and Kurtz, R.: Transport of
uranium, thorium, and lead in metamict zircon under low-temperature
hydrothermal conditions, Chem. Geol., 191, 141–154,
https://doi.org/10.1016/s0009-2541(02)00153-5, 2002.
Ginster, U., Reiners, P. W., Nasdala, L., and Chutimun Chanmuang N.: Annealing kinetics
of radiation damage in zircon, Geochim. Cosmochim. Ac., 249, 225–246,
https://doi.org/10.1016/j.gca.2019.01.033, 2019.
Gleadow, A. J. W., Hurford, A. J., and Quaife, R. D.: Fission track dating
of zircon: Improved etching techniques, Earth Planet. Sc. Lett., 33,
273–276, https://doi.org/10.1016/0012-821x(76)90235-1, 1976.
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., and Giester,
G.: Helium diffusion in natural zircon: Radiation damage, anisotropy, and
the interpretation of zircon (U-Th)/He thermochronology, Am. J. Sci., 313,
145–198, https://doi.org/10.2475/03.2013.01, 2013.
Hanchar, J. M., Finch, R. J., Hoskin, P. W. O., Watson, E. B., Cherniak,
D. J., and Mariano, A. N.: Rare earth elements in synthetic zircon: part 1.
Synthesis, and rare earth element and phosphorus doping, Am. Mineral., 86,
667–680, 2001.
Härtel, B., Jonckheere, R., Wauschkuhn, B., and Ratschbacher, L.: The closure temperature(s) of zircon Raman dating, Geochronology, 3, 259–272, https://doi.org/10.5194/gchron-3-259-2021, 2021.
Hazen, R. M. and Finger, L. W.: Crystal structure and compressibility of
zircon at high pressure, Am. Mineral., 64, 196–201, 1979.
Holland, H. D. and Gottfried, D.: The effect of nuclear radiation on the
structure of zircon, Acta Crystallogr., 8, 291–300,
https://doi.org/10.1107/s0365110x55000947, 1955.
Hovis, G., Abraham, T., Hudacek, W., Wildermuth, S., Scott, B., Altomare,
C., Medford, A., Conlon, M., Morris, M., Leaman, A., Almer, C., Tomaino, G.,
and Harlov, D.: Thermal expansion of F-Cl apatite crystalline solutions, Am.
Mineral., 100, 1040–1046, https://doi.org/10.2138/am-2015-5176, 2015.
Huyskens, M. H., Zink, S., and Amelin, Y.: Evaluation of temperature-time
conditions for the chemical abrasion treatment of single zircons for U–Pb
geochronology, Chem. Geol., 438, 25–35,
https://doi.org/10.1016/j.chemgeo.2016.05.013, 2016.
Itoh, N. and Shirono, K.: Reliable estimation of Raman shift and its
uncertainty for a non-doped Si substrate (NMIJ CRM 5606-a), J. Raman
Spectrosc., 51, 2496–2504, https://doi.org/10.1002/jrs.6003, 2020.
Jonckheere, R.: On the densities of etchable fission tracks in a mineral and
co-irradiated external detector with reference to fission-track dating of
minerals, Chem. Geol., 200, 41–58,
https://doi.org/10.1016/s0009-2541(03)00116-5, 2003.
Jonckheere, R. and Van den Haute, P.: Observations on the geometry of etched
fission tracks in apatite: Implications for models of track revelation, Am.
Mineral., 81, 1476–1493, 1996.
Jonckheere, R., Enkelmann, E., and Stübner, K.: Observations on the
geometries of etched fission and alpha-recoil tracks with reference to
models of track revelation in minerals, Radiat. Meas., 39, 577–583,
https://doi.org/10.1016/j.radmeas.2004.08.008, 2005.
Jonckheere, R., Aslanian, C., Wauschkuhn, B., and Ratschbacher, L.:
Fission-track etching in apatite: A model and some implications, Am.
Mineral., 107, 1190–1200, https://doi.org/10.2138/am-2022-8055, 2022.
Jones, S., Kohn, B., and Gleadow, A.: Etching of fission tracks in monazite:
Further evidence from optical and focused ion beam scanning electron
microscopy, Am. Mineral., 107, 1065–1073,
https://doi.org/10.2138/am-2022-8002, 2022.
Ketcham, R. A., Guenthner, W. R., and Reiners, P. W.: Geometric analysis of
radiation damage connectivity in zircon, and its implications for helium
diffusion, Am. Mineral., 98, 350–360, https://doi.org/10.2138/am.2013.4249,
2013.
Krishnam, R. S.: Raman spectrum of quartz, Nature, 155, 142, https://doi.org/10.1038/155452a0, 1945.
Lee, J. K. W. and Tromp, J.: Self-induced fracture generation in zircon, J.
Geophys. Res.-Sol. Ea., 100, 17753–17770,
https://doi.org/10.1029/95jb01682, 1995.
MacLennan, S. A., Eddy, M. P., Merschat, A. J., Mehra, A. K., Crockford, P.
W., Maloof, A. C., Southworth, C. S., and Schoene, B.: Geologic evidence for
an icehouse Earth before the Sturtian global glaciation, Sci. Adv., 6,
eaay6647, https://doi.org/10.1126/sciadv.aay6647, 2020.
Mattinson, J. M.: Zircon U–Pb chemical abrasion (“CA-TIMS”) method:
Combined annealing and multi-step partial dissolution analysis for improved
precision and accuracy of zircon ages, Chem. Geol., 220, 47–66,
https://doi.org/10.1016/j.chemgeo.2005.03.011, 2005.
Mattinson, J. M.: Extending the Krogh legacy: development of the CA-TIMS
method for zircon U-Pb geochronology, Can. J. Earth Sci., 48, 95–105,
https://doi.org/10.1139/e10-023, 2011.
Mattinson, J. M., Graubard, C. M., Parkinson, D. L., and McClelland, W. C.:
U-Pb reverse discordance in zircon: The role of fine-scale oscillatory
zoning and sub-micron transport of Pb, in: Earth Processes Reading the
Isotopic Code, edited by: Basu, A. and Hart, S., American Geophysical
Union, Washington D.C., USA, 355–370, 1996.
Meldrum, A., Boatner, L. A., Weber, W. J., and Ewing, R. C.: Radiation
damage in zircon and monazite, Geochim. Cosmochim. Ac., 62, 2509–2520,
https://doi.org/10.1016/s0016-7037(98)00174-4, 1998.
Meyers, S. R., Siewert, S. E., Singer, B. S., Sageman, B. B., Condon, D. J.,
Obradovich, J. D., Jicha, B. R., and Sawyer, D. A.: Intercalibration of
radioisotopic and astrochronologic time scales for the Cenomanian-Turonian
boundary interval, Western Interior Basin, USA, Geology, 40, 7–10,
https://doi.org/10.1130/g32261.1, 2012.
Mezger, K. and Krogstad, E. J.: Interpretation of discordant U-Pb zircon
ages: An evaluation, J. Metamorph. Geol., 15, 127–140,
https://doi.org/10.1111/j.1525-1314.1997.00008.x, 1997.
Mundil, R., Ludwig, K. R., Metcalfe, I., and Renne, P. R.: Age and timing of
the Permian mass extinctions: U/Pb dating of closed-system zircons, Science,
305, 1760–1763, https://doi.org/10.1126/science.1101012, 2004.
Murakami, T., Chakoumakos, B. C., Ewing, R. C., Lumpkin, G. R., and Weber,
W. J.: Alpha-decay event damage in zircon, Am. Mineral., 76, 1510–1532,
1991.
Nasdala, L., Irmer, G., and Wolf, D.: The degree of metamictization in
zircon: a Raman spectroscopic study, Eur. J. Mineral., 7, 471–478,
https://doi.org/10.1127/ejm/7/3/0471, 1995.
Nasdala, L., Pidgeon, R. T., Wolf, D., and Irmer, G.: Metamictization and
U-Pb isotopic discordance in single zircons: a combined Raman microprobe and
SHRIMP ion probe study, Mineral. Petrol., 62, 1–27,
https://doi.org/10.1007/bf01173760, 1998.
Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., and Kober, B.:
Metamictisation of natural zircon: accumulation versus thermal annealing of
radioactivity-induced damage, Contrib. Mineral. Petr., 141, 125–144,
https://doi.org/10.1007/s004100000235, 2001.
Nasdala, L., Reiners, P. W., Garver, J. I., Kennedy, A. K., Stern, R. A.,
Balan, E., and Wirth, R.: Incomplete retention of radiation damage in zircon
from Sri Lanka, Am. Mineral., 89, 219–231, 2004.
Nassau, K.: Heat treating ruby and sapphire: Technical aspects, Gems Gemol.,
17, 121–131, https://doi.org/10.5741/gems.17.3.121, 1981.
Paces, J. B. and Miller, J. D.: Precise U-Pb ages of Duluth Complex and
related mafic intrusions, northeastern Minnesota: Geochronological insights
to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes
associated with the 1.1 Ga Midcontinent Rift System, J. Geophys. Res.-Sol.
Ea., 98, 13997–14013, https://doi.org/10.1029/93jb01159, 1993.
Palenik, C. S., Nasdala, L., and Ewing, R. C.: Radiation damage in zircon,
Am. Mineral., 88, 770–781, https://doi.org/10.2138/am-2003-5-606, 2003.
Schmitz, M. D. and Davydov, V. I.: Quantitative radiometric and
biostratigraphic calibration of the Pennsylvanian–Early Permian
(Cisuralian) time scale and pan-Euramerican chronostratigraphic correlation,
GSA Bull., 124, 549–577, https://doi.org/10.1130/b30385.1, 2012.
Schmitz, M. D., Bowring, S. A., and Ireland, T. R.: Evaluation of Duluth
Complex anorthositic series (AS3) zircon as a U-Pb geochronological
standard: new high-precision isotope dilution thermal ionization mass
spectrometry results, Geochim. Cosmochim. Ac., 67, 3665–3672,
https://doi.org/10.1016/s0016-7037(03)00200-x, 2003.
Schoene, B.: Treatise on Geochemistry (Second Edition), in: Treatise on
Geochemistry, Vol. 4, edited by: Holland, H. D. and Turekian, K. K.,
Treatise on Geochemistry, Elsevier Ltd., 341–378,
https://doi.org/10.1016/b978-0-08-095975-7.00310-7, 2014.
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T. J.:
Correlating the end-Triassic mass extinction and flood basalt volcanism at
the 100 ka level, Geology, 38, 387–390, https://doi.org/10.1130/g30683.1,
2010a.
Schoene, B., Latkoczy, C., Schaltegger, U., and Günther, D.: A new
method integrating high-precision U–Pb geochronology with zircon trace
element analysis (U–Pb TIMS-TEA), Geochim. Cosmochim. Ac., 74, 7144–7159,
https://doi.org/10.1016/j.gca.2010.09.016, 2010b.
Smithies, R. H., Champion, D. C., and Cassidy, K. F.: Formation of Earth's
early Archaean continental crust, Precambrian Res., 127, 89–101, 2003.
Subbarao, E. C., Agrawal, D. K., McKinstry, H. A., Sallese, C. W., and Roy,
R.: Thermal expansion of compounds of zircon structure, J. Am. Ceram. Soc.,
73, 1246–1252, https://doi.org/10.1111/j.1151-2916.1990.tb05187.x, 1990.
Swanson-Hysell, N. L., Hoaglund, S. A., Crowley, J. L., Schmitz, M. D.,
Zhang, Y., and Miller, J. D.: Rapid emplacement of massive Duluth Complex
intrusions within the North American Midcontinent Rift, Geology, 49,
185–189, https://doi.org/10.1130/g47873.1, 2020.
Takehara, M., Horie, K., Hokada, T., and Kiyokawa, S.: New insight into
disturbance of U-Pb and trace-element systems in hydrothermally altered
zircon via SHRIMP analyses of zircon from the Duluth Gabbro, Chem. Geol.,
484, 168–178, https://doi.org/10.1016/j.chemgeo.2018.01.028, 2018.
Trachenko, K., Dove, M. T., and Salje, E. K. H.: Structural changes in
zircon under α-decay irradiation, Phys. Rev. B, 65, 180102,
https://doi.org/10.1103/physrevb.65.180102, 2002.
Váczi, T.: A new, simple approximation for the deconvolution of
instrumental broadening in spectroscopic band profiles, Appl. Spectrosc.,
68, 1274–1278, https://doi.org/10.1366/13-07275, 2014.
Váczi, T. and Nasdala, L.: Electron-beam-induced annealing of natural
zircon: a Raman spectroscopic study, Phys. Chem. Miner., 44, 389–401,
https://doi.org/10.1007/s00269-016-0866-x, 2017.
van Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H., and Champion, D.:
Review: secular tectonic evolution of Archean continental crust: interplay
between horizontal and vertical processes in the formation of the Pilbara
Craton, Australia, Terra Nova, 19, 1–38,
https://doi.org/10.1111/j.1365-3121.2006.00723.x, 2007.
Weber, W. J.: Radiation-induced defects and amorphization in zircon, J.
Materials Res., 5, 2687–2697, 1990.
Widmann, P., Davies, J. H. F. L., and Schaltegger, U.: Calibrating chemical
abrasion: Its effects on zircon crystal structure, chemical composition and
U-Pb age, Chem. Geol., 511, 1–10,
https://doi.org/10.1016/j.chemgeo.2019.02.026, 2019.
Yamada, R., Tagami, T., Nishimura, S., and Ito, H.: Annealing kinetics of
fission tracks in zircon: an experimental study, Chem. Geol., 122, 249–258,
https://doi.org/10.1016/0009-2541(95)00006-8, 1995.
Yamada, R., Murakami, M., and Tagami, T.: Statistical modelling of annealing
kinetics of fission tracks in zircon; Reassessment of laboratory
experiments, Chem. Geol., 236, 75–91,
https://doi.org/10.1016/j.chemgeo.2006.09.002, 2007.
Zhang, M., Salje, E. K. H., Capitani, G. C., Leroux, H., Clark, A. M.,
Schlüter, J., and Ewing, R. C.: Annealing of alpha-decay damage in
zircon: a Raman spectroscopic study, J. Phys. Condens. Matter, 12, 3131,
https://doi.org/10.1088/0953-8984/12/13/321, 2000.
Short summary
Acid leaching is commonly used to remove damaged portions of zircon crystals prior to U–Pb dating. However, a basic understanding of the microstructural processes that occur during leaching is lacking. We present the first 3D view of zircon dissolution based on X-ray computed tomography data acquired before and after acid leaching. These data are paired with images of etched grain surfaces and Raman spectral data. We also reveal exciting opportunities for imaging radiation damage zoning in 3D.
Acid leaching is commonly used to remove damaged portions of zircon crystals prior to U–Pb...