Articles | Volume 7, issue 2
https://doi.org/10.5194/gchron-7-173-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-173-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
40Ar ∕ 39Ar age constraints on the formation of fluid-rich quartz veins from the NW Rhenohercynian zone (Rursee area, Germany)
Akbar Aydin Oglu Huseynov
CORRESPONDING AUTHOR
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Jan Wijbrans
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Klaudia Kuiper
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Jeroen van der Lubbe
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
Related authors
No articles found.
Hubert B. Vonhof, Sophie Verheyden, Dominique Bonjean, Stéphane Pirson, Michael Weber, Denis Scholz, John Hellstrom, Hai Cheng, Xue Jia, Kévin Di Modica, Gregory Abrams, Marjan A. P. van Nunen, Joost Ruiter, Michèlle van der Does, Daniel Böhl, and Jeroen H. J. L. van der Lubbe
Clim. Past, 20, 2741–2758, https://doi.org/10.5194/cp-20-2741-2024, https://doi.org/10.5194/cp-20-2741-2024, 2024
Short summary
Short summary
The sedimentary sequence in Scladina Cave (Belgium) is well-known for its rich archeological assemblages and its numerous faunal remains. Of particular interest is the presence of a nearly complete jaw bone of a Neanderthal child. In this study, we present new uranium series ages of stalagmites from the archeological sequence that allow more precise dating of the archeological finds. One key result is that the Neanderthal child may be slightly older than previously thought.
Karl Purcell, Margit H. Simon, Ellie J. Pryor, Simon J. Armitage, Jeroen van der Lubbe, and Eystein Jansen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2499, https://doi.org/10.5194/egusphere-2024-2499, 2024
Short summary
Short summary
During the past 260 000 years, rains over southern South Africa underwent many fluctuations which could have affected the behaviour and innovations of humans living there. In this study we reconstruct the rainfall during this period in this area, using X-ray analysis of a sediment core retrieved in the ocean south of South Africa. We confirmed that a 23 000 year cycle of the orbit of the earth affected rainfall, and that rainfall was higher at around 117 000 years, 93 000, and 72 000 years ago.
Katharina M. Boehm, Klaudia F. Kuiper, Bora Uzel, Pieter Z. Vroon, and Jan R. Wijbrans
Geochronology, 5, 391–403, https://doi.org/10.5194/gchron-5-391-2023, https://doi.org/10.5194/gchron-5-391-2023, 2023
Short summary
Short summary
The island of Patmos is situated in the southern Aegean Sea (Greece), just north of the present locus of active volcanism. The island is almost entirely built up of volcanic rocks that are 6.6 to 5.2 million years old. We obtain these ages with 40Ar / 39Ar dating technique on sanidine and biotite minerals. Our new age data indicate a geologically brief volcanic period (lasting less than 1.5 million years) that can be divided into three volcanic intervals and correlated to tectonics.
Xiaolong Zhou, Klaudia Kuiper, Jan Wijbrans, Katharina Boehm, and Pieter Vroon
Geochronology, 3, 273–297, https://doi.org/10.5194/gchron-3-273-2021, https://doi.org/10.5194/gchron-3-273-2021, 2021
Short summary
Short summary
High-resolution geochronology is one of the key factors to predict volcanic eruptions. To build up a high-resolution geochronological framework, we reported 21 new high-precision eruption ages (40Ar / 39Ar) for a ~ 3.3 × 106-year-old volcanic field: Milos (Greece). In combination with geochemical information and eruption volumes from the volcanoes of Milos, the long-lived volcanic history could provide important clues for the prediction of volcanic eruptions.
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Related subject area
Argon/argon dating
Emplacement age of the Sevier gravity slide, Utah, USA
New developments in incremental heating detrital 40Ar∕39Ar lithic (DARL) geochronology using Icelandic river sand
Volcanism straddling the Miocene–Pliocene boundary on Patmos and Chiliomodi islands (southeastern Aegean Sea): insights from new 40Ar ∕ 39Ar ages
Direct dating of overprinting fluid systems in the Martabe epithermal gold deposit using highly retentive alunite
Complex 40Ar ∕ 39Ar age spectra from low-grade metamorphic rocks: resolving the input of detrital and metamorphic components in a case study from the Delamerian Orogen
Deformation recorded in polyhalite from evaporite detachments revealed by 40Ar ∕ 39Ar dating
Eruptive history and 40Ar∕39Ar geochronology of the Milos volcanic field, Greece
Production of 40Ar by an overlooked mode of 40K decay with implications for K-Ar geochronology
The Isotopx NGX and ATONA Faraday amplifiers
Tiffany Rivera, McKenna Holliday, Brian Jicha, David H. Malone, Michael J. Braunagel, V. Alex Bonilla Franco, Robert F. Biek, W. Ashley Griffith, and David B. Hacker
Geochronology, 7, 35–44, https://doi.org/10.5194/gchron-7-35-2025, https://doi.org/10.5194/gchron-7-35-2025, 2025
Short summary
Short summary
The timing of an ancient gravity slide that originated in the Marysvale volcanic field (Utah) is constrained using 40Ar/39Ar dating of pseudotachylyte, a friction-induced glass that is generated during slide movement, and the volcanic tuffs that were displaced by the slide and those that overly the slide mass. Our results suggest that the Sevier gravity slide occurred at 25.25 Ma. The removal of such a large volume of material likely allowed for the eruption of the Antimony Tuff at 25.19 Ma.
Odinaka Okwueze, Kevin Konrad, and Tomas Capaldi
Geochronology, 6, 683–696, https://doi.org/10.5194/gchron-6-683-2024, https://doi.org/10.5194/gchron-6-683-2024, 2024
Short summary
Short summary
Understanding how volcanic landscapes evolve through time is important for constraining the role volcanism plays in driving variations in geography, climate, and ocean circulation. A powerful tool for understanding the chronologic history of a terrain is detrital geochronology. However, traditional detrital geochronology is restricted to felsic minerals. Here we build upon methods for determining the timing of mafic volcanic terrain using argon geochronology on grains of Icelandic sand.
Katharina M. Boehm, Klaudia F. Kuiper, Bora Uzel, Pieter Z. Vroon, and Jan R. Wijbrans
Geochronology, 5, 391–403, https://doi.org/10.5194/gchron-5-391-2023, https://doi.org/10.5194/gchron-5-391-2023, 2023
Short summary
Short summary
The island of Patmos is situated in the southern Aegean Sea (Greece), just north of the present locus of active volcanism. The island is almost entirely built up of volcanic rocks that are 6.6 to 5.2 million years old. We obtain these ages with 40Ar / 39Ar dating technique on sanidine and biotite minerals. Our new age data indicate a geologically brief volcanic period (lasting less than 1.5 million years) that can be divided into three volcanic intervals and correlated to tectonics.
Jack Muston, Marnie Forster, Davood Vasegh, Conrad Alderton, Shawn Crispin, and Gordon Lister
Geochronology, 5, 153–179, https://doi.org/10.5194/gchron-5-153-2023, https://doi.org/10.5194/gchron-5-153-2023, 2023
Short summary
Short summary
About 2 million years ago, rich gold deposits formed at Martabe, on the island of Sumatra in Indonesia. Fluids may have moved as the result of fault dilation caused by changes in stress orientation during the earthquake cycle, so to work out exactly when and how long between cycles, we dated a potassium-bearing mineral, alunite, using argon geochronology in association with diffusion experiments during temperature-controlled furnace step-heating, showing two episodes 250 thousand years apart.
Anthony Reid, Marnie Forster, Wolfgang Preiss, Alicia Caruso, Stacey Curtis, Tom Wise, Davood Vasegh, Naina Goswami, and Gordon Lister
Geochronology, 4, 471–500, https://doi.org/10.5194/gchron-4-471-2022, https://doi.org/10.5194/gchron-4-471-2022, 2022
Short summary
Short summary
Dating low-grade metamorphic rocks with the 40Ar / 39Ar method is difficult because samples are fine-grained mixtures between detrital and newly grown metamorphic minerals. We use a careful step-heating schedule and resolve limits within the complex age spectra thus derived to infer the timing of metamorphism and deformation in the Delamerian Orogen (formerly part of eastern Gondwana). Results suggest detrital mineral from up to 1172 Ma and that metamorphic minerals grew at 470–458 Ma.
Lachlan Richards, Fred Jourdan, Alan Stephen Collins, and Rosalind Clare King
Geochronology, 3, 545–559, https://doi.org/10.5194/gchron-3-545-2021, https://doi.org/10.5194/gchron-3-545-2021, 2021
Short summary
Short summary
This research is part of a PhD thesis examining evaporite detachments characteristics. 40Ar/39Ar geochronology is employed to constrain the timing of formation and deformation events. A diagenetic age of ~514 Ma is interpreted from the oldest significant step age. Other step ages may represent a Cambrian–Permian deformation event or a complex mixing age of diagenetic Ar with partially reset Ar during the Cenozoic. We report the first closure temperature for polyhalite between 254 and 277 °C.
Xiaolong Zhou, Klaudia Kuiper, Jan Wijbrans, Katharina Boehm, and Pieter Vroon
Geochronology, 3, 273–297, https://doi.org/10.5194/gchron-3-273-2021, https://doi.org/10.5194/gchron-3-273-2021, 2021
Short summary
Short summary
High-resolution geochronology is one of the key factors to predict volcanic eruptions. To build up a high-resolution geochronological framework, we reported 21 new high-precision eruption ages (40Ar / 39Ar) for a ~ 3.3 × 106-year-old volcanic field: Milos (Greece). In combination with geochemical information and eruption volumes from the volcanoes of Milos, the long-lived volcanic history could provide important clues for the prediction of volcanic eruptions.
Jack Carter, Ryan B. Ickert, Darren F. Mark, Marissa M. Tremblay, Alan J. Cresswell, and David C. W. Sanderson
Geochronology, 2, 355–365, https://doi.org/10.5194/gchron-2-355-2020, https://doi.org/10.5194/gchron-2-355-2020, 2020
Short summary
Short summary
40K is an isotope of potassium that undergoes several different modes of radioactive decay. We use the decay of 40K to determine the ages of geologic materials that contain potassium but doing this requires us to know the rate at which 40K decays by its different decay modes. Here, we investigate one decay mode of 40K that has previously been overlooked. We demonstrate that this decay mode exists, estimate its rate, and evaluate its significance for geochronology.
Stephen E. Cox, Sidney R. Hemming, and Damian Tootell
Geochronology, 2, 231–243, https://doi.org/10.5194/gchron-2-231-2020, https://doi.org/10.5194/gchron-2-231-2020, 2020
Short summary
Short summary
We show results from a new type of ion detector technology for mass spectrometry that allows us to measure ion beams more precisely. This technology expands the range of ages we can measure using a single instrument and makes it possible to measure those ages – including all required corrections and adjustments – with more confidence. We show measurements of widely used standard materials for Ar / Ar, including air and synthetic standard gas, to illustrate the capabilities of the new detectors.
Cited articles
Bähr, R.: Das U Th He-System in Hämatit als Chronometer für Mineralisationen, PhD Thesis, University of Heidelberg, Vol. 245, 1–244, https://www.osti.gov/etdeweb/biblio/7007711 (last access: 12 May 2025), 1987.
Bai, X. J., Wang, M., Jiang, Y. D., and Qiu, H.-N.: Direct dating of tin–tungsten mineralization of the Piaotang tungsten deposit, South China, by 40Ar 39Ar progressive crushing, Geochim. Cosmochim. Ac., 114, 1–12, 2013.
Bai, X. J., Hu, R.-G., Jiang, Y.-D., Liu, X., Tang, B., and Qiu, H.-N.: Refined insight into 40Ar 39Ar progressive crushing technique from K–Cl–Ar correlations in fluid inclusions, Chem. Geol., 515, 37–49, https://doi.org/10.1016/j.chemgeo.2019.03.037, 2019.
Bai, X. J., Liu, M., Hu, R. G., Fang, Y., Liu, X., Tang, B., and Qiu, H. N.: Well-Constrained Mineralization Ages by Integrated 40Ar 39Ar and U-Pb Dating Techniques for the Xitian W-Sn Polymetallic Deposit, South China, Econ. Geol., 117, 833–852, https://doi.org/10.5382/econgeo.4889, 2022.
Baksi, A. K.: Geochronological studies on whole-rock basalts, Deccan Traps, India: Evaluation of the timing of volcanism relative to the K-T boundary, Earth Planet. Sc. Lett., 121, 43–56, https://doi.org/10.1016/0012-821X(94)90030-2, 1994.
Baksi, A. K.: A quantitative tool for detecting alteration in undisturbed rocks and minerals – II: Application to argon ages related to hotspots, in: Foulger, G. R. and Jurdy, D. M., Plates, Plumes and Planetary Processes Geological Society of America, https://doi.org/10.1130/2007.2430(16), 2007.
Ballentine, C. J., Burgess, R., and Marty, B.: Tracing fluid origin, transport and interaction in the crust, https://repository.geologyscience.ru/handle/123456789/29036 (last access: 14 December 2023), 2002.
Bambauer, H. U.: Spurenelementgehalte und g-Farbzentren in Quarzen aus Zerrkluften der Schweizer Alpen, Schweiz. Miner. Petrog., 41, 335–369, 1961.
Baumgartner, L. P. and Ferry, J. M.: A model for coupled fluid-flow and mixed-volatile mineral reactions with applications to regional metamorphism, Contrib. Mineral. Petr., 106, 273–285, 1991.
Behr, H.-J., Horn, E. E., Frentzel-Beyme, K., and Reutel, Chr.: Fluid inclusion characteristics of the Variscan and post-Variscan mineralizing fluids in the Federal Republic of Germany, Chem. Geol., 61, 273–285, https://doi.org/10.1016/0009-2541(87)90046-5, 1987.
Bonhomme, M. G., Bühmann, D., and Besnus, Y.: Reliability of K-Ar Dating of Clays and Silicifications Associated with vein Mineralizations in Western Europe, Geol. Rundsch., 72, 105–117, https://doi.org/10.1007/BF01765902, 1983.
Burnard, P., Graham, D., and Turner, G.: Vesicle-Specific Noble Gas Analyses of “Popping Rock”: Implications for Primordial Noble Gases in Earth, Science, 276, 568–571, https://doi.org/10.1126/science.276.5312.568, 1997.
Cartwright, I. and Buick, I. S.: Fluid generation, vein formation and the degree of fluid-rock interaction during decompression of high-pressure terranes: The Schistes Lustres, Alpine Corsica, France, J. Metamorph. Geol., 18, 607–624, https://doi.org/10.1046/j.1525-1314.2000.00280.x, 2000.
Cartwright, J. A., Gilmour, J. D., and Burgess, R.: Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis, Geochim. Cosmochim. Ac., 105, 255–293, 2013.
Chatziliadou, M. and Kramm, U.: Rb-Sr Alter und Sr-Pb Isotopencharakteristik von Gangmineralisationen in paläozoischen Gesteinen am Nordrand des linksrheinischen Schiefergebirges (Raum Stolberg-Aachen-Kelmis) und Vergleich mit den rezenten Thermalwässern von Aachen-Burtscheid (RWTH-CONV-113503, Publikationsserver der RWTH Aachen University), https://publications.rwth-aachen.de/record/51191 (last access: 23 April 2024), 2009.
Cox, S. F.: Structural and isotopic constraints on fluid flow regimes and fluid pathways during upper crustal deformation: An example from the Taemas area of the Lachlan Orogen, SE Australia, J. Geophys. Res.-Sol. Ea., 112, B08208, https://doi.org/10.1029/2006JB004734, 2007.
Féraud, G. and Courtillot, V.: Comment on: “Did Deccan volcanism pre-date the Cretaceous-Tertiary transition?”, Earth Planet, Sc. Lett., 122, 259–262, https://doi.org/10.1016/0012-821X(94)90068-X, 1994.
Fielitz, W.: Variscan transpressive inversion in the northwestern central Rhenohercynian belt of western Germany, J. Struct. Geol., 14, 547–563, https://doi.org/10.1016/0191-8141(92)90156-Q, 1992.
Fielitz, W.: Epizonal to lower mesozonal diastathermal metamorphism in the Ardennes (Rhenohercynian belt of western central Europe), Terra Nostra, 95, p. 95, 1995.
Foland, K. A.: 40Ar 39Ar incremental heating plateaus for biotites with excess argon, Chem. Geol., 41, 3–21, https://doi.org/10.1016/S0009-2541(83)80002-3, 1983.
Franzke, H. J. and Anderle, H.-J.: Metallogenesis, in: Dallmeyer, R. D., Franke, W., and Weber, K., Pre-Permian Geology of Central and Eastern Europe, Springer, 138–150, https://doi.org/10.1007/978-3-642-77518-5_13, 1995.
Germann, A. and Friedrich, G.: Strukturkontrollierte, postvariskische Buntmetallmineralisation in paläozoischen und mesozoischen Sedimentgesteinen der nordwestlichen Eifel, Zeitschrift Der Deutschen Geologischen Gesellschaft, 513–541, 1999.
Glasmacher, U., Zentilli, M., and Grist, A. M.: Apatite Fission Track Thermochronology of Paleozoic Sandstones and the Hill-Intrusion, Northern Linksrheinisches Schiefergebirge, Germany. Advances in Fission-Track Geochronology, Springer Netherlands, 151–172, https://doi.org/10.1007/978-94-015-9133-1_10, 1998.
Glasmacher, U., Tschernoster, R., Clauer, N., and Spaeth, G.: K–Ar dating of magmatic sericite crystallites for determination of cooling paths of metamorphic overprints, Chem. Geol., 175, 673–687, https://doi.org/10.1016/S0009-2541(00)00292-8, 2001.
Goemaere, E. and Dejonghe, L.: Paleoenvironmental reconstruction of the Mirwart Formation (Pragian) in the Lambert Quarry (Flamierge, Belgium), Geol. Belg., 8, 3–14, 2005.
Götze, J., Pan, Y., and Müller, A.: Mineralogy and mineral chemistry of quartz: A review, Mineral. Mag., 85, 639–664, https://doi.org/10.1180/mgm.2021.72, 2021.
Heijlen, W., Muchez, P., and Banks, D. A.: Origin and evolution of high-salinity, Zn–Pb mineralising fluids in the Variscides of Belgium, Miner. Deposita, 36, 165–176, https://doi.org/10.1007/s001260050296, 2001.
Hein, U. F. and Behr, H. J.: Zur Entwicklung von Fluidsystemen im Verlauf der Deformationsgeschichte des Rhenoherzynikums, Göttinger Arbeiten zur Geologieund Paläontologie, Sonderband 1, 191–193, 1994.
Herbst, F. and Muller, H.-G.: Raum und Bedeutung des Emser Gangzuges, Gewerkschaft Mercur, 1969.
Huseynov, A. A. O., van der Lubbe (Jeroen), H. J. L., Verdegaal-Warmerdam, S. J. A., Postma, O., Schröder, J., and Vonhof, H.: Novel Crushing Technique for Measuring δ18O and δ2H Values of Fluid Inclusions (H2O) in Quartz Mineral Veins Using Cavity Ring-Down Spectroscopy, Geofluids, 2024, 5795441, https://doi.org/10.1155/2024/5795441, 2024.
IJlst, L.: A laboratory overflow-centrifuge for heavy liquid mineral separation, Am. Mineral., 58, 1088–1093, 1973.
Jakobus, R.: Die Erzgänge des östlichen Taunus, Geol. Jahrb. Hess., 120, 145–160, 1992.
Jiang, Y. D., Qiu, H.-N., and Xu, Y. G.: Hydrothermal fluids, argon isotopes and mineralization ages of the Fankou Pb-Zn deposit in south China: Insights from sphalerite 40Ar 39Ar progressive crushing, Geochim. Cosmochim. Ac., 84, 369–379, 2012.
Jourdan, A.-L., Vennemann, T. W., Mullis, J., and Ramseyer, K.: Oxygen isotope sector zoning in natural hydrothermal quartz, Mineral. Mag., 73, 615–632, https://doi.org/10.1180/minmag.2009.073.4.615, 2009.
Kats, A.: Hydrogen in alpha-quartz, Philips Res. Rep., 17, 133–195, 1962.
Kelley, S., Turner, G., Butterfield, A. W., and Shepherd, T. J.: The source and significance of argon isotopes in fluid inclusions from areas of mineralization, Earth Planet. Sc. Lett., 79, 303–318, 1986.
Kendrick, M. A.: Comment on “Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar 39Ar dating by stepwise crushing by Hua-Ning Qiu and J.R. Wijbrans”, Geochim. Cosmochim. Ac., 71, 6040–6045, https://doi.org/10.1016/j.gca.2007.01.029, 2007.
Kendrick, M. A. and Phillips, D.: Discussion of “the Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar 39Ar geochronology of eclogite garnet fluid inclusions by Qiu Hua-Ning and Wijbrans J. R.”, Earth Planet. Sc. Lett., 279, 392–394, https://doi.org/10.1016/j.epsl.2008.12.047, 2009.
Kendrick, M. A., Burgess, R., Pattrick, R. A. D., and Turner, P. G.: Halogen and Ar–Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques, Chem. Geol., 177, 351–370, 2001.
Kendrick, M. A., Miller, J. M., and Phillips, D.: Part II. Evaluation of 40Ar–39Ar quartz ages: Implications for fluid inclusion retentivity and determination of initial 40Ar 36Ar values in Proterozoic samples, Geochim. Cosmochim. Ac., 70, 2562–2576, 2006.
Kendrick, M. A., Scambelluri, M., Honda, M., and Phillips, D.: High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction, Nat. Geosci., 4, 807–812, https://doi.org/10.1038/ngeo1270, 2011.
Kirnbauer, T., Wagner, T., Taubald, H., and Bode, M.: Post-Variscan hydrothermal vein mineralization, Taunus, Rhenish Massif (Germany): Constraints from stable and radiogenic isotope data, Ore Geol. Rev., 48, 239–257, https://doi.org/10.1016/j.oregeorev.2012.03.010, 2012.
Klügel, T.: Geometrie und Kinematik einer variszischen Plattengrenze. Der Südrand des Rhenoherzynikums im Taunus, Geol. Abh. Hess., 101, 1–215, 1997.
Kötonik, K., Pisarzowska, A., Paszkowski, M., Sláma, J., Becker, R. T., Szczerba, M., Krawczyñski, W., Hartenfels, S., and Marynowski, L.: Baltic provenance of top-Famennian siliciclastic material of the northern Rhenish Massif, Rhenohercynian zone of the Variscan orogen, Int. J. Earth Sci., 107, 2645–2669, https://doi.org/10.1007/s00531-018-1628-4, 2018.
Koppers, A. A. P.: ArArCALC – software for 40Ar 39Ar age calculations, Comput. Geosci., 28, 605–619, https://doi.org/10.1016/S0098-3004(01)00095-4, 2002.
Korsch, R. J. and Schäfer, A.: Geological interpretation of DEKORP deep seismic reflection profiles 1C and 9N across the variscan Saar-Nahe Basin southwest Germany, Tectonophysics, 191, 127–146, https://doi.org/10.1016/0040-1951(91)90236-L, 1991
Kuèera, J., Muchez, P., Slobodník, M., and Prochaska, W.: Geochemistry of highly saline fluids in siliciclastic sequences: Genetic implications for post-Variscan fluid flow in the Moravosilesian Palaeozoic of the Czech Republic, Int. J. Earth Sci., 99, 269–284, https://doi.org/10.1007/s00531-008-0387-z, 2010.
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R.: Synchronizing Rock Clocks of Earth History, Science, 320, 500–504, https://doi.org/10.1126/science.1154339, 2008.
Lee, J.-Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H.-S., Lee, J. B., and Kim, J. S.: A redetermination of the isotopic abundances of atmospheric Ar, Geochim. Cosmochim. Ac., 70, 4507–4512, https://doi.org/10.1016/j.gca.2006.06.1563, 2006.
Li, C., Shen, P., Li, P., Sun, J., Feng, H., and Pan, H.: Changes in the factors controlling the chlorite composition and their influence on hydrothermal deposit studies: A case study from Hongguleleng Manto-type Cu deposit, J. Geochem. Explor., 243, 107096, https://doi.org/10.1016/j.gexplo.2022.107096, 2022.
Littke, R., Urai, J. L., Uffmann, A. K., and Risvanis, F.: Reflectance of dispersed vitrinite in Palaeozoic rocks with and without cleavage: Implications for burial and thermal history modeling in the Devonian of Rursee area, northern Rhenish Massif, Germany, Int. J. Coal Geol., 89, 41–50, https://doi.org/10.1016/j.coal.2011.07.006, 2012.
Liu, J., Wu, G., Qiu, H. N., and Li, Y.: 40Ar 39Ar dating, fluid inclusions and S-Pb isotope systematics of the Shabaosi gold deposit, Heilongjiang Province, China. Geol. J., 50, 592–606, 2015.
Lo, C.-H. and Onstott, T. C.: 39Ar recoil artifacts in chloritized biotite, Geochim. Cosmochim. Ac., 53, 2697–2711, https://doi.org/10.1016/0016-7037(89)90141-5, 1989.
Lünenschloss, B., Muchez, P., and Bayer, U.: Late-Variscan fluid migration at the Variscan thrust front of Eastern Belgium: Numerical modelling of the palaeothermal and fluid flow field, Int. J. Earth Sci., 97, 1201–1212, https://doi.org/10.1007/s00531-007-0223-x, 2008.
Mansy, J. L., Everaerts, M., and De Vos, W.: Structural analysis of the adjacent Acadian and Variscan fold belts in Belgium and northern France from geophysical and geological evidence, Tectonophysics, 309, 99–116, https://doi.org/10.1016/S0040-1951(99)00134-1, 1999.
McKee, E. H., Conrad, J. E., Turrin, B. D., and Theodore, T. G.: 40Ar 39Ar studies of fluid inclusions in vein quartz from Battle Mountain, Nevada, US Geological Survey Bulletin, 2039, 155–165, https://books.google.de/books?hl=en&lr=&id=BVHIuwfhcpYC&oi=fnd&pg=PA155&dq=McKee,+E.+H.,+Conrad,+J.+E.,+Turrin,+B.+D.,+and+Theodore,+T.+G.:+50+40Ar+=+39Ar+studies+of+fluid+inclusions+in+vein+quartz+from+Battle+Mountain,+Nevada,+US+Geological+Survey+Bulletin,+2039,+155%E2%80%93+165TS6,+1993.&ots=ITb9Op0OyK&sig=GFYqiLylGNHImKEOWCZxbCc_iGA&redir_esc=y#v=onepage&q&f=false (last access: 30 November 2023), 1993.
Mertz, D. F., Lippolt, H. J., and Müller, G.: Isotopengeochemische (K–Ar, 40Ar 39Ar, Rb–Sr, 87Sr 86Sr) und mineralogische Untersuchungen zur zeitlichen und genetischen Stellung postvariscischer Mineralisationen im Raum Saar-Nahe-Pfalz, Fortschr. Mineral., 64, 116, 1986.
Min, K., Mundil, R., Renne, P. R., and Ludwig, K. R.: A test for systematic errors in 40Ar 39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite, Geochim. Cosmochim. Ac., 64, 73–98, https://doi.org/10.1016/S0016-7037(99)00204-5, 2000.
Moe, A.: Structural development of a volcanic sequence of the Lahn area during the Variscan orogeny in the Rhenohercynian Belt (Germany), Dissertation, Heidelberg University, https://doi.org/10.11588/heidok.00001095, 2000.
Muchez, P., Sintubin, M., and Swennen, R.: Origin and migration pattern of palaeofluids during orogeny: Discussion on the Variscides of Belgium and northern France, J. Geochem. Explor., 69–70, 47–51, https://doi.org/10.1016/S0375-6742(00)00008-X, 2000.
Mullis, J., Dubessy, J., Poty, B., and O'Neil, J.: Fluid regimes during late stages of a continental collision: Physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland, Geochim. Cosmochim. Ac., 58, 2239–2267, https://doi.org/10.1016/0016-7037(94)90008-6, 1994.
Oliver, N. H. S. and Bons, P. D.: Mechanisms of fluid flow and fluid–rock interaction in fossil metamorphic hydrothermal systems inferred from vein–wallrock patterns, geometry and microstructure, Geofluids, 1, 137–162, https://doi.org/10.1046/j.1468-8123.2001.00013.x, 2001.
Oncken, O., Von Winterfeld, C., and Dittmar, U.: Accretion of a rifted passive margin: The Late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides), Tectonics, 18, 75–91, 1999.
Onstott, T. C., Miller, M. L., Ewing, R. C., Arnold, G. W., and Walsh, D. S.: Recoil refinements: Implications for the 40Ar 39Ar dating technique, Geochim. Cosmochim. Ac., 59, 1821–1834, https://doi.org/10.1016/0016-7037(95)00085-E, 1995.
Ozima, M. and Podosek, F. A.: Noble gas geochemistry, Cambridge University Press, https://books.google.de/books?hl=en&lr=&id=TMIAfSIe428C&oi=fnd&pg=PP1&dq=Ozima+2002&ots=nf7xTAxMps&sig=eqSMMUxvP69-FZOw2nMB9lwYi6I&redir_esc=y#v=onepage&q=Ozima 2002&f=false (last access: 14 December 2024), 2002.
Pacey, A., Wilkinson, J. J., and Cooke, D. R.: Chlorite and Epidote Mineral Chemistry in Porphyry Ore Systems: A Case Study of the Northparkes District, New South Wales, Australia, Econ. Geol., 115, 701–727, https://doi.org/10.5382/econgeo.4700, 2020.
Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J., and Pankrath, R.: Microdistribution of Al, Li, and Na in á quartz: Possible causes and correlation with short-lived cathodoluminescence, Am. Mineral., 77(5–6), 534–544, 1992.
Porat, N.: Use of magnetic separation for purifying quartz for luminescence dating, Ancient TL, 24, 33–36, 2006.
Potrafke, A., Stalder, R., Schmidt, B. C., and Ludwig, T.: OH defect contents in quartz in a granitic system at 1–5 kbar, Contrib. Mineral. Petr., 174, 98, https://doi.org/10.1007/s00410-019-1632-0, 2019.
Qiu, H.-N.: 40Ar–39Ar dating of the quartz samples from two mineral deposits in western Yunnan (SW China) by crushing in vacuum, Chem. Geol., 127, 211–222, 1996.
Qiu, H.-N. and Dai, T. M.: 40Ar 39Ar techniques for dating the fluid inclusions of quartz from a hydrothermal deposit, Chinese Sci. Bull., 34, 1887–1890, 1989.
Qiu, H.-N. and Jiang, Y. D.: Sphalerite 40Ar 39Ar progressive crushing and stepwise heating techniques, Earth Planet. Sc. Lett., 256, 224–232, 2007.
Qiu, H.-N. and Wijbrans, J. R.: Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar 39Ar dating by stepwise crushing, Geochim. Cosmochim. Ac., 70, 2354–2370, 2006.
Qiu, H.-N. and Wijbrans, J. R.: The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar 39Ar geochronology of eclogite garnet fluid inclusions, Earth Planet. Sc. Lett., 268, 501–514, https://doi.org/10.1016/j.epsl.2008.01.042, 2008.
Qiu, H.-N. and Wijbrans, J. R.: Reply to comment by M. A. Kendrick and D. Phillips (2009) on “The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar 39Ar geochronology of eclogite garnet fluid inclusions” by Hua-Ning Qiu and J. R. Wijbrans (2008) [Earth Planet. Sci. Lett. 268 (2008) 501–514], Earth Planet. Sc. Lett., 279, 395–397, https://doi.org/10.1016/j.epsl.2009.01.012, 2009.
Qiu, H.-N., Zhu, B., and Sun, D.: Age significance interpreted from 40Ar–39Ar dating of quartz samples from the Dongchuan copper deposits, Yunnan, SW China, by crushing and heating, Geochem. J., 36, 475–491, 2002.
Qiu, H.-N., Wu, H. Y., Yun, J. B., Feng, Z. H., Xu, Y. G., Mei, L. F., and Wijbrans, J. R.: High-precision 40Ar 39Ar age of the gas emplacement into the Songliao Basin, Geology, 39, 451–454, https://doi.org/10.1130/G31885.1, 2011.
Rama, S. N. I., Hart, S. R., and Roedder, E.: Excess radiogenic argon in fluid inclusions, J. Geophys. Res., 70, 509–511, 1965.
Ramsay, J. G.: The techniques of modern structural geology. The Techniques of Modern Structural Geology, Folds and Fractures, 2, 309–700, 1986.
Rauchenstein-Martinek, K., Wagner, T., Wälle, M., and Heinrich, C. A.: Gold concentrations in metamorphic fluids: A LA-ICPMS study of fluid inclusions from the Alpine orogenic belt, Chem. Geol., 385, 70–83, https://doi.org/10.1016/j.chemgeo.2014.07.018, 2014.
Redecke, P.: Zur Geochemie und Genese variszischer und postvariszischer Buntmetallmineralisation in der Nordeifel und der Niederrheinischen Bucht, IML, 1992.
Ribbert, K.-H., Brunemann, H.-G., Jäger, B., Knapp, G., Michel, G., M. Reinhaerdt, M., Weber, M., and V. Wrede, V.,: Geologische Karte von Nordrhein-Westfalen 1 : 100 000: Erlaüterungen zu Blatt C5502 Aachen, Geologisches Landesamt Nordrhein-Westfalen, 1992.
Schneider, J. and Haack. U.: Rb Sr dating of silicified wall rocks of a giant hydrothermal quartz vein in the SE Rhenish Massif, Germany, Mineral deposits: research and exploration. Where do they meet, 971–972, 1997.
Schneider, J., Haack, U., Hein, U. F., and Germann, A.: Direct Rb Sr dating of sandstone-hosted sphalerites from stratabound Pb-Zn deposits in the northern Eifel, NW Rhenish Massif, Germany, in: Mineral Deposits: Processes to Processing. Proceedings of the 5th Biennial. SGA Meeting and the 10th Quadrennial IAGOD Symposium, edited by: Stanley, C. J., London, 22–25 August, 1287–1290, 1999.
Schroyen, K. and Muchez, Ph.: Evolution of metamorphic fluids at the Variscan fold-and-thrust belt in eastern Belgium, Sediment. Geol., 131, 3, https://doi.org/10.1016/S0037-0738(99)00133-5, 2000.
Schwab, K.: Compression and right-lateral strike-slip movement at the Southern Hunsrück Borderfault (Southwest Germany), Tectonophysics, 137, 115–126, https://doi.org/10.1016/0040-1951(87)90318-0, 1987.
Sintubin, M., Kenis, I., Schroyen, K., Muchez, P., and Burke, E.: “Boudinage” in the High-Ardenne slate belt (Belgium), reconsidered from the perspective of the “interboudin” veins, J. Geochem. Explor., 69–70, 511–516, https://doi.org/10.1016/S0375-6742(00)00034-0, 2000.
Stalder, R., Potrafke, A., Billström, K., Skogby, H., Meinhold, G., Gögele, C., and Berberich, T.: OH defects in quartz as monitor for igneous, metamorphic, and sedimentary processes, Am. Mineral., 102, 1832–1842, https://doi.org/10.2138/am-2017-6107, 2017.
Sterner, S. M., Hall, D. L., and Bodnar, R. J.: Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions, Geochim. Cosmochim. Ac., 52, 989–1005, https://doi.org/10.1016/0016-7037(88)90254-2, 1988.
Sumino, H., Dobrzhinetskaya, L. F., Burgess, R., and Kagi, H.: Deep-mantle-derived noble gases in metamorphic diamonds from the Kokchetav massif. Kazakhstan, Earth Planet. Sc. Lett., 307, 439–449, 2011.
Turner, G. and Bannon, M. P.: Argon isotope geochemistry of inclusion fluids from granite-associated mineral veins in southwest and northeast England, Geochim. Cosmochim. Ac., 56, 227–243, 1992.
Turner, G. and Cadogan, P. H.: Possible effects of 39Ar recoil in 40Ar-39Ar dating, Proceedings of the Fifth Lunar Science Conference, Vol. 2, 5, 1601–1615, https://ui.adsabs.harvard.edu/abs/1974LPSC....5.1601T/abstract (last access: 6 August 2024), 1974.
Turner, G. and Wang, S. S.: Excess argon, crustal fluids and apparent isochrons from crushing K-feldspar, Earth Planet. Sc. Lett., 110, 193–211, 1992.
Urai, J. L., Spaeth, G., van der Zee, W., and Hilgers, C.: Evolution of mullion (boudin) structures in the Variscan of the Ardennes and Eifel, Journal of the Virtual Explorer, 3, 1–16, 2001.
Van Noten, K., Kenis, I., Hilgers, C., Urai, J. L., Muchez, P., and Sintubin, M.: Early vein generations in the High-Ardenne slate belt (Belgium, Germany): The earliest manifestations of the Variscan orogeny? Géologie de France, 2007, 170, https://lirias.kuleuven.be/1929596 (last access: 6 June 2023), 2007.
Van Noten, K., Hilgers, C., Urai, J. L., and Sintubin, M.: Late burial to early tectonic quartz veins in the periphery of the High-Ardenne slate belt (Rursee, north Eifel, Germany), Geol. Belg., https://popups.uliege.be/1374-8505/index.php?id=2485 (last access: 19 January 2019), 2008.
Van Noten, K., Berwouts, I., Muchez, P., and Sintubin, M.: Evidence of pressure fluctuations recorded in crack-seal veins in low-grade metamorphic siliciclastic metasediments, Late Palaeozoic Rhenohercynian fold-and-thrust belt (Germany), J. Geochem. Explor., 101, 106, https://doi.org/10.1016/j.gexplo.2008.11.040, 2009.
Van Noten, K., Muchez, P., and Sintubin, M.: Stress-state evolution of the brittle upper crust during compressional tectonic inversion as defined by successive quartz vein types (High-Ardenne slate belt, Germany), J. Geol. Soc., 168, 2, https://doi.org/10.1144/0016-76492010-112, 2011.
Villa, I. M.: Direct determination of 39Ar recoil distance, Geochim. Cosmochim. Ac., 61, 689–691, https://doi.org/10.1016/S0016-7037(97)00002-1, 1997.
Virgo, S., Abe, S., and Urai, J. L.: Extension fracture propagation in rocks with veins: Insight into the crack-seal process using Discrete Element Method modeling, J. Geophys. Res.-Sol. Ea., 118, 5236–5251, https://doi.org/10.1002/2013JB010540, 2013.
von Winterfeld, C.-H. : Variszische Deckentektonik und devonische Beckengeometrie der Nordeifel – ein quantitatives Modell, Aachener Geowiss. Beitr., 2, 319, 1994.
Watson, E. B. and Cherniak, D. J.: Lattice diffusion of Ar in quartz, with constraints on Ar solubility and evidence of nanopores, Geochim. Cosmochim. Ac., 67, 11, https://doi.org/10.1016/S0016-7037(02)01340-6, 2003.
Weil, J. A.: A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz, Phys. Chem. Miner., 10, 149–165, https://doi.org/10.1007/BF00311472, 1984.
Wijbrans, J. R., Pringle, M. S., Koppers, A. A. P., and Scheveers, R.: Argon geochronology of small samples using the Vulkaan argon laserprobe, Proceedings of the Royal Netherlands Academy of Arts and Sciences, 2, 185–218, 1995.
Yardley, B. W. D.: Quartz veins and devolatilization during metamorphism, J. Geol. Soc., 140, 657–663, https://doi.org/10.1144/gsjgs.140.4.0657, 1983.
Yardley, B. W. D. and Bottrell, S. H.: Post-metamorphic gold quartz veins from NW Italy – The composition and origin of the ore fluid, Mineral. Mag., 57, 407–422, 1993.
Ziegler, P. A. and Dèzes, P.: Evolution of the lithosphere in the area of the Rhine Rift System, Int. J. Earth Sci., 94, 594–614, https://doi.org/10.1007/s00531-005-0474-3, 2005.
Short summary
This study explores quartz veins in Germany's Rursee area, formed during the Variscan Orogeny and later reactivated by tectonic activity in the Jurassic–Cretaceous period. Using advanced isotopic dating techniques, it examines how these veins influenced fluid flow and quartz recrystallization. By tackling the challenges of dating fluid activity, this research offers new insights into argon gas degassing in quartz minerals.
This study explores quartz veins in Germany's Rursee area, formed during the Variscan Orogeny...