Articles | Volume 6, issue 2
https://doi.org/10.5194/gchron-6-199-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-199-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Geometric Correction Method for zircon (U–Th) ∕ He chronology: correcting systematic error and assigning uncertainties to alpha-ejection corrections and eU concentrations
Spencer D. Zeigler
CORRESPONDING AUTHOR
Department of Geological Sciences, University of Colorado, Boulder, Boulder, CO 80309, USA
Morgan Baker
Department of Geological Sciences, University of Colorado, Boulder, Boulder, CO 80309, USA
James R. Metcalf
Department of Geological Sciences, University of Colorado, Boulder, Boulder, CO 80309, USA
Rebecca M. Flowers
Department of Geological Sciences, University of Colorado, Boulder, Boulder, CO 80309, USA
Related authors
Spencer D. Zeigler, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 197–228, https://doi.org/10.5194/gchron-5-197-2023, https://doi.org/10.5194/gchron-5-197-2023, 2023
Short summary
Short summary
(U–Th) / He dating relies on proper characterization of apatite crystal dimensions so that eU concentrations and dates can be calculated accurately and precisely, but there is systematic error and uncertainty in geometric measurements. By comparing 2D microscopy to
true3D measurements, we present a simple solution to correcting the error and quantifying the geometric uncertainty in eU and dates. Including this geometric correction and uncertainty matters for data evaluation and interpretation.
James R. Metcalf and Rebecca M. Flowers
EGUsphere, https://doi.org/10.5194/egusphere-2025-6263, https://doi.org/10.5194/egusphere-2025-6263, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
(U-Th)/He chronology requires measuring the absolute amount of radiogenic He in a sample. While high-quality commercial He lines are available, these machines are not always ideal for researchers interested in developing new or emerging techniques like laser ablation (U-Th)/He chronology. This manuscript describes the design, construction, automation, and calibration of a new He analysis line in the CU TRaIL facility that is optimized for laser ablation He measurements.
Spencer D. Zeigler, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 197–228, https://doi.org/10.5194/gchron-5-197-2023, https://doi.org/10.5194/gchron-5-197-2023, 2023
Short summary
Short summary
(U–Th) / He dating relies on proper characterization of apatite crystal dimensions so that eU concentrations and dates can be calculated accurately and precisely, but there is systematic error and uncertainty in geometric measurements. By comparing 2D microscopy to
true3D measurements, we present a simple solution to correcting the error and quantifying the geometric uncertainty in eU and dates. Including this geometric correction and uncertainty matters for data evaluation and interpretation.
Peter E. Martin, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 91–107, https://doi.org/10.5194/gchron-5-91-2023, https://doi.org/10.5194/gchron-5-91-2023, 2023
Short summary
Short summary
There is currently no standardized method of performing uncertainty propagation in the (U–Th) / He system, causing data interpretation difficulties. We present two methods of uncertainty propagation and describe free, open-source software (HeCalc) to apply them. Compilation of real data using only analytical uncertainty as well as 2 % and 5 % uncertainties in FT yields respective median relative date uncertainties of 2.9 %, 3.3 %, and 5.0 % for apatites and 1.7 %, 3.3 %, and 5.0 % for zircons.
Cited articles
Armstrong, E. M., Ault, A. K., Kaempfer, J. M., and Guenthner, W. R.: Connecting visual metamictization to radiation damage to expand applications of zircon (U Th)/He thermochronometry, Chem. Geol., 648, 121949, https://doi.org/10.1016/j.chemgeo.2024.121949, 2024.
Ault, A. K., Guenthner, W. R., Moser, A. C., Miller, G. H., and Refsnider, K. A.: Zircon grain selection reveals (de)coupled metamictization, radiation damage, and He diffusivity, Chem. Geol., 490, 1–12, https://doi.org/10.1016/j.chemgeo.2018.04.023, 2018.
Basler, L. C., Baughman, J. S., Fame, M. L., and Haproff, P. J.: Spatially variable syn- and post-Alleghanian exhumation of the central Appalachian Mountains from zircon (U-Th) He thermochronology, Geosphere, 17, 1151–1169, https://doi.org/10.1130/GES02368.1, 2021.
Baughman, J. S., Flowers, R. M., Metcalf, J. R., and Dhansay, T.: Influence of radiation damage on titanite He diffusion kinetics, Geochim. Cosmochim. Ac., 205, 50–64, https://doi.org/10.1016/j.gca.2017.01.049, 2017.
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML: International vocabulary of metrology – Basic and general concepts and associated terms (VIM), https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1 (last access: 29 November 2023), 2012.
Cooperdock, E. H. G., Ketcham, R. A., and Stockli, D. F.: Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th) He age data and reproducibility, Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, 2019.
Danišík, M., Ponomareva, V., Portnyagin, M., Popov, S., Zastrozhnov, A., Kirkland, C. L., Evans, N. J., Konstantinov, E., Hauff, F., and Garbe-Schönberg, D.: Gigantic eruption of a Carpathian volcano marks the largest Miocene transgression of Eastern Paratethys, Earth Planet. Sc. Lett., 563, 116890, https://doi.org/10.1016/j.epsl.2021.116890, 2021.
Dobson, K. J., Stuart, F. M., and Dempster, T. J.: U and Th zonation in Fish Canyon Tuff zircons: Implications for a zircon (U–Th)/He standard, Geochim. Cosmochim. Ac., 72, 4745–4755, https://doi.org/10.1016/j.gca.2008.07.015, 2008.
Evans, N. J., McInnes, B. I. A., Squelch, A. P., Austin, P. J., McDonald, B. J., and Wu, Q.: Application of X-ray micro-computed tomography in (U–Th)/He thermochronology, Chem. Geol., 257, 101–113, https://doi.org/10.1016/j.chemgeo.2008.08.021, 2008.
Farley, K. A., Wolf, R. A., and Silver, L. T.: The effects of long alpha-stopping distances on (U/Th)/He ages, Geochim. Cosmochim. Ac., 60, 4223–4229, https://doi.org/10.1016/S0016-7037(96)00193-7, 1996.
Flowers, R. M., Macdonald, F. A., Siddoway, C. S., and Havranek, R.: Diachronous development of Great Unconformities before Neoproterozoic Snowball Earth, P. Natl. Acad. Sci. USA, 117, 10172–10180, https://doi.org/10.1073/pnas.1913131117, 2020.
Flowers, R. M., Zeitler, P. K., Danišík, M., Reiners, P. W., Gautheron, C., Ketcham, R. A., Metcalf, J. R., Stockli, D. F., Enkelmann, E., and Brown, R. W.: (U-Th) He chronology: Part 1. Data, uncertainty, and reporting, GSA Bull., 135, 104–136, https://doi.org/10.1130/B36266.1, 2022.
Ginster, U., Reiners, P. W., Nasdala, L., and Chanmuang N. C.: Annealing kinetics of radiation damage in zircon, Geochim. Cosmochim. Ac., 249, 225–246, https://doi.org/10.1016/j.gca.2019.01.033, 2019.
Gleadow, A., Harrison, M., Kohn, B., Lugo-Zazueta, R., and Phillips, D.: The Fish Canyon Tuff: A new look at an old low-temperature thermochronology standard, Earth Planet. Sc. Lett., 424, 95–108, https://doi.org/10.1016/j.epsl.2015.05.003, 2015.
Glotzbach, C., Lang, K. A., Avdievitch, N. N., and Ehlers, T. A.: Increasing the accuracy of (U-Th(-Sm))/He dating with 3D grain modelling, Chem. Geol., 506, 113–125, https://doi.org/10.1016/j.chemgeo.2018.12.032, 2019.
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., and Giester, G.: Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th) He thermochronology, Am. J. Sci., 313, 145–198, https://doi.org/10.2475/03.2013.01, 2013.
Guenthner, W. R., Reiners, P. W., and Chowdhury, U.: Isotope dilution analysis of Ca and Zr in apatite and zircon (U-Th) He chronometry, Geochem. Geophys. Geosyst., 17, 1623–1640, https://doi.org/10.1002/2016GC006311, 2016.
Havranek, R. E. and Flowers, R. M.: Zircon (U-Th) He data for the Colorado Front Range “fourteeners” and testing Cryogenian exhumation of sub-Great Unconformity basement, Chem. Geol., 591, 120702, https://doi.org/10.1016/j.chemgeo.2021.120702, 2022.
Hawkins, D. P., Bowring, S. A., Ilg, B. R., Karlstrom, K. E., and Williams, M. L.: U-Pb geochronologic constraints on the Paleoproterozoic crustal evolution of the Upper Granite Gorge, Grand Canyon, Arizona, Geol. Soc. Am. B., 108, 1167–1181, https://doi.org/10.1130/0016-7606(1996)108<1167:UPGCOT>2.3.CO;2, 1996.
He, J. J. Y. and Reiners, P. W.: A revised alpha-ejection correction calculation for (U–Th) He thermochronology dates of broken apatite crystals, Geochronology, 4, 629–640, https://doi.org/10.5194/gchron-4-629-2022, 2022.
Herman, F., Braun, J., Senden, T. J., and Dunlap, W. J.: (U–Th)/He thermochronometry: Mapping 3D geometry using micro-X-ray tomography and solving the associated production–diffusion equation, Chem. Geol., 242, 126–136, https://doi.org/10.1016/j.chemgeo.2007.03.009, 2007.
Hoffman, P. F.: Precambrian geology and tectonic history of North America, in: The Geology of North America – An Overview, edited by: Bally, A. W. and Palmer, A. R., Geological Society of America, 447–512, https://doi.org/10.1130/DNAG-GNA-A.447, 1989.
Holland, H. D. and Gottfried, D.: The effect of nuclear radiation on the structure of zircon, Acta Cryst., 8, 291–300, https://doi.org/10.1107/S0365110X55000947, 1955.
Hourigan, J. K., Reiners, P. W., and Brandon, M. T.: U-Th zonation-dependent alpha-ejection in (U-Th) He chronometry, Geochim. Cosmochim. Ac., 69, 3349–3365, https://doi.org/10.1016/j.gca.2005.01.024, 2005.
Ketcham, R. A.: Computational methods for quantitative analysis of three-dimensional features in geological specimens, Geosphere, 1, 32–41, https://doi.org/10.1130/GES00001.1, 2005.
Ketcham, R. A., Gautheron, C., and Tassan-Got, L.: Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: Refinement of the baseline case, Geochim. Cosmochim. Ac., 75, 7779–7791, https://doi.org/10.1016/j.gca.2011.10.011, 2011.
Martin, P. E., Metcalf, J. R., and Flowers, R. M.: Calculation of uncertainty in the (U–Th) He system, Geochronology, 5, 91–107, https://doi.org/10.5194/gchron-5-91-2023, 2023.
McGrew, A. J. and Metcalf, J. M.: A Revised Cooling and Extensional Exhumation History for the Harrison Pass Pluton, Southern Ruby Mountains Metamorphic Core Complex, Elko County, Nevada, Vision for Discovery: Geology and Ore Deposits of the Great Basin, Geological Society of Nevada 2020 Symposium Proceedings, online, 2020.
Orme, D. A., Guenthner, W. R., Laskowski, A. K., and Reiners, P. W.: Long-term tectonothermal history of Laramide basement from zircon–He age-eU correlations, Earth Planet. Sc. Lett., 453, 119–130, https://doi.org/10.1016/j.epsl.2016.07.046, 2016.
Peak, B. A., Flowers, R. M., Macdonald, F. A., and Cottle, J. M.: Zircon (U-Th) He thermochronology reveals pre-Great Unconformity paleotopography in the Grand Canyon region, USA, Geology, 49, 1462–1466, https://doi.org/10.1130/G49116.1, 2021.
Peak, B. A., Flowers, R. M., and Macdonald, F. A.: Ediacaran-Ordovician tectonic and geodynamic drivers of Great Unconformity exhumation on the southern Canadian Shield, Earth Planet. Sc. Lett., 619, 118334, https://doi.org/10.1016/j.epsl.2023.118334, 2023.
Rahl, J. M., Reiners, P. W., Campbell, I. H., Nicolescu, S., and Allen, C. M.: Combined single-grain (U-Th) He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah, Geology, 31, 761–764, https://doi.org/10.1130/G19653.1, 2003.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 8 December 2023), 2023.
Reiners, P., Campbell, I., Nicolescu, S., Allen, C. M., Hourigan, J. K., Garver, J., Mattinson, J., and Cowan, D.: (U-Th)/(He-Pb) double dating of detrital zircons, Am. J. Sci., 305, 259–311, 2005.
Reiners, P. W., Farley, K. A., and Hickes, H. J.: He diffusion and (U–Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte, Tectonophysics, 349, 297–308, https://doi.org/10.1016/S0040-1951(02)00058-6, 2002.
Schmitz, M. D. and Bowring, S. A.: U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks, Geochim. Cosmochim. Ac., 65, 2571–2587, https://doi.org/10.1016/S0016-7037(01)00616-0, 2001.
Stockli, D. F. and Najman, Y. M. R.: Earth's Dynamic Past Revealed by Detrital Thermochronometry, Elements, 16, 311–317, https://doi.org/10.2138/gselements.16.5.311, 2020.
Sturrock, C. P., Flowers, R. M., Kohn, B. P., and Metcalf, J. R.: Phanerozoic Burial and Erosion History of the Southern Canadian Shield from Apatite (U-Th) He Thermochronology, Minerals, 14, 57, https://doi.org/10.3390/min14010057, 2024.
Suriano, J., Lossada, A. C., Mahoney, J. B., Tedesco, A. M., Limarino, C. O., Giambiagi, L. B., Mazzitelli, M. A., Mescua, J. F., Lothari, L., and Quiroga, R.: The southern extension of the Eocene Andean orogeny: New sedimentary record of the foreland basin in the southern Central Andes at 32° S, Basin Res., 35, 2381–2400, https://doi.org/10.1111/bre.12803, 2023.
Unruh, D. M., Snee, L. W., Foord, E. E., and Simmons, W. B.: Age and cooling history of the Pikes Peak batholith and associated pegmatites, in: Geological Society of America Abstracts with Programs, 468, 1995.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.: Welcome to the tidyverse, J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wright, J. E. and Snoke, A. W.: Tertiary magmatism and mylonitization in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada: U-Pb geochronology and Sr, Nd, and Pb isotope geochemistry, GSA Bull., 105, 935–952, https://doi.org/10.1130/0016-7606(1993)105<0935:TMAMIT>2.3.CO;2, 1993.
Zeigler, S. D., Metcalf, J. R., and Flowers, R. M.: A practical method for assigning uncertainty and improving the accuracy of alpha-ejection corrections and eU concentrations in apatite (U–Th) He chronology, Geochronology, 5, 197–228, https://doi.org/10.5194/gchron-5-197-2023, 2023.
Zeigler, S. D., Baker, M., Flowers, R. M., and Metcalf, J.: Supplemental Data for: The Geometric Correction Method for Zircon (U-Th)/He Chronology: Correcting Systematic Error and Assigning Uncertainties to Alpha-Ejection Corrections and eU Concentrations, OSF [data set], https://doi.org/10.17605/OSF.IO/QRK4J, 2024.
Short summary
(U–Th)/He chronology relies on accurate measurements of zircon grain dimensions, but the systematic error and uncertainty associated with those measurements have been unquantified until now. We build on the work of Zeigler et al. (2023) and present the zircon Geometric Correction Method, a simple solution to correcting the error and quantifying the geometric uncertainty in eU and dates. Including this geometric correction and uncertainty matters for data evaluation and interpretation.
(U–Th)/He chronology relies on accurate measurements of zircon grain dimensions, but the...