Articles | Volume 6, issue 3
https://doi.org/10.5194/gchron-6-337-2024
https://doi.org/10.5194/gchron-6-337-2024
Research article
 | 
10 Jul 2024
Research article |  | 10 Jul 2024

Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses

Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Yuri Amelin, Sandra L. Kamo, and Trevor Ireland

Related authors

Massive corals record deforestation in Malaysian Borneo through sediments in river discharge
Walid Naciri, Arnoud Boom, Matthew Payne, Nicola Browne, Noreen J. Evans, Philip Holdship, Kai Rankenburg, Ramasamy Nagarajan, Bradley J. McDonald, Jennifer McIlwain, and Jens Zinke
Biogeosciences, 20, 1587–1604, https://doi.org/10.5194/bg-20-1587-2023,https://doi.org/10.5194/bg-20-1587-2023, 2023
Short summary
Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023,https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
Resolving multiple geological events using in situ Rb–Sr geochronology: implications for metallogenesis at Tropicana, Western Australia
Hugo K. H. Olierook, Kai Rankenburg, Stanislav Ulrich, Christopher L. Kirkland, Noreen J. Evans, Stephen Brown, Brent I. A. McInnes, Alexander Prent, Jack Gillespie, Bradley McDonald, and Miles Darragh
Geochronology, 2, 283–303, https://doi.org/10.5194/gchron-2-283-2020,https://doi.org/10.5194/gchron-2-283-2020, 2020
Short summary
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
Lee F. White, Kimberly T. Tait, Sandra L. Kamo, Desmond E. Moser, and James R. Darling
Geochronology, 2, 177–186, https://doi.org/10.5194/gchron-2-177-2020,https://doi.org/10.5194/gchron-2-177-2020, 2020
Short summary
Geochemical and microstructural characterisation of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia
Liza M. Roger, Annette D. George, Jeremy Shaw, Robert D. Hart, Malcolm Roberts, Thomas Becker, Bradley J. McDonald, and Noreen J. Evans
Biogeosciences, 14, 1721–1737, https://doi.org/10.5194/bg-14-1721-2017,https://doi.org/10.5194/bg-14-1721-2017, 2017
Short summary

Related subject area

SIMS, LA-ICP-MS
On the viability of detrital biotite Rb–Sr geochronology
Kyle P. Larson, Brendan Dyck, Sudip Shrestha, Mark Button, and Yani Najman
Geochronology, 6, 303–312, https://doi.org/10.5194/gchron-6-303-2024,https://doi.org/10.5194/gchron-6-303-2024, 2024
Short summary
Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023,https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023,https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
In situ U–Pb dating of 4 billion-year-old carbonates in the martian meteorite Allan Hills 84001
Romain Tartèse and Ian C. Lyon
Geochronology, 4, 683–690, https://doi.org/10.5194/gchron-4-683-2022,https://doi.org/10.5194/gchron-4-683-2022, 2022
Short summary
Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications
Darwinaji Subarkah, Angus L. Nixon, Monica Jimenez, Alan S. Collins, Morgan L. Blades, Juraj Farkaš, Sarah E. Gilbert, Simon Holford, and Amber Jarrett
Geochronology, 4, 577–600, https://doi.org/10.5194/gchron-4-577-2022,https://doi.org/10.5194/gchron-4-577-2022, 2022
Short summary

Cited articles

Abell, R. S.: Geology of Canberra 1:100 000 Sheet area, New South Wales and Australian Capital Territory, Bureau of Mineral Resources, Australia, Bulletin, 233, 116 pp., 1991. 
Amelin, Y., Lee, D.-C., Halliday, A. N., and Pidgeon, R. T.: Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons, Nature, 399, 252–255, 1999. 
Ávila, J. N., Holden, P., Ireland, T. R., Lanc, P., Schram, N., Latimore, A., Foster, J. J., Williams, I. S., Loiselle, L., and Fu, B.: High-precision oxygen isotope measurements of zircon reference materials with the SHRIMP-SI, Geostand. Geoanal. Res., 44, 85–102, https://doi.org/10.1111/ggr.12298, 2020. 
Beyer, C., Klemme, S., Grutzner, T., Ireland, T. R., Magee, C. W., and Frost, D. J.: Fluorine partitioning between eclogitic garnet, clinopyxoxene, and melt at upper mantle conditions, Chem. Geol., 437, 88–97, https://doi.org/10.1007/s00410-017-1329-1, 2016. 
Beyer, E. E., Verdel, C., Normington, V. J., and Magee, C.: Summary of results. Joint NTGS-GA geochronology project: western Amadeus Basin, July 2019–June 2020, Northern Territory Geological Survey Record 2020-006, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/90621 (last access: 3 June 2023), 2020. 
Download
Short summary
Zircon is a mineral where uranium decays to lead. Some radiation damage lets lead escape. A method called chemical abrasion (CA) dissolves out the damaged portions of zircon so that remaining zircon retains lead. We compare ion beam analyses of untreated and chemically abraded zircons. The ion beam ages for untreated zircons match the reference values for untreated zircon. The ion beam ages for CA zircon match CA reference ages. Other elements are unaffected by the chemical abrasion process.