Articles | Volume 7, issue 3
https://doi.org/10.5194/gchron-7-247-2025
https://doi.org/10.5194/gchron-7-247-2025
Short communication/technical note
 | 
28 Jul 2025
Short communication/technical note |  | 28 Jul 2025

Technical note: 21Ne in the CoQtz-N quartz standard material

Greg Balco

Related authors

Cosmogenic 3He exposure dating in mafic rocks by 'Virtual mineral separation' of pyroxene
Marie Bergelin, Greg Balco, and Richard A. Ketcham
EGUsphere, https://doi.org/10.5194/egusphere-2025-3033,https://doi.org/10.5194/egusphere-2025-3033, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Antarctic ice sheet model comparison with uncurated geological constraints shows that higher spatial resolution improves deglacial reconstructions
Anna Ruth W. Halberstadt and Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2025-2008,https://doi.org/10.5194/egusphere-2025-2008, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Diffusion kinetics of 3He in pyroxene and plagioclase and applications to cosmogenic exposure dating and paleothermometry in mafic rocks
Marie Bergelin, Andrew Gorin, Greg Balco, and William Cassata
EGUsphere, https://doi.org/10.5194/egusphere-2025-928,https://doi.org/10.5194/egusphere-2025-928, 2025
Short summary
Assessing the suitability of sites near Pine Island Glacier for subglacial bedrock drilling aimed at detecting Holocene retreat–readvance
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
The Cryosphere, 19, 303–324, https://doi.org/10.5194/tc-19-303-2025,https://doi.org/10.5194/tc-19-303-2025, 2025
Short summary
East Antarctic Ice Sheet variability in the central Transantarctic Mountains since the mid Miocene
Gordon R. M. Bromley, Greg Balco, Margaret S. Jackson, Allie Balter-Kennedy, and Holly Thomas
Clim. Past, 21, 145–160, https://doi.org/10.5194/cp-21-145-2025,https://doi.org/10.5194/cp-21-145-2025, 2025
Short summary

Related subject area

Cosmogenic nuclide dating
Terrestrial cosmogenic nuclide bedrock depth profiles used to infer changes in Holocene glacier cover, Vintage Peak, southern Coast Mountains, British Columbia
Adam C. Hawkins, Brent M. Goehring, and Brian Menounos
Geochronology, 7, 157–172, https://doi.org/10.5194/gchron-7-157-2025,https://doi.org/10.5194/gchron-7-157-2025, 2025
Short summary
Short communication: Updated CRN Denudation collections in OCTOPUS v2.3
Alexandru T. Codilean and Henry Munack
Geochronology, 7, 113–122, https://doi.org/10.5194/gchron-7-113-2025,https://doi.org/10.5194/gchron-7-113-2025, 2025
Short summary
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024,https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary
Technical note: Altitude scaling of 36Cl production from Fe
Angus K. Moore and Darryl E. Granger
Geochronology, 6, 541–552, https://doi.org/10.5194/gchron-6-541-2024,https://doi.org/10.5194/gchron-6-541-2024, 2024
Short summary
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024,https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary

Cited articles

Balco, G. and Shuster, D. L.: Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces, Earth Planet. Sc. Lett., 281, 48–58, https://doi.org/10.1016/j.epsl.2009.02.006, 2009. a
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008. a
Balco, G., Blard, P.-H., Shuster, D. L., Stone, J. O., and Zimmermann, L.: Cosmogenic and nucleogenic 21Ne in quartz in a 28-meter sandstone core from the McMurdo Dry Valleys, Antarctica, Quat. Geochronol., 52, 63–76, https://doi.org/10.1016/j.quageo.2019.02.006, 2019. a, b, c, d
Balter-Kennedy, A., Bromley, G., Balco, G., Thomas, H., and Jackson, M. S.: A 14.5-million-year record of East Antarctic Ice Sheet fluctuations from the central Transantarctic Mountains, constrained with cosmogenic 3He, 10Be, 21Ne, and 26Al, The Cryosphere, 14, 2647–2672, https://doi.org/10.5194/tc-14-2647-2020, 2020. a
Balter-Kennedy, A., Schaefer, J. M., Schwartz, R., Lamp, J. L., Penrose, L., Middleton, J., Hanley, J., Tibari, B., Blard, P.-H., Winckler, G., Hidy, A. J., and Balco, G.: Cosmogenic 10Be in pyroxene: laboratory progress, production rate systematics, and application of the 10Be–3He nuclide pair in the Antarctic Dry Valleys, Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, 2023. a, b
Download
Short summary
This paper describes measurements of cosmogenic neon-21 concentrations in a widely distributed mineral standard material that is routinely used for quality control and interlaboratory comparison for measurements of other cosmic-ray-produced nuclides useful for various geochronology applications. Broadly, this facilitates improvement of precision and accuracy of these measurements and their applications in geochronology.
Share