Articles | Volume 6, issue 3
https://doi.org/10.5194/gchron-6-337-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-337-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses
Cate Kooymans
Geoscience Australia, Symonston, ACT 2609, Australia
Charles W. Magee Jr.
CORRESPONDING AUTHOR
Geoscience Australia, Symonston, ACT 2609, Australia
Kathryn Waltenberg
Geoscience Australia, Symonston, ACT 2609, Australia
Noreen J. Evans
John de Laeter Centre, Curtin University, Bentley WA 6102, Australia
Simon Bodorkos
Geoscience Australia, Symonston, ACT 2609, Australia
Yuri Amelin
Research School of Earth Sciences, Australian National University, Canberra, ACT 2600, Australia
Korea Basic Science Institute, Ochang, Cheongju, Chungbuk 28119, South Korea
Sandra L. Kamo
Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
Trevor Ireland
Research School of Earth Sciences, Australian National University, Canberra, ACT 2600, Australia
School of the Environment, Steele Building, 3 Staff House Road, University of Queensland, St Lucia QLD 4072, Australia
Related authors
No articles found.
Charles W. Magee Jr., Lutz Nasdala, Renelle Dubosq, Baptiste Gault, and Simon Bodorkos
Geochronology, 7, 591–602, https://doi.org/10.5194/gchron-7-591-2025, https://doi.org/10.5194/gchron-7-591-2025, 2025
Short summary
Short summary
Chemical abrasion (CA) is a two-step method for reducing Pb loss where zircon is annealed then partially dissolved. We use secondary ion mass spectrometry (SIMS) to find closed- and open-system zircon domains in zircon that has been chemically abraded, annealed only, or untreated. Raman mapping identifies lattice damage in SIMS spots. Atom probe tomography (APT) results from both the discordant spots and the concordant ones are all homogeneous and identical. Thus, APT cannot distinguish discordant and concordant zircon.
Walid Naciri, Arnoud Boom, Matthew Payne, Nicola Browne, Noreen J. Evans, Philip Holdship, Kai Rankenburg, Ramasamy Nagarajan, Bradley J. McDonald, Jennifer McIlwain, and Jens Zinke
Biogeosciences, 20, 1587–1604, https://doi.org/10.5194/bg-20-1587-2023, https://doi.org/10.5194/bg-20-1587-2023, 2023
Short summary
Short summary
In this study, we tested the ability of massive boulder-like corals to act as archives of land use in Malaysian Borneo to palliate the lack of accurate instrumental data on deforestation before the 1980s. We used mass spectrometry to measure trace element ratios in coral cores to use as a proxy for sediment in river discharge. Results showed an extremely similar increase between our proxy and the river discharge instrumental record, demonstrating the use of these corals as reliable archives.
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023, https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
Short summary
SHRIMP (Sensitive High Resolution Ion MicroProbe) is an instrument that for decades has used the radioactive decay of uranium into lead to measure geologic time. The accuracy and precision of this instrument has not been seriously reviewed in almost 20 years. This paper compares several dozen SHRIMP ages in our database with more accurate and precise methods to assess SHRIMP accuracy and precision. Analytical and geological complications are addressed to try to improve the method.
Cited articles
Abell, R. S.: Geology of Canberra 1:100 000 Sheet area, New South Wales and Australian Capital Territory, Bureau of Mineral Resources, Australia, Bulletin, 233, 116 pp., 1991.
Amelin, Y., Lee, D.-C., Halliday, A. N., and Pidgeon, R. T.: Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons, Nature, 399, 252–255, 1999.
Ávila, J. N., Holden, P., Ireland, T. R., Lanc, P., Schram, N., Latimore, A., Foster, J. J., Williams, I. S., Loiselle, L., and Fu, B.: High-precision oxygen isotope measurements of zircon reference materials with the SHRIMP-SI, Geostand. Geoanal. Res., 44, 85–102, https://doi.org/10.1111/ggr.12298, 2020.
Beyer, C., Klemme, S., Grutzner, T., Ireland, T. R., Magee, C. W., and Frost, D. J.: Fluorine partitioning between eclogitic garnet, clinopyxoxene, and melt at upper mantle conditions, Chem. Geol., 437, 88–97, https://doi.org/10.1007/s00410-017-1329-1, 2016.
Beyer, E. E., Verdel, C., Normington, V. J., and Magee, C.: Summary of results. Joint NTGS-GA geochronology project: western Amadeus Basin, July 2019–June 2020, Northern Territory Geological Survey Record 2020-006, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/90621 (last access: 3 June 2023), 2020.
Black, L., Kamo, S. L., Williams, I. S., Mundil, R., Davis, D. W., Korsch, R. J., and Foudoulis, C.: The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards, Chem. Geol., 200, 171–188, https://doi.org/10.1016/S0009-2541(03)00166-9, 2003.
Black, L., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., and Foudoulis, C.: Improved microprobe geochronology by the monitoring of a trace element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 205 115–140, https://doi.org/10.1016/j.chemgeo.2004.01.003, 2004.
Bodorkos, S., Stern, R. A., Kamo, S. L., Corfu, F., and Hickman, A. H.: OG1: A Natural Reference Material for Quantifying SIMS Instrumental Mass Fractionation (IMF) of Pb Isotopes During Zircon Dating, Eos Trans. AGU, 90, Fall Meet. Suppl., Abstract V33B-2044, 2009.
Bodorkos, S., Blevin, P. L., Eastlake, M. A., Downes, P. M., Campbell, L. M., Gilmore, P. J., Hughes, K. S., Parker, P. J., and Trigg, S. J.: New SHRIMP U-Pb zircon ages from the central and eastern Lachlan Orogen, New South Wales: July 2013–June 2014, Record 2015/02, Geoscience Australia, Canberra, Report GS2015/0002, Geological Survey of New South Wales, Maitland, https://doi.org/10.11636/Record.2015.002, 2015.
Bouvier, A., Vervoort, J. D., and Patchett, P. J.: The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets, Earth Planet. Sc. Lett., 273, 48–57, https://doi.org/10.1016/j.epsl.2008.06.010, 2008.
Burnham, A. D. and Berry, A. J.: Formation of Hadean granites by melting of igneous crust, Nat. Geosci., 10, 457–461, https://doi.org/10.1038/ngeo2942, 2017.
Chappell, B. W. and White, A. J. R.: Two contrasting granite types, Pacific Geology, 8, 173–174, 1974.
Chu, N.-C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., German, C. R., Bayon, G., and Burton, K.: Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections, J. Anal. Atom. Spectrom., 17, 1567–1574, 2002.
Claoué-Long, J. C., Compston, W., Roberts, J., and Fanning, C. M.: Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis, in: Geochronology, Time Scales and Global Stratigraphic Correlation, edited by: Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., SEPM Special Publication, SEPM (Society for Sedimentary Geology), 3–21, 1995.
Coble, M. A., Vazquez, J. A., Barth, A. P., Wooden, J., Burns, D., Kylander-Clark, A., Jackson, S., and Vennari, C. E.: Trace Element Characterisation of MAD-559 Zircon Reference Material for Ion Microprobe Analysis, Geostand. Geoanal. Res., 42, 481–497, https://doi.org/10.1111/ggr.12238, 2018.
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., and Parrish, R.: Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I), Geochim. Cosmochim. Ac., 164, 464–480, https://doi.org/10.1016/j.gca.2015.05.026, 2015.
Crowley, Q. G., Heron, K., Riggs, N., Kamber, B., Chew, D., McConnell, B., and Benn, K.: Chemical abrasion applied to LA-ICP-MS U–Pb zircon, Geochronology Minerals, 4, 503–518, https://doi.org/10.3390/min4020503, 2014.
Davydov, V. I., Crowley, J. L., Schmitz, M. D., and Poletaev, V. I.: High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets basin, eastern Ukraine, Geochem. Geophys. Geosyst., 11, Q0AA04, https://doi.org/10.1029/2009GC002736, 2010.
DiBugnara, D.: Standard operating procedure for preparation of grain mounts for SHRIMP analysis: Mineral Separation Laboratory, Geoscience Australia Record 2016/19, https://doi.org/10.11636/Record.2016.019, 2016.
Dodson, M. H.: A linear method for second-degree interpolation in cyclical data collection, J. Phys. E, 11, p. 296, 1978.
Donaghy, E. E., Eddy, M. P., Moreno, F., and Ibañez-Mejia, M.: Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS, Geochronology, 6, 89–106, https://doi.org/10.5194/gchron-6-89-2024, 2024.
Ewing, R. C., Meldrum, A., Wang, L., Weber, W. J., and Corrales, L. R.: Radiation effects in zircon, Rev. Mineral. Geochem., 53, 387–425, https://doi.org/10.2113/0530387, 2003.
Fergusson, C. L., Carr, P. F., Fanning C. M., and Green, T. J.: Proterozoic-Cambrian detrital zircon and monazite ages from the Anakie Inlier, central Queensland: Grenville and Pacific-Gondwana signatures, Australian J. Earth Sci., 48, 857–866, https://doi.org/10.1046/j.1440-0952.2001.00904.x, 2001.
Fergusson, C. L. and Fanning, C. M.: Late Ordovician stratigraphy, zircon provenance and tectonics, Lachlan Fold Belt, southeastern Australia, Australian J. Earth Sci., 49, 423–436, https://doi.org/10.1046/j.1440-0952.2002.00929.x, 2002.
Fergusson, C. L., Henderson, R. A., Fanning C. M., and Withnall, I. W.: Detrital zircon ages in Neoproterozoic to Ordovician siliciclastic rocks, northeastern Australia: implications for the tectonic history of the East Gondwana continental margin. 2007, J. Geol. Soc. Lond., 164, 215–225, https://doi.org/10.1144/0016-76492005-136, 2007.
Ferry, J. M. and Watson, E. B.: New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib. Mineral. Petr., 154, 429–437, https://doi.org/10.1007/s00410-007-0201-0 , 2007.
Fraser, G. L., Waltenberg, K., Jones, S. L., Champion, D. C., Huston, D. L., Lewis, C. J., Bodorkos, S., Forster, M., Vasegh, D., Ware, B., and Tessalina, S.: An Isotopic Atlas of Australia. Exploring for the Future: Extended Abstracts, Geoscience Australia, https://doi.org/10.11636/133772, 2020.
Gerstenberger, H. and Haase, G.: A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations, Chem. Geol., 136, 309–312, 1997.
Harrison, T. M., Blichert-Toft, J., Muller, W., Albarède, F., Holden, P., and Mojzsis, S. J.: Heterogeneous Hadean hafnium: evidence of continental crust at 4.4–4.5 Ga, Science, 310, 1947–1950, 2005.
Hiess, J., Bennett, V. C., Nutman, A. P., and Williams, I. S.: In situ U–Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: new insights to making old crust, Geochim. Cosmochim. Ac., 73, 4489–4516, https://doi.org/10.1016/j.gca.2009.04.019, 2009.
Holmes, A.: The Age of the Earth, Harper & Brothers, London, 196 pp., 1913.
Horstwood, M. S., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J. F., Condon, D. J., and Schoene, B.: Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology–Uncertainty propagation, age interpretation and data reporting, Geostand. Geoanal. Res., 40, 311–332, https://doi.org/10.1111/j.1751-908X.2016.00379.x, 2016.
Huyskens, M. H., Zink, S., and Amelin, Y.: Evaluation of temperature-time conditions for the chemical abrasion treatment of single zircons for U-Pb geochronology, Chem. Geol., 438, 25–35, https://doi.org/10.1016/j.chemgeo.2016.05.013, 2016.
Ickert, R. B.: U-Pb, Lu-Hf, and O isotope systematics of zircon from southeastern Australian Siluro-Devonian granites, The Australian National University, 2010.
Ickert, R. B., Hiess, J., Williams, I. S., Holden, P., Ireland, T. R., Lanc, P., Schram, N., Foster, J. J., and Clement, S. W.: Determining high precision, in situ, oxygen isotope rations with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites, Chem. Geol., 257, 114–128, https://doi.org/10.1016/j.chemgeo.2008.08.024, 2008.
Ickert, R. B., Mundil, R., Magee, C. W. Jr., and Mulcahy, S. R.: The U-Th-Pb systematics of zircon from the Bishop Tuff: A case study in challenges to high-precision Pb/U geochronology at the millennial scale, Geochim. Cosmochim. Ac., 168, 88–110, https://doi.org/10.1016/j.gca.2015.07.018, 2015.
Ireland, T. R., Flöttmann, T., Fanning, C. M., Gibson, G. M., and Preiss, W. V.: Development of the early Paleozoic Pacific margin of Gondwana from detrital zircon ages across the Delamerian orogen, Geology, 26, 243–246, https://doi.org/10.1130/0091-7613(1998)026<0243:DOTEPP>2.3.CO;2, 1998.
Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A.: The application of laser ablation-inductively coupled-mass spectrometry to in situ U-Pb zircon geochronology, Chem. Geol., 211, 47–69, 2004.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M.: Precision measurement of half-lives and specific activities of 235U and 238U, Phys. Rev., 4, 1889–1906, 1971.
Jeon, H. and Whitehouse, M. J.: A critical evaluation of U-Pb Calibration Schemes used in SIMS Zircon Geochronology, Geostand. Geoanal. Res., 39, 443–452, https://doi.org/10.1111/j.1751-908X.2014.00325.x, 2014.
Keay, S., Steele, D., and Compston, W.: Identifying granite sources by SHRIMP U-Pb zircon geochronology: an application to the Lachlan foldbelt, Contrib. Mineral. Petr., 137, 323–341, 1999.
Kemp, A. I. S., Vervoort, J. D., Bjorkman, K., and Iaccheri, L. M.: Hafnium isotope characteristics of Palaeoarchaean zircon OG1/PGC from the Owens Gully Diorite, Pilbara Craton, Western Australia, Geostand. Geoanal. Res., 41, 659–673, https://doi.org/10.1111/ggr.12182, 2017.
Kohlstedt, D. L., Goetze, C., Durham, W. B., and Vander Sande, J.: New technique for decorating dislocations in olivine, Science, 191, 1045–1046, 1976.
Kositcin, N., Magee, C. W., Whelan, J. A., and Champion, D. C.: New SHRIMP geochronology from the Arunta Region: 2009–2010, Geoscience Australia Record 2011/14, 14, 1–61, 2011.
Krogh, T. E.: A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations, Geochim. Cosmochim. Ac., 37, 485–494, 1973.
Krogh, T. E.: Improved accuracy of U-Pb ages by the creation of more concordant systems using an air abrasion technique, Geochim. Cosmochim. Ac., 46, 637–649, 1982.
Kryza, R., Crowley, Q. G., Larionov, A., Pin, C., Oberc-Dzirdzic, T., and Mochnacka, K.: Chemical Abrasion applied to SHRIMP zircon geochronology: an example from the Variscan Karkonosze Granite (Sudetes, SW Poland), Gondwana Res., 21, 757, https://doi.org/10.1016/j.gr.2011.07.007, 2012.
Kryza, R., Schaltegger, U., Oberc-Dziedzic, T., Pin, C., and Ovtcharova, M.: Geochronology of a composite granitoid pluton: a high-precision ID-TIMS U-Pb zircon study of the Variscan Karkonosze Granite (SW Poland), Int. J. Earth Sci., 103, 683–696, 2014.
Ludwig, K. R.: User's Manual for Isoplot 3.6 (April 2008 revision). Berkeley Geochronology Center, Special Publication 4, http://sourceforge.net/projects/isoplot/ (last access: 22 September 2023), 2003.
Ludwig, K. R.: Squid 2, A user's manual (revision 2.50, April 2009), Berkeley Geochronology Center Special Publication, 100 pp., 2009.
Magee Jr., C. W., Teles, G., Vicenzi, E. P., Taylor, W., and Heaney, P.: Uranium irradiation history of carbonado diamond: implications for Paleoarchean oxidation in the São Francisco craton, Geology, 44, 527–530, https://doi.org/10.1130/G37749.1, 2016.
Magee Jr., C. W., Danišík, M., and Mernagh, T.: Extreme isotopologue disequilibrium in molecular SIMS species during SHRIMP geochronology, Geosci. Instrum. Method. Data Syst., 6, 523–536, https://doi.org/10.5194/gi-6-523-2017, 2017.
Magee Jr., C. W., Bodorkos, S., Lewis, C. J., Crowley, J. L., Wall, C. J., and Friedman, R. M.: Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS, Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023, 2023.
Matsuda, H.: Double focusing mass spectrometers of second order, Int. J. Mass Spectrom. Ion Phys., 14, 219–233, https://doi.org/10.1016/0020-7381(74)80009-4, 1974.
Mattinson, J. M.: Extending the Krogh legacy: development of the CA–TIMS method for zircon U–Pb geochronology, Can. J. Earth Sci., 48, 95–105, 2011.
Mattinson, J. M.: Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol., 220, 47–66, https://doi.org/10.1016/j.chemgeo.2005.03.011, 2005.
McKanna, A. J., Koran, I., Schoene, B., and Ketcham, R. A.: Chemical abrasion: the mechanics of zircon dissolution, Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, 2023.
McKanna, A. J., Schoene, B., and Szymanowski, D.: Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments, Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, 2024.
McLean, N. M., Condon, D. J., Schoene, B., and Bowring, S. A.: Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II), Geochim. Cosmochim. Ac., 164, 481–501, https://doi.org/10.1016/j.gca.2015.02.040, 2015.
Mo, J., Xia, X.-P., Li, P.-F., Spencer, C. J., Lai, C.-K., Xu, J., Yang, Q., Sun, M.-D., Yu, Y., and Milan, L.: Water-in-zircon: a discriminant between S- and I-type granitoid, Contrib. Mineral. Petr., 178, 5, https://doi.org/10.1007/s00410-022-01986-7, 2023.
Mundil, R., Ludwig, K. R., Metcalfe I., and Renne, P. R.: Age and timing of the Permian Mass Extinctions: U/Pb Dating of Closed-System Zircons, Science, 305, 1760–1763, https://doi.org/10.1126/science.1101012, 2004.
Nasdala, L., Corfu, F., Valley, J. W., Spicuzza, M. J., Wu, F. Y., Li, Q. L., Yang, Y. H., Fisher, C., Münker, C., Kennedy, A. K., and Reiners, P. W.: Zircon M127 – A homogeneous reference material for SIMS U–Pb geochronology combined with hafnium, oxygen and, potentially, lithium isotope analysis, Geostand. Geoanal. Res., 40, 457–475, https://doi.org/10.1111/ggr.12123, 2016.
Nasdala, L., Corfu, F., Schoene, B., Tapster, S. R., Wall, C. J., Schmitz, M. D., Ovtcharova, M., Schaltegger, U., Kennedy, A. K., Kronz, A., Reiners, P. W., Yang, Y.-H., Wu, F.-Y., Gain, S. E. M., Griffin, W. L., Szymanowski, D., Chanmuang, C., Ende, N. M., Valley, J. W., Spicuzza, M. J., Wanthanachaisaeng, B., and Giester, G.: GZ7 and GZ8 – Two Zircon Reference Materials for SIMS U-Pb Geochronology, Geostand. Geoanal. Res., 42, 431–457, https://doi.org/10.1111/ggr.12239, 2018.
Patchett, P. J. and Tatsumoto, M.: Hafnium isotope variations in oceanic basalts, Geophys. Res. Lett., 7, 1077–1080, 1980.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite: freeware for the visualization and processing of mass spectrometer data, J. Anal. Atom. Spectrom., 26, 2508–2518, 2011.
Peterman, E. M., Reddy, S. M., Saxey, D. W., Snoeyenbos, D. R., Rickard, W. D., Fougerouse, D., and Kylander-Clark, A. R.: Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops, Sci. Adv., 2, e1601318, https://doi.org/10.1126/sciadv.1601318, 2016.
Purdy, D. J., Cross, A. J., Brown, D. D., Carr, P. A., and Armstrong, R. A.: New constraints on the origin and evolution of the Thomson Orogen and links with central Australia from isotopic studies of detrital zircons, Gondwana Res., 39, 41–56, 2016.
Schaltegger, U., Schmitt, A. K., and Horstwood, M. S. A.: U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities, Chem. Geol., 402, 89–110, https://doi.org/10.1016/j.chemgeo.2015.02.028, 2015.
Schaltegger, U., Ovtcharova, M., Gaynor, S. P., Schoene, B., Wotzlaw, J-F, Davies, J. F. H. L., Farina, F., Greber, N. D., Szymanowski, D., and Chelle-Michou, C.: Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U-Pb geochronology, J. Anal. Atom. Spectrom., 36, 1466–1477, https://doi.org/10.1039/D1JA00116G, 2021.
Scherer, E., Munker, C., and Mezger, K.: Calibration of the Lutetium-Hafnium clock, Science, 293, 683–687, 2001.
Schmitt, A. K., Magee, J., Williams, I., Holden, P., Ireland, T., DiBugnara, D. L., and Bodorkos, S.: Oxygen isotopic heterogeneity in the Temora-2 reference zircon, Geoscience Australia Record 2019-04, https://doi.org/10.11636/Record.2019.004, 2019.
Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., and Bowring, S. A.: Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data, Geochim. Cosmochim. Ac., 70, 426–445, https://doi.org/10.1016/j.gca.2005.09.007, 2006.
Schoene, B., Latkoczy, C., Schaltegger, U., and Günther, D.: A new method integrating high-precision U-Pb geochronology with zircon trace element analysis (U-Pb TIMS-Tea), Geochim. Cosmochim. Ac., 74, 7144–7159, https://doi.org/10.1016/j.gca.2010.09.016, 2010.
Schuhmacher, M., Fernandes, F., and de Chambost, E.: Achieving high reproducibility isotope ratios with the Cameca IMS 1270 in the multicollection mode, Appl. Surface Sci., 231–232, 878–882, https://doi.org/10.1016/j.apsusc.2004.03.157, 2004.
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J.: Plesovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis, Chem. Geol., 249, 1–35, 2008.
Stacey, J. T. and Kramers, J. D.: Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sc. Lett., 26, 207–221, https://doi.org/10.1016/0012-821X(75)90088-6, 1975.
Stern, R. A. and Amelin, Y.: Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM 610 glass, Chem. Geol., 197, 111–142, https://doi.org/10.1016/S0009-2541(02)00320-0, 2003.
Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H., and Corfu, F.: Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating, Geostand. Geoanal. Res., 33, 145–168, https://doi.org/10.1111/j.1751-908X.2009.00023.x, 2009.
Szymanowski, D., Fehr, M. A., Guillong, M., Coble, M. A., Wotzlaw, J-F., Nasdala, L., Ellis, B. S., Bachmann, O., and Schönbächer, M.: Isotope-dilution anchoring of zircon reference materials for accurate Ti-in-zircon thermometry, Chem. Geol., 483, 146–154, https://doi.org/10.1016/j.chemgeo.2018.02.001, 2018.
Thirlwall, M. and Anczkiewicz, R.: Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios, Int. J. Mass Spectrom., 235, 59–81, 2004.
Trail, D., Thomas, J. B., and Watson, E. B.: The incorporation of hydroxyl into zircon, American Mineralogist, 96, 60–67, https://doi.org/10.2138/am.2011.3506, 2011.
Vogt, M., Schwartz, W. H., Schmitt, A. K., Schmitt, J., Trieloff, M., Harrison, T. M., and Bell, E. A.: Graphitic Inclusions in zircon from early Phanerozoic S-type granite: Implications for the preservation of Hadean biosignatures, Geochim. Cosmochim. Ac., 349, 23–40, https://doi.org/10.1016/j.gca.2023.03.022, 2023.
Von Quadt, A., Wotzlaw, J.-F., Buret, Y., Large, S. J. E., Peytcheva, I., and Trinquier, A.: High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors, J. Anal. Atom. Spectrom., 31, 658–665, https://doi.org/10.1039/C5JA00457H 2016.
Watts, K. E., Coble, M. A., Vazquez, J. A., Henry, C. D., Colgan, J. P., and John, D. A.: Chemical abrasion-SIMS (CA-SIMS) U-Pb dating of zircon from the late Eocene Caetano caldera Nevada, Chem. Geol., 439, 139–151, https://doi.org/10.1016/j.chemgeo.2016.06.013, 2016.
Wiedenbeck, M. A. P. C., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F. V., Quadt, A. V., Roddick, J. C., and Spiegel, W.: Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostandards Newsletter, 19, 1–23, https://doi.org/10.1111/j.1751-908X.1995.tb00147.x, 1995.
Woodhead, J. and Hergt, J.: A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination, Geostand. Geoanal. Res., 29, 183–195, 2005.
Woodhead, J., Hergt, J., Shelley, M., Eggins, S., and Kemp, R.: Zircon Hf-isotope analysis analysis with an excimer laser, depth profiling, ablation of complex geometries and comcomitant age estimation, Chem. Geol., 209, 121–135, 2004.
Short summary
Zircon is a mineral where uranium decays to lead. Some radiation damage lets lead escape. A method called chemical abrasion (CA) dissolves out the damaged portions of zircon so that remaining zircon retains lead. We compare ion beam analyses of untreated and chemically abraded zircons. The ion beam ages for untreated zircons match the reference values for untreated zircon. The ion beam ages for CA zircon match CA reference ages. Other elements are unaffected by the chemical abrasion process.
Zircon is a mineral where uranium decays to lead. Some radiation damage lets lead escape. A...