Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-285-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-285-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Amino acid racemization in Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean and its implications for age models
Department of Geological Sciences, Stockholm University, Stockholm,
10691, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm,
10691, Sweden
Darrell S. Kaufman
School of Earth and Sustainability, Northern Arizona University,
Flagstaff, AZ 86011, USA
Martin Jakobsson
Department of Geological Sciences, Stockholm University, Stockholm,
10691, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm,
10691, Sweden
Department of Geological Sciences, Stockholm University, Stockholm,
10691, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm,
10691, Sweden
Related authors
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Felicity A. Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 2695–2714, https://doi.org/10.5194/tc-19-2695-2025, https://doi.org/10.5194/tc-19-2695-2025, 2025
Short summary
Short summary
Northern Greenland contains some of the ice sheet's last remaining glaciers with floating ice tongues. One of these is Ryder Glacier, which has been relatively stable in recent decades, in contrast to nearby glaciers. Here, we use a computer model to simulate Ryder Glacier until 2300 under both a low- and a high-emissions scenario. Very high levels of surface melt under a high-emissions future lead to a sea level rise contribution that is an order of magnitude higher than under a low-emissions future.
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653, https://doi.org/10.5194/egusphere-2025-653, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12,000 years we find that both a warming atmosphere and ocean play a key role in the evolution of the Glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean are required to predict future changes and reliable sea level rise estimates.
Darrell Kaufman and Valérie Masson-Delmotte
Clim. Past, 20, 2587–2594, https://doi.org/10.5194/cp-20-2587-2024, https://doi.org/10.5194/cp-20-2587-2024, 2024
Short summary
Short summary
Rather than reverting to a dedicated paleoclimate chapter, knowledge about pre-industrial climate should be further integrated with other lines of evidence throughout the next assessment reports by the Intergovernmental Panel on Climate Change.
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
The Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024, https://doi.org/10.5194/tc-18-3591-2024, 2024
Short summary
Short summary
Here we present summer snowline altitude (SLA) time series for 269 Arctic glaciers. Between 1984 and 2022, SLAs rose ∼ 150 m, equating to a ∼ 127 m shift per 1 °C of summer warming. SLA is most strongly correlated with annual temperature variables, highlighting their dual effect on ablation and accumulation processes. We show that SLAs are rising fastest on low-elevation glaciers and that > 50 % of the studied glaciers could have SLAs that exceed the maximum ice elevation by 2100.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Raisa Alatarvas, Matt O'Regan, and Kari Strand
Clim. Past, 18, 1867–1881, https://doi.org/10.5194/cp-18-1867-2022, https://doi.org/10.5194/cp-18-1867-2022, 2022
Short summary
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Lauren J. Davies, Britta J. L. Jensen, and Darrell S. Kaufman
Geochronology, 4, 121–141, https://doi.org/10.5194/gchron-4-121-2022, https://doi.org/10.5194/gchron-4-121-2022, 2022
Short summary
Short summary
Subarctic and Arctic lake sediments provide key data to understand natural climate variability and future climate change. However, they can be difficult to date accurately and of limited use without a robust chronology. We use volcanic ash deposits from the last ~4000 BP to identify anomalously old radiocarbon ages at Cascade Lake, Alaska. A provisional ~15 000-year Bayesian age model is produced for the lake, and a new location for ash from five Late Holocene eruptions is reported.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Douglas P. Steen, Joseph S. Stoner, Jason P. Briner, and Darrell S. Kaufman
Geochronology Discuss., https://doi.org/10.5194/gchron-2021-19, https://doi.org/10.5194/gchron-2021-19, 2021
Publication in GChron not foreseen
Short summary
Short summary
Paleomagnetic data from Cascade Lake (Brooks Range, Alaska) extend the radiometric-based age model of the sedimentary sequence extending back 21 kyr. Correlated ages based on prominent features in paleomagnetic secular variations (PSV) diverge from the radiometric ages in the upper 1.6 m, by up to about 2000 years at around 4 ka. Four late Holocene cryptotephra in this section support the PSV chronology and suggest the influence of hard water or aged organic material.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Colin Ware, Larry Mayer, Paul Johnson, Martin Jakobsson, and Vicki Ferrini
Geosci. Instrum. Method. Data Syst., 9, 375–384, https://doi.org/10.5194/gi-9-375-2020, https://doi.org/10.5194/gi-9-375-2020, 2020
Short summary
Short summary
Geographic coordinates (latitude and longitude) are widely used in geospatial applications, and terrains are often defined by regular grids in geographic coordinates. However, because of convergence of lines of longitude near the poles there is oversampling in the latitude (zonal) direction. Also, there is no standard way of defining a hierarchy of grids to consistently deal with data having different spatial resolutions. The proposed global geographic grid system solves both problems.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Cited articles
Alexanderson, H., Backman, J., Cronin, T. M., Funder, S., Ingólfsson,
Ó., Jakobsson, M., Landvik, J. Y., Löwemark, L., Mangerud, J.,
März, C., Möller, P., O'Regan, M., and Spielhagen, R. F.: An Arctic
perspective on dating Mid-Late Pleistocene environmental history, Quaternary Sci.
Rev., 92, 9–31, https://doi.org/10.1016/j.quascirev.2013.09.023, 2014.
Anthonissen, D. E. and Ogg, J. G.: Cenozoic and Cretaceous Biochronology of
Planktonic Foraminifera and Calcareous Nannofossils, in: The Geologic Time
Scale, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G., Elsevier, 1083–1127,
https://doi.org/10.1016/B978-0-444-59425-9.15003-6, 2012.
Backman, J., Jakobsson, M., Lvlie, R., Polyak, L., and Febo, L. A.: Is the
central Arctic Ocean a sediment starved basin?, Quaternary Sci. Rev., 20, 1435–1454, https://doi.org/10.1016/j.quascirev.2003.12.005, 2004.
Backman, J., Jakobsson, M., Frank, M., Sangiorgi, F., Brinkhuis, H.,
Stickley, C., O'Regan, M., Løvlie, R., Pälike, H., Spofforth, D.,
Gattacecca, J., Moran, K., King, J., and Heil, C.: Age model and
core-seismic integration for the Cenozoic Arctic Coring Expedition sediments
from the Lomonosov Ridge, Paleoceanography, 23, PA1S01,
https://doi.org/10.1029/2007PA001476, 2008.
Bauch, H. A.: Sedimentation rate of sediment core PS1906-2, PANGAEA,
https://doi.org/10.1594/PANGAEA.82396, 2002.
Bauch, H. A.: Interglacial climates and the Atlantic meridional overturning
circulation: is there an Arctic controversy?, Quaternary Sci. Rev., 63, 1–22,
https://doi.org/10.1016/j.quascirev.2012.11.023, 2013.
Boggild, K., Mosher, D. C., Travaglini, P., Gebhardt, C., and Mayer, L.:
Mass wasting on Alpha Ridge in the Arctic Ocean: new insights from multibeam
bathymetry and sub-bottom profiler data, Geol. Soc. Lond. Spec. Publ., 500,
323–340, https://doi.org/10.1144/SP500-2019-196, 2020.
Braun, S., Mhatre, S. S., Jaussi, M., Røy, H., Kjeldsen, K. U., Pearce,
C., Seidenkrantz, M.-S., Jørgensen, B. B., and Lomstein, B. Aa.:
Microbial turnover times in the deep seabed studied by amino acid
racemization modelling, Sci. Rep., 7, 5680,
https://doi.org/10.1038/s41598-017-05972-z, 2017.
Burkett, A. M., Rathburn, A. E., Elena Pérez, M., Levin, L. A., and
Martin, J. B.: Colonization of over a thousand Cibicidoides wuellerstorfi (foraminifera: Schwager,
1866) on artificial substrates in seep and adjacent off-seep locations in
dysoxic, deep-sea environments, Deep-Sea Res. Pt. I, 117,
39–50, https://doi.org/10.1016/j.dsr.2016.08.011, 2016.
Clarke, S. J. and Murray-Wallace, C. V.: Mathematical expressions used in
amino acid racemisation geochronology – a review, Quat. Geochronol., 1,
261–278, https://doi.org/10.1016/j.quageo.2006.12.002, 2006.
Cronin, T. M., Dwyer, G. S., Farmer, J., Bauch, H. A., Spielhagen, R. F.,
Jakobsson, M., Nilsson, J., Briggs, W. M., and Stepanova, A.: Deep Arctic
Ocean warming during the last glacial cycle, Nat. Geosci., 5, 631–634,
https://doi.org/10.1038/ngeo1557, 2012.
Cronin, T. M., Keller, K. J., Farmer, J. R., Schaller, M. F., O'Regan, M.,
Poirier, R., Coxall, H., Dwyer, G. S., Bauch, H., Kindstedt, I. G.,
Jakobsson, M., Marzen, R., and Santin, E.: Interglacial paleoclimate in the
Arctic, Paleoceanography, 34, 1959–1979,
https://doi.org/10.1029/2019PA003708, 2019.
Darling, K. F., Wade, C. M., Siccha, M., Trommer, G., Schulz, H.,
Abdolalipour, S., and Kurasawa, A.: Genetic diversity and ecology of the
planktonic foraminifers Globigerina bulloides, Turborotalita quinqueloba and Neogloboquadrina pachyderma off the Oman margin during the late SW
Monsoon, Mar. Micropaleontol., 137, 64–77,
https://doi.org/10.1016/j.marmicro.2017.10.006, 2017.
Frank, M., Backman, J., Jakobsson, M., Moran, K., O'Regan, M., King, J.,
Haley, B. A., Kubik, P. W., and Garbe-Schönberg, D.: Beryllium isotopes
in central Arctic Ocean sediments over the past 12.3 million years:
Stratigraphic and paleoclimatic implications, Paleoceanography,
23, PA1S02, https://doi.org/10.1029/2007PA001478, 2008.
Hanslik, D., Löwemark, L., and Jakobsson, M.: Biogenic and detrital-rich
intervals in central Arctic Ocean cores identified using X-ray fluorescence
scanning, Polar Res., 32, 18386,
https://doi.org/10.3402/polar.v32i0.18386, 2013.
Haugen, J.-E., Sejrup, H. P., and Vogt, N. B.: Chemotaxonomy of Quaternary
benthic foraminifera using amino acids, J. Foramin. Res., 19, 38–51,
https://doi.org/10.2113/gsjfr.19.1.38, 1989.
Hillaire-Marcel, C., Ghaleb, B., de Vernal, A., Maccali, J., Cuny, K.,
Jacobel, A., Le Duc, C., and McManus, J.: A new chronology of late
quaternary sequences from the central Arctic Ocean based on “extinction
ages” of their excesses in 231Pa and 230Th, Geochem. Geophy.
Geosy., 18, 4573–4585, https://doi.org/10.1002/2017GC007050, 2017.
Jakobsson, M. and O'Regan, M.: Deep iceberg ploughmarks in the central
Arctic Ocean, Geol. Soc. Lond. Mem., 46, 287–288,
https://doi.org/10.1144/M46.14, 2016.
Jakobsson, M., Løvlie, R., Arnold, E. M., Backman, J., Polyak, L.,
Knutsen, J. O., and Musatov, E.: Pleistocene stratigraphy and
paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic
Ocean. Global Planet. Change, 31, 1–22,
https://doi.org/10.1016/S0921-8181(01)00110-2, 2001.
Jakobsson, M., Backman, J., Murray, A., and Løvlie, R.: Optically
stimulated luminescence dating supports central Arctic Ocean cm-scale
sedimentation rates, Geochem. Geophy. Geosy., 4, 1016,
https://doi.org/10.1029/2002GC000423, 2003.
Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., Dove, D.,
Dowdeswell, J. A., England, J. H., Funder, S., Hogan, K., Ingólfsson,
Ó., Jennings, A., Krog Larsen, N., Kirchner, N., Landvik, J. Y., Mayer,
L., Mikkelsen, N., Möller, P., Niessen, F., Nilsson, J., O'Regan, M.,
Polyak, L., Nørgaard-Pedersen, N., and Stein, R.: Arctic Ocean glacial
history, Quaternary Sci. Rev., 92, 40–67,
https://doi.org/10.1016/j.quascirev.2013.07.033, 2014.
Jakobsson, M., Mayer, L. A., Bringensparr, C., Castro, C. F., Mohammad, R.,
Johnson, P., Ketter, T., Accettella, D., Amblas, D., An, L., Arndt, J. E.,
Canals, M., Casamor, J. L., Chauché, N., Coakley, B., Danielson, S.,
Demarte, M., Dickson, M.-L., Dorschel, B., Dowdeswell, J. A., Dreutter, S.,
Fremand, A. C., Gallant, D., Hall, J. K., Hehemann, L., Hodnesdal, H., Hong,
J., Ivaldi, R., Kane, E., Klaucke, I., Krawczyk, D. W., Kristoffersen, Y.,
Kuipers, B. R., Millan, R., Masetti, G., Morlighem, M., Noormets, R.,
Prescott, M. M., Rebesco, M., Rignot, E., Semiletov, I., Tate, A. J.,
Travaglini, P., Velicogna, I., Weatherall, P., Weinrebe, W., Willis, J. K.,
Wood, M., Zarayskaya, Y., Zhang, T., Zimmermann, M., and Zinglersen, K. B.:
The International Bathymetric Chart of the Arctic Ocean Version 4.0, Sci.
Data, 7, 176, https://doi.org/10.1038/s41597-020-0520-9, 2020.
Jansen, E., Fronval, T., Rack, F., and Channell, J. E. T.: IRD tuned age
model of ODP Site 151-907, PANGAEA, https://doi.org/10.1594/PANGAEA.848080, 2000a.
Jansen, E., Fronval, T., Rack, F., and Channell, J. E. T.:
Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas
during the last 3.5 Myr, Paleoceanography, 15, 709–721,
https://doi.org/10.1029/1999PA000435, 2000b.
Kaufman, D., Cooper, K., Behl, R., Billups, K., Bright, J., Gardner, K.,
Hearty, P., Jakobsson, M., Mendes, I., O'Leary, M., Polyak, L., Rasmussen,
T., Rosa, F., and Schmidt, M.: Amino acid racemization in mono-specific
foraminifera from Quaternary deep-sea sediments, Quat. Geochronol., 16,
50–61, https://doi.org/10.1016/j.quageo.2012.07.006, 2013.
Kaufman, D. S.: Temperature sensitivity of aspartic and glutamic acid
racemization in the foraminifera Pulleniatina, Quat. Geochronol., 1, 188–207,
https://doi.org/10.1016/j.quageo.2006.06.008, 2006.
Kaufman, D. S. and Manley, W. F.: A new procedure for determining DL amino
acid ratios in fossils using reverse phase liquid chromatography, Quaternary Sci.
Rev., 17, 987–1000, https://doi.org/10.1016/S0277-3791(97)00086-3, 1998.
Kaufman, D. S., Polyak, L., Adler, R., Channell, J. E. T., and Xuan, C.:
Dating late Quaternary planktonic foraminifer Neogloboquadrina pachyderma from the Arctic Ocean using
amino acid racemization, Paleoceanography, 23, PA3224,
https://doi.org/10.1029/2008PA001618, 2008.
King, K. and Neville, C.: Isoleucine epimerization for dating marine
sediments: Importance of analyzing monospecific foraminiferal samples,
Science, 195, 1333–1335, https://doi.org/10.1126/science.195.4284.1333,
1977.
Kosnik, M. A. and Kaufman, D. S.: Identifying outliers and assessing the
accuracy of amino acid racemization measurements for geochronology: II. Data
screening, Quat. Geochronol., 3, 328–341,
https://doi.org/10.1016/j.quageo.2008.04.001, 2008.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R., and Smolyar, I. V.: World Ocean Atlas 2018, Volume 1: Temperature, Mishonov, A. (Technical Editor), NOAA Atlas NESDIS 81, 52 pp., 2018.
Millman E., Wheeler L., Billups K., Kaufman D., and Penkman K. E.: Testing
the effect of oxidizing pre-treatments on amino acids in benthic and
planktic foraminifera tests, Quat. Geochronol., 73, 101401,
https://doi.org/10.1016/j.quageo.2022.101401, 2022.
O'Regan, M., King, J., Backman, J., Jakobsson, M., Pälike, H., Moran,
K., Heil, C., Sakamoto, T., Cronin, T. M., and Jordan, R. W.: Constraints on
the Pleistocene chronology of sediments from the Lomonosov Ridge,
Paleoceanography, 23, PA1S19,
https://doi.org/10.1029/2007PA001551, 2008.
O'Regan, M., John, K. S., Moran, K., Backman, J., King, J., Haley, B. A.,
Jakobsson, M., Frank, M., and Röhl, U.: Plio-Pleistocene trends in ice
rafted debris on the Lomonosov Ridge, Quaternary Int., 219, 168–176,
https://doi.org/10.1016/j.quaint.2009.08.010, 2010.
O'Regan, M., Coxall, H. K., Cronin, T. M., Gyllencreutz, R., Jakobsson, M.,
Kaboth, S., Löwemark, L., Wiers, S., and West, G.: Stratigraphic
occurrences of sub-polar planktic foraminifera in Pleistocene sediments on
the Lomonosov Ridge, Arctic Ocean, Front. Earth Sci., 7, 71,
https://doi.org/10.3389/feart.2019.00071, 2019.
O'Regan, M., Backman, J., Fornaciari, E., Jakobsson, M., and West, G.:
Calcareous nannofossils anchor chronologies for Arctic Ocean sediments back
to 500 ka, Geology, 48, 1115–1119, https://doi.org/10.1130/G47479.1, 2020.
Penkman, K. E., Kaufman, D. S., Maddy, D., and Collins, M. J.: Closed-system
behaviour of the intra-crystalline fraction of amino acids in mollusc
shells, Quat. Geochronol., 3, 2–25,
https://doi.org/10.1016/j.quageo.2007.07.001, 2008.
Pérez, L. F., Jakobsson, M., Funck, T., Andresen, K. J., Nielsen, T.,
O'Regan, M., and Mørk, F.: Late Quaternary sedimentary processes in the
central Arctic Ocean inferred from geophysical mapping, Geomorphology, 369,
107309, https://doi.org/10.1016/j.geomorph.2020.107309, 2020.
Purcell, K., Hillaire-Marcel, C., de Vernal, A., Ghaleb, B., and Stein, R.:
Potential and limitation of 230Th-excess as a chronostratigraphic tool
for late Quaternary Arctic Ocean sediment studies: An example from the
southern Lomonosov Ridge, Mar. Geol., 448, 106802,
https://doi.org/10.1016/j.margeo.2022.106802, 2022.
Raitzsch, M., Rollion-Bard, C., Horn, I., Steinhoefel, G., Benthien, A., Richter, K.-U., Buisson, M., Louvat, P., and Bijma, J.: Technical note: Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry, Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, 2020.
Rasmussen, T. L. and Thomsen, E.: Ecology of deep-sea benthic foraminifera
in the North Atlantic during the last glaciation: Food or temperature
control, Palaeogeogr. Palaeocl., 472, 15–32,
https://doi.org/10.1016/j.palaeo.2017.02.012, 2017.
Schlager, U., Jokat, W., Weigelt, E., and Gebhardt, C.: Submarine landslides
along the Siberian termination of the Lomonosov Ridge, Arctic Ocean,
Geomorphology, 382, 107679, https://doi.org/10.1016/j.geomorph.2021.107679,
2021.
Sejrup, H. P. and Haugen, J.-E.: Foraminiferal amino acid stratigraphy of
the Nordic Seas: geological data and pyrolysis experiments, Deep-Sea Res.
Pt. A, 39, S603–S623,
https://doi.org/10.1016/S0198-0149(06)80022-1, 1992.
Sejrup, H. P. and Haugen, J.-E.: Amino acid diagenesis in the marine bivalve
Arctica islandica Linné from northwest European sites: Only time and temperature?, J.
Quaternary Sci., 9, 301–309, https://doi.org/10.1002/jqs.3390090402, 1994.
Sejrup, H. P., Miller, G. H., Brigham-Grette, J., Løvlie, R., and
Hopkins, D.: Amino acid epimerization implies rapid sedimentation rates in
Arctic Ocean cores, Nature, 310, 772–775, https://doi.org/10.1038/310772a0,
1984.
Shackleton, N. J., Sánchez-Goñi, M. F., Pailler, D., and Lancelot,
Y.: Marine Isotope Substage 5e and the Eemian Interglacial, Glob. Planet.
Change, 36, 151–155, https://doi.org/10.1016/S0921-8181(02)00181-9, 2003.
Shephard, G. E., Wiers, S., Bazhenova, E., Pérez, L. F., Mejía, L.
M., Johansson, C., Jakobsson, M., and O'Regan, M.: A North Pole thermal
anomaly? Evidence from new and existing heat flow measurements from the
central Arctic Ocean, J. Geodyn., 118, 166–181,
https://doi.org/10.1016/j.jog.2018.01.017, 2018.
Spielhagen, R. F., Baumann, K. H., Erlenkeuser, H., Nowaczyk, N. R.,
Nørgaard-Pedersen, N., Vogt, C., and Weiel, D.: Arctic Ocean deep-sea
record of northern Eurasian ice sheet history, Quaternary Sci. Rev., 23,
1455–1483, https://doi.org/10.1016/j.quascirev.2003.12.015, 2004.
Thierstein, H. R., Geitzenauer, K. R., Molfino, B., and Shackleton, N. J.:
Global synchroneity of late Quaternary coccolith datum levels validation by
oxygen isotopes, Geology, 5, 400,
https://doi.org/10.1130/0091-7613(1977)5<400:GSOLQC>2.0.CO;2, 1977.
West, G., Kaufman, D. S., Muschitiello, F., Forwick, M., Matthiessen, J., Wollenburg, J., and O'Regan, M.: Amino acid racemization in Quaternary foraminifera from the Yermak Plateau, Arctic Ocean, Geochronology, 1, 53–67, https://doi.org/10.5194/gchron-1-53-2019, 2019.
West, G., Kaufman, D. S., Jakobsson, M., and O'Regan, M.: Quaternary Arctic Ocean Foraminifer Amino Acid Racemization Data, NCEI [data set], https://doi.org/10.25921/bx56-4d69, 2023.
Wheeler L. J., Penkman K. E., Sejrup H. P.: Assessing the intra-crystalline
approach to amino acid geochronology of Neogloboquadrina pachyderma
(sinistral), Quat. Geochronol., 61, 101131,
https://doi.org/10.1016/j.quageo.2020.101131, 2021.
Wollenburg, J. E., Raitzsch, M., and Tiedemann, R.: Novel high-pressure
culture experiments on deep-sea benthic foraminifera – Evidence for
methane seepage-related δ13C of Cibicides wuellerstorfi, Mar. Micropaleontol., 117,
47–64, https://doi.org/10.1016/j.marmicro.2015.04.003, 2015.
Yu, J. and Elderfield, H.: Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and
Cibicidoides mundulus: Temperature versus carbonate ion saturation, Earth Planet. Sc. Lett.,
276, 129–139, https://doi.org/10.1016/j.epsl.2008.09.015, 2008.
Yu, Y., Yang, J., Zheng, L.-Y., Sheng, Q., Li, C.-Y., Wang, M., Zhang,
X.-Y., McMinn, A., Zhang, Y.-Z., Song, X.-Y., and Chen, X.-L.: Diversity of
D-amino acid utilizing bacteria from Kongsfjorden, Arctic and the metabolic
pathways for seven D-amino acids, Front. Microbiol., 10, 2983,
https://doi.org/10.3389/fmicb.2019.02983, 2020.
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and...