Articles | Volume 7, issue 3
https://doi.org/10.5194/gchron-7-289-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-289-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Further investigations into the accuracy of infrared radiofluorescence (IR-RF) and its inter-comparison with infrared photoluminescence (IRPL) dating
Mariana Sontag-González
CORRESPONDING AUTHOR
Department of Geography, Justus Liebig University Giessen, 35390 Giessen, Germany
Madhav K. Murari
Inter University Accelerator Centre, 110067, New Delhi, Delhi, India
Mayank Jain
Luminescence Physics and Technologies, Department of Physics, Technical University of Denmark, Risø Campus, Roskilde, Denmark
Marine Frouin
Department of Geosciences, Stony Brook University, 255 Earth and Space Sciences Building, Stony Brook, NY 11794-2100, USA
Markus Fuchs
Department of Geography, Justus Liebig University Giessen, 35390 Giessen, Germany
Related authors
Svenja Riedesel, Guillaume Guérin, Kristina J. Thomsen, Mariana Sontag-González, Matthias Blessing, Greg A. Botha, Max Hellers, Gunther Möller, Andreas Peffeköver, Christian Sommer, Anja Zander, and Manuel Will
Geochronology, 7, 59–81, https://doi.org/10.5194/gchron-7-59-2025, https://doi.org/10.5194/gchron-7-59-2025, 2025
Short summary
Short summary
We apply luminescence dating of feldspars to establish a geochronological framework for the sequence of accretionary hillslope deposition at Jojosi, which contains important archaeological artefacts. We test and evaluate four different dose models and their applicability to single-grain and multi-grain data sets containing up to 67 % saturated grains. Our results constrain erosional and depositional processes from 100–700 ka and human occupation of the area in early MIS 5 and late MIS 6.
Mariana Sontag-González, Raju Kumar, Jean-Luc Schwenninger, Juergen Thieme, Sebastian Kreutzer, and Marine Frouin
Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024, https://doi.org/10.5194/gchron-6-77-2024, 2024
Short summary
Short summary
This is a preliminary study using a synchrotron light source to generate elemental maps, incorporating oxidation states, with a spatial resolution of <1 µm for individual grains within the K-feldspar density fraction. The elemental fingerprint characterizing grains with a signal suitable for infrared radiofluorescence dating reveals high levels of K, Pb, and Ba coupled with low levels of Fe and Ca. In contrast, grains exhibiting higher proportions of Fe and Ca produce an odd signal shape.
Zakieh Rashidi Koochi, Christian Büdel, Janek Walk, Markus Fuchs, Mehdi Torabi, Alireza Karimi, Roland Baumhauer, and Georg Stauch
E&G Quaternary Sci. J., 74, 193–212, https://doi.org/10.5194/egqsj-74-193-2025, https://doi.org/10.5194/egqsj-74-193-2025, 2025
Short summary
Short summary
This study investigates the Khur Basin in central Iran, a crucial area for understanding landscape history, past environmental changes, and potential human migration. By analysing the sedimentary archives and mapping landforms, six stages of landscape development were identified, linked to the climate shifts over the late Quaternary period. The findings provide a detailed understanding of how a desert environment, including alluvial fans, dunes, and playas, developed in response to changing climates.
Svenja Riedesel, Guillaume Guérin, Kristina J. Thomsen, Mariana Sontag-González, Matthias Blessing, Greg A. Botha, Max Hellers, Gunther Möller, Andreas Peffeköver, Christian Sommer, Anja Zander, and Manuel Will
Geochronology, 7, 59–81, https://doi.org/10.5194/gchron-7-59-2025, https://doi.org/10.5194/gchron-7-59-2025, 2025
Short summary
Short summary
We apply luminescence dating of feldspars to establish a geochronological framework for the sequence of accretionary hillslope deposition at Jojosi, which contains important archaeological artefacts. We test and evaluate four different dose models and their applicability to single-grain and multi-grain data sets containing up to 67 % saturated grains. Our results constrain erosional and depositional processes from 100–700 ka and human occupation of the area in early MIS 5 and late MIS 6.
Mariana Sontag-González, Raju Kumar, Jean-Luc Schwenninger, Juergen Thieme, Sebastian Kreutzer, and Marine Frouin
Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024, https://doi.org/10.5194/gchron-6-77-2024, 2024
Short summary
Short summary
This is a preliminary study using a synchrotron light source to generate elemental maps, incorporating oxidation states, with a spatial resolution of <1 µm for individual grains within the K-feldspar density fraction. The elemental fingerprint characterizing grains with a signal suitable for infrared radiofluorescence dating reveals high levels of K, Pb, and Ba coupled with low levels of Fe and Ca. In contrast, grains exhibiting higher proportions of Fe and Ca produce an odd signal shape.
Marine Frouin, Taylor Grandfield, William Huebsch, and Owen Evans
Geochronology, 5, 405–412, https://doi.org/10.5194/gchron-5-405-2023, https://doi.org/10.5194/gchron-5-405-2023, 2023
Short summary
Short summary
Here, we present the lighting setting implemented in the new Luminescence Dating Research Laboratory at Stony Brook University, USA. First, we performed spectral measurements on different light sources and filters. Then, we measured the loss of dose in quartz and feldspar samples when exposed to various light sources and durations. Finally, we conclude that our lighting setting is suitable for a luminescence darkroom laboratory; it is simple, inexpensive to build, and durable.
Thomas Kolb, Konrad Tudyka, Annette Kadereit, Johanna Lomax, Grzegorz Poręba, Anja Zander, Lars Zipf, and Markus Fuchs
Geochronology, 4, 1–31, https://doi.org/10.5194/gchron-4-1-2022, https://doi.org/10.5194/gchron-4-1-2022, 2022
Short summary
Short summary
The µDose system is an innovative analytical instrument developed for the cost- and time-efficient determination of environmental radionuclide concentrations required for the calculation of sedimentation ages in palaeo-environmental and geo-archaeological research. The results of our study suggest that accuracy and precision of µDose measurements are comparable to those of well-established methods and that the new approach shows the potential to become a standard tool in environmental dosimetry.
Dominik Faust and Markus Fuchs
E&G Quaternary Sci. J., 70, 243–246, https://doi.org/10.5194/egqsj-70-243-2021, https://doi.org/10.5194/egqsj-70-243-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Sascha Scherer, Benjamin Höpfer, Katleen Deckers, Elske Fischer, Markus Fuchs, Ellen Kandeler, Jutta Lechterbeck, Eva Lehndorff, Johanna Lomax, Sven Marhan, Elena Marinova, Julia Meister, Christian Poll, Humay Rahimova, Manfred Rösch, Kristen Wroth, Julia Zastrow, Thomas Knopf, Thomas Scholten, and Peter Kühn
SOIL, 7, 269–304, https://doi.org/10.5194/soil-7-269-2021, https://doi.org/10.5194/soil-7-269-2021, 2021
Short summary
Short summary
This paper aims to reconstruct Middle Bronze Age (MBA) land use practices in the northwestern Alpine foreland (SW Germany, Hegau). We used a multi-proxy approach including biogeochemical proxies from colluvial deposits in the surroundings of a MBA settlement, on-site archaeobotanical and zooarchaeological data and off-site pollen data. From our data we infer land use practices such as plowing, cereal growth, forest farming and use of fire that marked the beginning of major colluvial deposition.
Guillaume Guérin, Christelle Lahaye, Maryam Heydari, Martin Autzen, Jan-Pieter Buylaert, Pierre Guibert, Mayank Jain, Sebastian Kreutzer, Brice Lebrun, Andrew S. Murray, Kristina J. Thomsen, Petra Urbanova, and Anne Philippe
Geochronology, 3, 229–245, https://doi.org/10.5194/gchron-3-229-2021, https://doi.org/10.5194/gchron-3-229-2021, 2021
Short summary
Short summary
This paper demonstrates how to model optically stimulated luminescence (OSL) and radiocarbon ages in a Bayesian framework, using a dedicated software tool called BayLum. We show the effect of stratigraphic constraints, of modelling the covariance of ages when the same equipment is used for a series of OSL samples, and of including independent ages on a chronological inference. The improvement in chronological resolution is significant.
Cited articles
Aitken, M. J.: An introduction to optical dating, Oxford University Press, ISBN 0198540922, 1998.
Ankjærgaard, C.: Exploring multiple-aliquot methods for quartz violet stimulated luminescence dating, Quat. Geochronol., 51, 99–109, https://doi.org/10.1016/j.quageo.2019.02.001, 2019.
Aubry, T., Dimuccio, L. A., Almeida, M., Buylaert, Fontana, L., Higham, T., Liard, M., Murray, A. S., Neves, M. J., Peyrouse, J.-B., and Walter, B.: Stratigraphic and technological evidence from the Middle Palaeolithic-Châtelperronian-Aurignacian record at the Bordes-Fitte rockshelter (Roches d'Abilly site, Central France), J. Hum. Evol., 62, 116–137, https://doi.org/10.1016/j.jhevol.2011.10.009, 2012.
Autzen, M., Andersen, C. E., Bailey, M., and Murray, A. S.: Calibration quartz: An update on dose calculations for luminescence dating, Radiat. Meas., 157, 106828, https://doi.org/10.1016/j.radmeas.2022.106828, 2022.
Bøtter-Jensen, L., Thomsen, K. J., and Jain, M.: Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry, Radiat. Meas., 45, 253–257, https://doi.org/10.1016/j.radmeas.2009.11.030, 2010.
Buchanan, G. R., Tsukamoto, S., Zhang, J., and Long, H.: Testing the natural limits of infrared radiofluorescence dating of the Luochuan loess-palaeosol sequence, Chinese Loess Plateau, Radiat. Meas., 155, 106797, https://doi.org/10.1016/j.radmeas.2022.106797, 2022.
Buchanan, G. R., Tsukamoto, S., Zhang, J., and Long, H.: Testing infrared radiofluorescence dating on polymineral fine-grains from the Luochuan loess-palaeosol sequence, Chinese loess plateau, Quat. Geochronol., 79, 101485, https://doi.org/10.1016/j.quageo.2023.101485, 2024.
Buylaert, J.-P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and Sohbati, R.: A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments: Feldspar luminescence dating of Middle and Late Pleistocene sediments, Boreas, 41, 435–451, https://doi.org/10.1111/j.1502-3885.2012.00248.x, 2012a.
Buylaert, J.-P., Jain, M., Murray, A. S., Thomsen, K. J., and Lapp, T.: IR-RF dating of sand-sized K-feldspar extracts: A test of accuracy, Radiat. Meas., 47, 759–765, https://doi.org/10.1016/j.radmeas.2012.06.021, 2012b.
Duller, G. A. T., Gunn, M., and Roberts, H. M.: Single grain infrared photoluminescence (IRPL) measurements of feldspars for dating, Radiat. Meas., 133, 106313, https://doi.org/10.1016/j.radmeas.2020.106313, 2020.
Duval, M., Guilarte, V., Campana, I., Arnold, L. J., Miguens, L., Iglesias, J., and Gonzalez-Sierra, S.: Quantifying hydrofluoric acid etching of quartz and feldspar coarse grains based on weight loss estimates: implication for ESR and luminescence dating studies, Ancient TL, 36, 1–14, https://doi.org/10.26034/la.atl.2018.522, 2018.
Erfurt, G. and Krbetschek, M. R.: IRSAR – A single-aliquot regenerative-dose dating protocol applied to the infrared radiofluorescence (IR-RF) of coarse-grain K-feldspar, Ancient TL, 21, 35–42, 2003a.
Erfurt, G. and Krbetschek, M. R.: Studies on the physics of the infrared radioluminescence of potassium feldspar and on the methodology of its application to sediment dating, Radiat. Meas., 37, 505–510, https://doi.org/10.1016/S1350-4487(03)00058-1, 2003b.
Frouin, M., Huot, S., Mercier, N., Lahaye, C., and Lamothe, M.: The issue of laboratory bleaching in the infrared-radiofluorescence dating method, Radiat. Meas., 81, 212–217, https://doi.org/10.1016/j.radmeas.2014.12.012, 2015.
Frouin, M., Huot, S., Kreutzer, S., Lahaye, C., Lamothe, M., Philippe, A., and Mercier, N.: An improved radiofluorescence single-aliquot regenerative dose protocol for K-feldspars, Quat. Geochronol., 38, 13–24, https://doi.org/10.1016/j.quageo.2016.11.004, 2017.
Huot, S., Frouin, M., and Lamothe, M.: Evidence of shallow TL peak contributions in infrared radiofluorescence, Radiat. Meas., 81, 237–241, https://doi.org/10.1016/j.radmeas.2015.05.009, 2015.
Hütt, G., Jaek, I., and Tchonka, J.: Optical dating: K-feldspars optical response stimulation spectra, Quaternary Sci. Rev., 7, 381–385, https://doi.org/10.1016/0277-3791(88)90033-9, 1988.
Key, A., Lauer, T., Skinner, M. M., Pope, M., Bridgland, D. R., Noble, L., and Proffitt, T.: On the earliest Acheulean in Britain: first dates and in-situ artefacts from the MIS 15 site of Fordwich (Kent, UK), R. Soc. Open Sci., 9, 211904, https://doi.org/10.1098/rsos.211904, 2022.
Kook, M., Kumar, R., Murray, A. S., Thomsen, K. J., and Jain, M.: Instrumentation for the non-destructive optical measurement of trapped electrons in feldspar, Radiat. Meas., 120, 247–252, https://doi.org/10.1016/j.radmeas.2018.06.001, 2018.
Krbetschek, M. R., Trautmann, T., Dietrich, A., and Stolz, W.: Radioluminescence dating of sediments: methodological aspects, Radiat. Meas., 32, 493–498, https://doi.org/10.1016/S1350-4487(00)00122-0, 2000.
Kreutzer, S., Schmidt, C., Fuchs, M. C., Dietze, M., and Fuchs, M.: Introducing an R package for luminescence dating analysis, Ancient TL, 30, 1–8, https://doi.org/10.26034/la.atl.2012.457, 2012.
Kreutzer, S., Murari, M. K., Frouin, M., Fuchs, M., and Mercier, N.: Always remain suspicious: a case study on tracking down a technical artefact while measuring IR-RF, Ancient TL, 35, 20–30, https://doi.org/10.26034/la.atl.2017.510, 2017.
Kreutzer, S., Mercier, N., and Lamothe, M.: Infrared-radiofluorescence: Dose saturation and long-term signal stability of a K-feldspar sample, Radiat. Meas., 156, 106818, https://doi.org/10.1016/j.radmeas.2022.106818, 2022a.
Kreutzer, S., Burow, C., Dietze, M., Fuchs, M. C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H. J., and Galharret, J.-M.: Luminescence: Comprehensive Luminescence Dating Data Analysis v.0.9.19, https://CRAN.R-project.org/package=Luminescence (last access: 3 August 2025), 2022b.
Kumar, R., Kook, M., Murray, A. S., and Jain, M.: Towards direct measurement of electrons in metastable states in K-feldspar: Do infrared-photoluminescence and radioluminescence probe the same trap?, Radiat. Meas., 120, 7–13, https://doi.org/10.1016/j.radmeas.2018.06.018, 2018.
Kumar, R., Kook, M., and Jain, M.: Sediment dating using Infrared Photoluminescence, Quat. Geochronol., 62, 101147, https://doi.org/10.1016/j.quageo.2020.101147, 2021.
Lapp, T., Jain, M., Thomsen, K. J., Murray, A. S., and Buylaert, J.-P.: New luminescence measurement facilities in retrospective dosimetry, Radiat. Meas., 47, 803–808, https://doi.org/10.1016/j.radmeas.2012.02.006, 2012.
Li, B. and Li, S.-H.: Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction, Quat. Geochronol., 6, 468–479, https://doi.org/10.1016/j.quageo.2011.05.001, 2011.
Li, B., Jacobs, Z., Roberts, R. G., and Li, S.-H.: Extending the age limit of luminescence dating using the dose-dependent sensitivity of MET-pIRIR signals from K-feldspar, Quat. Geochronol., 17, 55–67, https://doi.org/10.1016/j.quageo.2013.02.003, 2013.
Liu, L., Yang, S., Li, P., Zhang, J., Li, R., Li, D., Xu, X., Luo, Y., and Yang, X.: First investigation of the luminescence dating of loess in the eastern Tibetan Plateau using K-feldspar MAR MET-pIRIR protocol, Quat. Geochronol., 86, 101648, https://doi.org/10.1016/j.quageo.2024.101648, 2025.
Lu, Y. C., Wang, X. L., and Wintle, A. G.: A new OSL chronology for dust accumulation in the last 130 000 yr for the Chinese Loess Plateau, Quat. Res., 67, 152–160, https://doi.org/10.1016/j.yqres.2006.08.003, 2007.
Madsen, A. T., Murray, A. S., and Andersen, T. J.: Optical Dating of Dune Ridges on Rømø, a Barrier Island in the Wadden Sea, Denmark, J. Coast. Res., 23, 1259–1269, https://doi.org/10.2112/05-0471.1, 2007.
Mittelstraß, D. and Kreutzer, S.: Spatially resolved infrared radiofluorescence: single-grain K-feldspar dating using CCD imaging, Geochronology, 3, 299–319, https://doi.org/10.5194/gchron-3-299-2021, 2021.
Murari, M. K., Kreutzer, S., and Fuchs, M.: Further investigations on IR-RF: Dose recovery and correction, Radiat. Meas., 120, 110–119, https://doi.org/10.1016/j.radmeas.2018.04.017, 2018.
Murari, M. K., Kreutzer, S., Frouin, M., Friedrich, J., Lauer, T., Klasen, N., Schmidt, C., Tsukamoto, S., Richter, D., Mercier, N., and Fuchs, M.: Infrared Radiofluorescence (IR-RF) of K-Feldspar: An Interlaboratory Comparison, Geochronometria, 48, 105–120, https://doi.org/10.2478/geochr-2021-0007, 2021.
Murray, A. S. and Funder, S.: Optically stimulated luminescence dating of a Danish Eemian coastal marine deposit: a test of accuracy, Quaternary Sci. Rev., 22, 1177–1183, https://doi.org/10.1016/S0277-3791(03)00048-9, 2003.
Murray, A. S., Svendsen, J. I., Mangerud, J., and Astakhov, V. I.: Testing the accuracy of quartz OSL dating using a known-age Eemian site on the river Sula, northern Russia, Quat. Geochronol., 2, 102–109, https://doi.org/10.1016/j.quageo.2006.04.004, 2007.
Porat, N., Faerstein, G., Medialdea, A., and Murray, A. S.: Re-examination of common extraction and purification methods of quartz and feldspar for luminescence dating, Ancient TL, 33, 22–30, https://doi.org/10.26034/la.atl.2015.487, 2015.
Prasad, A. K., Poolton, N. R. J., Kook, M., and Jain, M.: Optical dating in a new light: A direct, non-destructive probe of trapped electrons, Sci. Rep., 7, 12097, https://doi.org/10.1038/s41598-017-10174-8, 2017.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 3 August 2025), 2020.
Richter, D., Richter, A., and Dornich, K.: LEXSYG - A new system for luminescence research, Geochronometria, 40, 220–228, https://doi.org/10.2478/s13386-013-0110-0, 2013.
Scerri, E. M. L., Frouin, M., Breeze, P. S., Armitage, S. J., Candy, I., Groucutt, H. S., Drake, N., Parton, A., White, T. S., Alsharekh, A. M., and Petraglia, M. D.: The expansion of Acheulean hominins into the Nefud Desert of Arabia, Sci. Rep., 11, 10111, https://doi.org/10.1038/s41598-021-89489-6, 2021.
Sontag-González, M. and Fuchs, M.: Spectroscopic investigations of infrared-radiofluorescence (IR-RF) for equivalent dose estimation, Radiat. Meas., 153, 106733, https://doi.org/10.1016/j.radmeas.2022.106733, 2022.
Sontag-González, M., Mittelstraß, D., Kreutzer, S., and Fuchs, M.: Wavelength calibration and spectral sensitivity correction of luminescence measurements for dosimetry applications: Method comparison tested on the IR-RF of K-feldspar, Radiat. Meas., 159, 106876, https://doi.org/10.1016/j.radmeas.2022.106876, 2022.
Sontag-González, M., Kumar, R., Schwenninger, J.-L., Thieme, J., Kreutzer, S., and Frouin, M.: Short communication: Synchrotron-based elemental mapping of single grains to investigate variable infrared-radiofluorescence emissions for luminescence dating, Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024, 2024.
Sontag-González, M., Murari, M. K., Jain, M., Frouin, M., and Fuchs, M.: Further investigations into the accuracy of infrared-radiofluorescence (IR-RF) and its inter-comparison with infrared photoluminescence (IRPL) dating (v1.0.2), Zenodo [data set], https://doi.org/10.5281/zenodo.14507179, 2025.
Trautmann, T., Krbetschek, M. R., Dietrich, A., and Stolz, W.: Investigations of feldspar radioluminescence: potential for a new dating technique, Radiat. Meas., 29, 421–425, https://doi.org/10.1016/S1350-4487(98)00012-2, 1998.
Trautmann, T., Dietrich, A., Stolz, W., and Krbetschek, M. R.: Radioluminescence Dating: A New Tool for Quaternary Geology and Archaeology, Naturwissenschaften, 86, 441–444, https://doi.org/10.1007/s001140050649, 1999.
Trautmann, T., Krbetschek, M. R., and Stolz, W.: A systematic study of the radioluminescence properties of single feldspar grains, Radiat. Meas., 32, 685–690, https://doi.org/10.1016/S1350-4487(00)00077-9, 2000.
Tribolo, C., Kreutzer, S., and Mercier, N.: How reliable are our beta-source calibrations?, Ancient TL, 37, 1–10, https://doi.org/10.26034/la.atl.2019.529, 2019.
Varma, V., Biswas, R., and Singhvi, A.: Aspects of Infrared Radioluminescence dosimetry in K-feldspar, Geochronometria, 40, 266–273, https://doi.org/10.2478/s13386-013-0125-6, 2013.
Yi, S., Buylaert, J.-P., Murray, A. S., Lu, H., Thiel, C., and Zeng, L.: A detailed post-IR IRSL dating study of the Niuyangzigou loess site in northeastern China, Boreas, 45, 644–657, https://doi.org/10.1111/bor.12185, 2016.
Zhang, J., Hao, Q., and Li, S.-H.: An absolutely dated record of climate change over the last three glacial–interglacial cycles from Chinese loess deposits, Geology, 50, 1116–1120, https://doi.org/10.1130/G50125.1, 2022.
Short summary
We tested the reliability of infrared radiofluorescence (IR-RF) dating of K-feldspar on samples of known age. We compare several measurement protocols and analysis variants and determine the most appropriate version. Additionally, we compare these results with those obtained using infrared photoluminescence (IRPL), an alternative dating method for K-feldspar, for the same samples. Our results confirm the dating potential of IR-RF and highlight similarities and differences to other methods.
We tested the reliability of infrared radiofluorescence (IR-RF) dating of K-feldspar on samples...