Articles | Volume 7, issue 3
https://doi.org/10.5194/gchron-7-427-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-427-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nonparametric estimation of age–depth models from sedimentological and stratigraphic information
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, the Netherlands
David De Vleeschouwer
Institut für Geologie und Paläontologie, Universität Münster, 48149 Münster, Germany
Sietske Batenburg
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, the Netherlands
Department of Earth and Ocean Dynamics, University of Barcelona, Barcelona, Spain
Emilia Jarochowska
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, the Netherlands
Related authors
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Gerald Auer, David De Vleeschouwer, Arisa Seki, Anna Joy Drury, Yusuke Kubo, Minoru Ikehara, Junichiro Kuroda, and the ReC23-01 scientists
EGUsphere, https://doi.org/10.5194/egusphere-2025-2760, https://doi.org/10.5194/egusphere-2025-2760, 2025
Short summary
Short summary
We explore new methods for ice-rafted debris detection in marine sediment cores to detect past climate changes and ice sheet dynamics. Traditional IRD detection methods are destructive and time-consuming. To alleviate this problem, we utilize non-destructive imaging techniques core material from the Indian Ocean. While promising, we found contamination to be an issue. Machine learning identifies density and chemical differences, but rigorous testing is needed to avoid false positives.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
David De Vleeschouwer, Theresa Nohl, Christian Schulbert, Or M. Bialik, and Gerald Auer
Sci. Dril., 32, 43–54, https://doi.org/10.5194/sd-32-43-2023, https://doi.org/10.5194/sd-32-43-2023, 2023
Short summary
Short summary
Differences exist in International Ocean Discovery Program (IODP) sediment lithification depending on the coring tool used. Advanced piston corers (APCs) display less pronounced lithification compared to extended core barrels (XCBs) of the same formation. The difference stems from the destruction of early cements between sediment grains and an
acoustic compactioncaused by the piston-core pressure wave. XCB cores provide a more accurate picture of the lithification of the original formation.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Cited articles
Aadland, T., Sadler, P. M., and Helland-Hansen, W.: Geometric interpretation of time-scale dependent sedimentation rates, Sediment. Geol., 371, 32–40, https://doi.org/10.1016/j.sedgeo.2018.04.003, 2018. a, b, c
Abril-Hernández, J.: 210Pb-dating of sediments with models assuming a constant flux: CFCS, CRS, PLUM, and the novel χ-mapping. Review, performance tests, and guidelines, J. Environ. Radioactiv., 268–269, 107248, https://doi.org/10.1016/j.jenvrad.2023.107248, 2023. a, b, c
Appleby, P. and Oldfield, F.: The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment, CATENA, 5, 1–8, https://doi.org/10.1016/S0341-8162(78)80002-2, 1978. a, b, c
Averbuch, O., Tribovillard, N., Devleeschouwer, X., Riquier, L., Mistiaen, B., and Van Vliet-Lanoe, B.: Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian–Famennian boundary (c. 376 Ma)?, Terra Nova, 17, 25–34, https://doi.org/10.1111/j.1365-3121.2004.00580.x, 2005. a
Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., and Honeyman, T.: Introducing the FAIR Principles for research software, Sci. Data, 9, 622, https://doi.org/10.1038/s41597-022-01710-x, 2022. a
Becker, R., Marshall, J., Da Silva, A.-C., Agterberg, F., Gradstein, F., and Ogg, J.: The Devonian Period, 733–810, Elsevier, https://doi.org/10.1016/B978-0-12-824360-2.00022-X, 2020. a
Berensmeier, M., Tomašových, A., Nawrot, R., Cassin, D., Zonta, R., Koubová, I., and Zuschin, M.: Stratigraphic expression of the human impacts in condensed deposits of the Northern Adriatic Sea, Geol. Soc. Lond. Spec. Publ., 529, 195–222, https://doi.org/10.1144/SP529-2022-188, 2023. a
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon sequences, Quat. Geochronol., 5, 512–518, https://doi.org/10.1016/j.quageo.2010.01.002, 2010. a, b
Blaauw, M.: Out of tune: the dangers of aligning proxy archives, Quaternary Sci. Rev., 36, 38–49, https://doi.org/10.1016/j.quascirev.2010.11.012, 2012. a
Blaauw, M. and Christen, J.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/ba/1339616472, 2011. a, b, c
Blaauw, M. and Christen, J. A.: Radiocarbon Peat Chronologies and Environmental Change, J. Roy. Stat. Soc. C-Appl., 54, 805–816, https://doi.org/10.1111/j.1467-9876.2005.00516.x, 2005. a
Blaauw, M., Bakker, R., Christen, J. A., Hall, V. A., and Plicht, J. v. d.: A Bayesian Framework for Age Modeling of Radiocarbon-Dated Peat Deposits: Case Studies from the Netherlands, Radiocarbon, 49, 357–367, https://doi.org/10.1017/S0033822200042296, 2007. a
Blard, P.-H., Suchéras-Marx, B., Suan, G., Godet, B., Tibari, B., Dutilleul, J., Mezine, T., and Adatte, T.: Are marl-limestone alternations mainly driven by CaCO3 variations at the astronomical timescale? New insights from extraterrestrial 3He, Earth Planet. Sc. Lett., 614, 118173, https://doi.org/10.1016/j.epsl.2023.118173, 2023. a, b
Bookstein, F. L.: Random walk and the existence of evolutionary rates, Paleobiology, 13, 446–464, https://doi.org/10.1017/S0094837300009039, 1987. a
Brent, R. P.: Algorithms for minimization without derivatives, Dover Publications, Mineola, N.Y., ISBN 0-486-41998-3, 2002. a
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Sci. Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008. a, b
Bronk Ramsey, C.: Bayesian Analysis of Radiocarbon Dates, Radiocarbon, 51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009. a, b
Cagliari, J., Schmitz, M. D., Tedesco, J., Trentin, F. A., and Lavina, E. L. C.: High-precision U-Pb geochronology and Bayesian age-depth modeling of the glacial-postglacial transition of the southern Paraná Basin: Detailing the terminal phase of the Late Paleozoic Ice Age on Gondwana, Sediment. Geol., 451, 106397, https://doi.org/10.1016/j.sedgeo.2023.106397, 2023. a
Carmichael, M. J., Inglis, G. N., Badger, M. P. S., Naafs, B. D. A., Behrooz, L., Remmelzwaal, S., Monteiro, F. M., Rohrssen, M., Farnsworth, A., Buss, H. L., Dickson, A. J., Valdes, P. J., Lunt, D. J., and Pancost, R. D.: Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum, Global Planet. Change, 157, 114–138, https://doi.org/10.1016/j.gloplacha.2017.07.014, 2017. a
Carmichael, S. K., Waters, J. A., Königshof, P., Suttner, T. J., and Kido, E.: Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression, Global Planet. Change, 183, 102984, https://doi.org/10.1016/j.gloplacha.2019.102984, 2019. a
Cerda, M., Evangelista, H., Valdés, J., Siffedine, A., Boucher, H., Nogueira, J., Nepomuceno, A., and Ortlieb, L.: A new 20th century lake sedimentary record from the Atacama Desert/Chile reveals persistent PDO (Pacific Decadal Oscillation) impact, J. S. Am. Earth Sci., 95, 102302, https://doi.org/10.1016/j.jsames.2019.102302, 2019. a
Claeys, P., Casier, J.-G., and Margolis, S. V.: Microtektites and Mass Extinctions: Evidence for a Late Devonian Asteroid Impact, Science, 257, 1102–1104, https://doi.org/10.1126/science.257.5073.1102, 1992. a
da Silva, A.-C.: Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating: Supplementary code, Zenodo [code], https://doi.org/10.5281/ZENODO.12516430, 2024. a, b
Da Silva, A.-C., Sinnesael, M., Claeys, P., Davies, J. H. F. L., de Winter, N. J., Percival, L. M. E., Schaltegger, U., and De Vleeschouwer, D.: Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating, Sci. Rep., 10, 12940, https://doi.org/10.1038/s41598-020-69097-6, 2020. a, b, c, d, e, f, g, h, i, j, k, l
Davies, N. S., Shillito, A. P., and McMahon, W. J.: Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary geological outcrops in the Pliocene–Pleistocene Red Crag Formation, eastern England, J. Geol. Soc., 176, 1154–1168, https://doi.org/10.1144/jgs2019-056, 2019. a, b, c
De Vleeschouwer, D. and Parnell, A. C.: Reducing time-scale uncertainty for the Devonian by integrating astrochronology and Bayesian statistics, Geology, 42, 491–494, https://doi.org/10.1130/G35618.1, 2014. a, b, c, d
De Vleeschouwer, D., Percival, L. M. E., Wichern, N. M. A., and Batenburg, S. J.: Pre-Cenozoic cyclostratigraphy and palaeoclimate responses to astronomical forcing, Nat. Rev. Earth Environ., 5, 59–74, https://doi.org/10.1038/s43017-023-00505-x, 2024. a
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 965–971, https://doi.org/10.1029/95PA02087, 1995. a
Dominguez, J. G., Kosnik, M. A., Allen, A. P., Hua, Q., Jacob, D. E., Kaufman, D. S., and Whitacre, K.: Time-Averaging and Stratigraphic Resolution in Death Assemblages and Holocene Deposits: Sydney Harbour's Molluscan Record, PALAIOS, 31, 564–575, https://doi.org/10.2110/palo.2015.087, 2016. a
Enos, P.: Sedimentary parameters for computer modeling, Bulletin (Kansas Geological Survey), 233, 63–99, https://doi.org/10.17161/kgsbulletin.no.233.20449, 1991. a, b, c, d
Farley, K. A.: Extraterrestrial Helium in Seafloor Sediments: Identification, Characteristics, and Accretion Rate Over Geologic Time, in: Accretion of Extraterrestrial Matter Throughout Earth's History, edited by: Peucker-Ehrenbrink, B. and Schmitz, B., 179–204, Springer US, Boston, MA, https://doi.org/10.1007/978-1-4419-8694-8_11, 2001. a
Farley, K. A. and Eltgroth, S. F.: An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He, Earth Planet. Sc. Lett., 208, 135–148, https://doi.org/10.1016/S0012-821X(03)00017-7, 2003. a, b
Frieling, J., Svensen, H. H., Planke, S., Cramwinckel, M. J., Selnes, H., and Sluijs, A.: Thermogenic methane release as a cause for the long duration of the PETM, P. Natl. Acad. Sci., 113, 12059–12064, https://doi.org/10.1073/pnas.1603348113, 2016. a
Gould, S. J. and Eldredge, N.: Punctuated equilibria: an alternative to phyletic gradualism, Models in paleobiology, 1972, 82–115, 1972. a
Gradstein, F. (Ed.): Geologic Time Scale 2020, Elsevier, https://doi.org/10.1016/C2020-1-02369-3, 2020. a, b
Gradstein, F. M. (Ed.): The geologic time scale 2012, Elsevier, Amsterdam; Boston, 1st Edn., ISBN 978-0-444-59425-9, 2012. a
Harrigan, C. O., Schmitz, M. D., Over, D. J., Trayler, R. B., and Davydov, V. I.: Recalibrating the Devonian time scale: A new method for integrating radioisotopic and astrochronologic ages in a Bayesian framework, GSA Bull., 134, 1931–1948, https://doi.org/10.1130/B36128.1, 2021. a
Haslett, J. and Parnell, A.: A Simple Monotone Process with Application to Radiocarbon-Dated Depth Chronologies, J. R. Stat. Soc. C-Appl., 57, 399–418, https://doi.org/10.1111/j.1467-9876.2008.00623.x, 2008. a, b, c, d
Haywood, A. M., Ridgwell, A., Lunt, D. J., Hill, D. J., Pound, M. J., Dowsett, H. J., Dolan, A. M., Francis, J. E., and Williams, M.: Are there pre-Quaternary geological analogues for a future greenhouse warming?, Philos. T. R. Soc. A, 369, 933–956, https://doi.org/10.1098/rsta.2010.0317, 2011. a
Hohmann, N.: Incorporating Information on Varying Sedimentation Rates into Paleontological Analyses, PALAIOS, 36, 53–67, https://doi.org/10.2110/palo.2020.038, 2021. a, b, c
Hohmann, N. and Jarochowska, E.: Supplementary data and code for “Nonparametric estimation of age-depth models from sedimentological and stratigraphic data”, Zenodo [code, data set], https://doi.org/10.5281/zenodo.15489276, 2025. a, b
Hohmann, N., Koelewijn, J. R., Burgess, P., and Jarochowska, E.: Identification of the mode of evolution in incomplete carbonate successions, BMC Ecol. Evol., 24, 113, https://doi.org/10.1186/s12862-024-02287-2, 2024. a, b, c
Holland, S. M. and Patzkowsky, M. E.: Models for simulating the fossil record, Geology, 27, 491–494, https://doi.org/10.1130/0091-7613(1999)027<0491:MFSTFR>2.3.CO;2, 1999. a
Hunter-Zinck, H., Siqueira, A. F. d., Vásquez, V., Barnes, R., and Martinez, C. C.: Ten simple rules on writing clean and reliable open-source scientific software, PLOS Comput. Biol., 17, e1009481, https://doi.org/10.1371/journal.pcbi.1009481, 2021. a
Huybers, P. and Wunsch, C.: A depth-derived Pleistocene age model: Uncertainty estimates, sedimentation variability, and nonlinear climate change, Paleoceanography, 19, PA1028, https://doi.org/10.1029/2002PA000857, 2004. a
Jarochowska, E., Nohl, T., Grohganz, M., Hohmann, N., Vandenbroucke, T. R. A., and Munnecke, A.: Reconstructing Depositional Rates and Their Effect on Paleoenvironmental Proxies: The Case of the Lau Carbon Isotope Excursion in Gotland, Sweden, Paleoceanogr. Paleocl., 35, e2020PA003979, https://doi.org/10.1029/2020PA003979, 2020. a, b, c, d, e
Kowalewski, M. and Bambach, R. K.: The limits of paleontological resolution, in: High-resolution approaches in stratigraphic paleontology, 1–48, Springer, https://doi.org/10.1007/978-1-4020-9053-0_1, 2008. a
Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C., and Paytan, A.: Early Cenozoic decoupling of the global carbon and sulfur cycles, Paleoceanography, 18, 1090, https://doi.org/10.1029/2003PA000908, 2003. a
Lacourse, T. and Gajewski, K.: Current practices in building and reporting age-depth models, Quaternary Res., 96, 28–38, https://doi.org/10.1017/qua.2020.47, 2020. a
Li, M., Kump, L. R., Hinnov, L. A., and Mann, M. E.: Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing, Earth Planet. Sc. Lett., 501, 165–179, https://doi.org/10.1016/j.epsl.2018.08.041, 2018. a, b
MacLeod, N.: Punctuated anagenesis and the importance of stratigraphy to paleobiology, Paleobiology, 17, 167–188, https://doi.org/10.1017/S0094837300010472, 1991. a
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P.: Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera, Paleobiology, 9, 377–389, https://doi.org/10.1017/S0094837300007843, 1983. a
McNeill, D. F.: Accumulation rates from well-dated late Neogene carbonate platforms and margins, Sediment. Geol., 175, 73–87, https://doi.org/10.1016/j.sedgeo.2004.12.032, 2005. a, b
Meyers, S. R. and Sageman, B. B.: Detection, quantification, and significance of hiatuses in pelagic and hemipelagic strata, Earth and Planetary Science Letters, 224, 55–72, https://doi.org/10.1016/j.epsl.2004.05.003, 2004. a
Middeldorp, A. A.: Pollen concentration as a basis for indirect dating and quantifying net organic and fungal production in a peat bog ecosystem, Rev. Palaeobot. Palyno., 37, 225–282, https://doi.org/10.1016/0034-6667(82)90003-3, 1982. a, b
Mukhopadhyay, S., Farley, K. A., and Montanari, A.: A Short Duration of the Cretaceous-Tertiary Boundary Event: Evidence from Extraterrestrial Helium-3, Science, 291, 1952–1955, https://doi.org/10.1126/science.291.5510.1952, 2001. a, b
Murphy, B., Farley, K. A., and Zachos, J. C.: Extraterrestrial 3He estimation across the Paleocene-Eocene thermal maximum at ODP Site 208-1266, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.783079, 2010a. a
Murphy, B. H., Farley, K. A., and Zachos, J. C.: An extraterrestrial 3He-based timescale for the Paleocene–Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266, Geochim. Cosmochim. Ac., 74, 5098–5108, https://doi.org/10.1016/j.gca.2010.03.039, 2010b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r
Muscente, A. D., Prabhu, A., Zhong, H., Eleish, A., Meyer, M. B., Fox, P., Hazen, R. M., and Knoll, A. H.: Quantifying ecological impacts of mass extinctions with network analysis of fossil communities, P. Natl. Acad. Sci., 115, 5217–5222, https://doi.org/10.1073/pnas.1719976115, 2018. a
Nanthaamornphong, A. and Carver, J. C.: Test-Driven Development in scientific software: a survey, Software Qual. J., 25, 343–372, https://doi.org/10.1007/s11219-015-9292-4, 2017. a
Paola, C., Ganti, V., Mohrig, D., Runkel, A. C., and Straub, K. M.: Time not our time: physical controls on the preservation and measurement of geologic time, Annu. Rev. Earth Planet. Sc., 46, 409–438, https://doi.org/10.1146/annurev-earth-082517-010129, 2018. a
Parnell, A. C. and Gehrels, W. R.: Using chronological models in late Holocene sea-level reconstructions from saltmarsh sediments, 500–513, John Wiley and Sons, Ltd, https://doi.org/10.1002/9781118452547.ch32, 2015. a
Percival, L. M. E., Davies, J. H. F. L., Schaltegger, U., De Vleeschouwer, D., Da Silva, A.-C., and Föllmi, K. B.: Precisely dating the Frasnian–Famennian boundary: implications for the cause of the Late Devonian mass extinction, Sci. Rep., 8, 9578, https://doi.org/10.1038/s41598-018-27847-7, 2018. a, b, c, d, e
Punyasena, S. W., Jaramillo, C., de la Parra, F., and Du, Y.: Probabilistic correlation of single stratigraphic samples: A generalized approach for biostratigraphic data, AAPG Bull., 96, 235–244, https://doi.org/10.1306/06201111026, 2012. a
Pálfy, J.: Applications of quantitative biostratigraphy in chronostratigraphy and time scale construction, Stratigraphy, 4, 195–199, 2007. a
Racki, G., Rakociński, M., Marynowski, L., and Wignall, P. B.: Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?, Geology, 46, 543–546, https://doi.org/10.1130/G40233.1, 2018. a
Raup, D. M. and Sepkoski, J. J.: Mass Extinctions in the Marine Fossil Record, Science, 215, 1501–1503, https://doi.org/10.1126/science.215.4539.1501, 1982. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 8 September 2025), 2023. a
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C.: On the duration of the Paleocene-Eocene thermal maximum (PETM), Geochem. Geophy. Geosy., 8, Q12002, https://doi.org/10.1029/2007GC001784, 2007. a, b
Schumer, R. and Jerolmack, D. J.: Real and apparent changes in sediment deposition rates through time, J. Geophys. Res.-Earth, 114, F00A06, https://doi.org/10.1029/2009JF001266, 2009. a, b
Scott, R. W.: Chronostratigraphic Database for Upper Cretaceous Oceanic Red Beds (CORBs), in: Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins, and Paleoceanographic and Paleoclimatic Significance, edited by: Hu, X., Wang, C., Scott, R. W., Wagreich, M., and Jansa, L., Vol. 91, SEPM (Society for Sedimentary Geology), ISBN 978-1-56576-135-3, https://doi.org/10.2110/sepmsp.091.035, 2009. a
Sinnesael, M., De Vleeschouwer, D., Zeeden, C., Batenburg, S. J., Da Silva, A.-C., de Winter, N. J., Dinarès-Turell, J., Drury, A. J., Gambacorta, G., Hilgen, F. J., Hinnov, L. A., Hudson, A. J. L., Kemp, D. B., Lantink, M. L., Laurin, J., Li, M., Liebrand, D., Ma, C., Meyers, S. R., Monkenbusch, J., Montanari, A., Nohl, T., Pälike, H., Pas, D., Ruhl, M., Thibault, N., Vahlenkamp, M., Valero, L., Wouters, S., Wu, H., and Claeys, P.: The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls, Earth-Sci. Rev., 199, 102965, https://doi.org/10.1016/j.earscirev.2019.102965, 2019. a, b, c, d
Sluijs, A., Bowen, G., Brinkhuis, H., Lourens, L., and Thomas, E.: The Palaeocene–Eocene Thermal Maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A., Gregory, F., and Schmidt, D., 323–349, The Geological Society of London on behalf of The Micropalaeontological Society, https://doi.org/10.1144/TMS002.15, 2007. a, b, c
Storey, M., Duncan, R. A., and Swisher, C. C.: Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic, Science, 316, 587–589, https://doi.org/10.1126/science.1135274, 2007. a
Takayanagi, M. and Ozima, M.: Temporal variation of ratio recorded in deep-sea sediment cores, J. Geophys. Res.-Sol. Ea., 92, 12531–12538, https://doi.org/10.1029/JB092iB12p12531, 1987. a
Thompson, J. B. and Newton, C. R.: Late Devonian Mass Extinction: Episodic Climatic Cooling or Warming?, in: Devonian of the World: Proceedings of the 2nd International Symposium on the Devonian System — Memoir 14, Volume III: Paleontology, Paleoecology and Biostratigraphy, 29–34, https://archives.datapages.com/data/cspg_sp/data/014/014003/29_cspgsp014c0029.htm (last access: 8 September 2025), 1988. a
Tipper, J. C.: Measured rates of sedimentation: What exactly are we estimating, and why?, Sediment. Geol., 339, 151–171, https://doi.org/10.1016/j.sedgeo.2016.04.003, 2016. a, b
Tobin, T. S., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A., Mitchell, R. N., Diamond, M. R., Raub, T. D., and Kirschvink, J. L.: Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism, Palaeogeogr. Palaeocl., 350–352, 180–188, https://doi.org/10.1016/j.palaeo.2012.06.029, 2012. a
Tomašových, A., Gallmetzer, I., Haselmair, A., Kaufman, D. S., Kralj, M., Cassin, D., Zonta, R., and Zuschin, M.: Tracing the effects of eutrophication on molluscan communities in sediment cores: outbreaks of an opportunistic species coincide with reduced bioturbation and high frequency of hypoxia in the Adriatic Sea, Paleobiology, 44, 575–602, https://doi.org/10.1017/pab.2018.22, 2018. a
Tomašových, A., Gallmetzer, I., Haselmair, A., and Zuschin, M.: Inferring time averaging and hiatus durations in the stratigraphic record of high-frequency depositional sequences, Sedimentology, 69, 1083–1118, https://doi.org/10.1111/sed.12936, 2022. a, b
Trachsel, M. and Telford, R. J.: All age–depth models are wrong, but are getting better, Holocene, 27, 860–869, https://doi.org/10.1177/0959683616675939, 2017. a, b
Trayler, R. B., Schmitz, M. D., Cuitiño, J., Kohn, M. J., Bargo, M. S., Kay, R. F., Strömberg, C. A., and Vizcaíno, S. F.: An improved approach to age-modeling in deep time: Implications for the Santa Cruz Formation, Argentina, GSA Bull., 132, 233–244, https://doi.org/10.1130/B35203.1, 2019. a, b, c
Trayler, R. B., Meyers, S. R., Sageman, B. B., and Schmitz, M. D.: Bayesian integration of astrochronology and radioisotope geochronology, Geochronology, 6, 107–123, https://doi.org/10.5194/gchron-6-107-2024, 2024. a, b, c, d
Vahlenkamp, M., De Vleeschouwer, D., Batenburg, S. J., Edgar, K. M., Hanson, E., Martinez, M., Pälike, H., MacLeod, K. G., Li, Y.-X., Richter, C., Bogus, K., Hobbs, R. W., and Huber, B. T.: A lower to middle Eocene astrochronology for the Mentelle Basin (Australia) and its implications for the geologic time scale, Earth Planet. Sc. Lett., 529, 115865, https://doi.org/10.1016/j.epsl.2019.115865, 2020. a
Wichern, N. M. A., Bialik, O. M., Nohl, T., Percival, L. M. E., Becker, R. T., Kaskes, P., Claeys, P., and De Vleeschouwer, D.: Astronomically paced climate and carbon cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis, Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, 2024. a, b
Wilkinson, B. H.: Precipitation as Meteoric Sediment and Scaling Laws of Bedrock Incision: Assessing the Sadler Effect, J. Geol., 123, 95–112, https://doi.org/10.1086/681588, 2015. a, b
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 1–9, https://doi.org/10.1038/sdata.2016.18, 2016. a
Young, R., Walanus, A., Goslar, T., van Geel, B., Ralska-Jasiewiczowa, M., and Wijmstra, T. A.: Test of an equal taxon–weight modification of Middeldorp's pollen density dating on data from varved sediments of Lake Gościąż, Poland, Rev. Palaeobot. Palyno., 104, 213–237, https://doi.org/10.1016/S0034-6667(98)00060-8, 1999. a, b
Zeeden, C., Hilgen, F. J., Hüsing, S. K., and Lourens, L. L.: The Miocene astronomical time scale 9–12 Ma: New constraints on tidal dissipation and their implications for paleoclimatic investigations, Paleoceanography, 29, 296–307, https://doi.org/10.1002/2014PA002615, 2014. a
Short summary
Age–depth models assign ages to sampling locations (e.g., in drill cores), making them crucial to the determined timing and pace of past changes. We present two methods to estimate age–depth models from sedimentological and stratigraphic information, resulting in richer and more empirically realistic age–depth models. As a use case, we (1) determine the timing of the Frasnian–Famennian extinction and (2) examine the duration of the Paleocene–Eocene Thermal Maximum (PETM), a potential deep-time analog for anthropogenic climate change.
Age–depth models assign ages to sampling locations (e.g., in drill cores), making them crucial...