Articles | Volume 7, issue 4
https://doi.org/10.5194/gchron-7-545-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-545-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
StratoBayes: a Bayesian method for automated stratigraphic correlation and age modelling
Kilian Eichenseer
CORRESPONDING AUTHOR
Department of Earth Sciences, Durham University, South Road, DH1 3LE, Durham, United Kingdom
Matthias Sinnesael
Department of Earth Sciences, Durham University, South Road, DH1 3LE, Durham, United Kingdom
Geology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
Martin R. Smith
Department of Earth Sciences, Durham University, South Road, DH1 3LE, Durham, United Kingdom
Andrew R. Millard
Department of Archaeology, Durham University, South Road, DH1 3LE, Durham, United Kingdom
Related authors
No articles found.
Matthias Sinnesael, Alfredo Loi, Marie-Pierre Dabard, Thijs R. A. Vandenbroucke, and Philippe Claeys
Geochronology, 4, 251–267, https://doi.org/10.5194/gchron-4-251-2022, https://doi.org/10.5194/gchron-4-251-2022, 2022
Short summary
Short summary
We used new geochemical measurements to study the expression of astronomical climate cycles recorded in the Ordovician (~ 460 million years ago) geological sections of the Crozon Peninsula (France). This type of geological archive is not often studied in this way, but as they become more important going back in time, a better understanding of their potential astronomical cycles is crucial to advance our knowledge of deep-time climate dynamics and to construct high-resolution timescales.
Cited articles
Agterberg, F. P.: Automated stratigraphic correlation, Elsevier, ISBN 0-444-88253-7, 1990.
Al Ibrahim, M. A.: Uncertainty in automated well-log correlation using stochastic dynamic time warping, Petrophysics, 63, 748–761, https://doi.org/10.30632/PJV63N6-2022a11, 2022.
Blaauw, M.: Out of tune: the dangers of aligning proxy archives, Quaternary Sci. Rev., 36, 38–49, https://doi.org/10.1016/j.quascirev.2010.11.012, 2012.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Analysis 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Baville, P., Apel, M., Hoth, S., Knaust, D., Antoine, C., Carpentier, C., and Caumon, G.: Computer-assisted stochastic multi-well correlation: Sedimentary facies versus well distality, Mar. Petrol. Geol., 135, 105371, https://doi.org/10.1016/j.marpetgeo.2021.105371, 2022.
Bloem, H. and Curtis, A.: Bayesian geochemical correlation and tomography, Sci. Rep., 14, 9266, https://doi.org/10.1038/s41598-024-59701-4, 2024.
Bowyer, F. T., Zhuravlev, A. Y., Wood, R., Shields, G. A., Zhou, Y., Curtis, A., Poulton, S. W., Condon, D. J., Yang, C., and Zhu, M.: Calibrating the temporal and spatial dynamics of the Ediacaran-Cambrian radiation of animals, Earth-Sci. Rev., 225, 103913, https://doi.org/10.1016/j.earscirev.2021.103913, 2022.
Bowyer, F. T., Zhuravlev, A. Y., Wood, R., Zhao, F., Sukhov, S. S., Alexander, R. D., Poulton, S. W., and Zhu, M.: Implications of an integrated late Ediacaran to early Cambrian stratigraphy of the Siberian platform, Russia, Bulletin, 135, 2428–2450, https://doi.org/10.1130/B36534.1, 2023.
Campello, R. J., Moulavi, D., Zimek, A., and Sander, J.: Hierarchical density estimates for data clustering, visualization, and outlier detection, ACM Transactions on Knowledge Discovery from Data (TKDD), 10, 1–51, https://doi.org/10.1145/2733381, 2015.
Condon, D., Schoene, B., Schmitz, M., Schaltegger, U., Ickert, R. B., Amelin, Y., Augland, L. E., Chamberlain, K. R., Coleman, D. S., Connelly, J. N., Corfu, F., Crowley, J. L., Davies, J. H. F. L., Denyszyn, S. W., Eddy, M. P., Gaynor, S. P., Heaman, L. M., Huyskens, M. H., Kamo, S., Kasbohm, J., Keller, C. B., MacLennan, S. A., McLean, N. M., Noble, S., Ovtcharova, M., Paul, A., Ramezani, J., Rioux, M., Sahy, D., Scoates, J. S., Szymanowski, D., Tapster, S., Tichomirowa, M., Wall, C. J., Wotzlaw, J.-F., Yang, C., and Yin, Q.-Z.: Recommendations for the reporting and interpretation of isotope dilution U-Pb geochronological information, Geol. Soc. Am. Bull., 136, 4233–4251, https://doi.org/10.1130/B37321.1 2024.
Craigie, N. W.: Applications of chemostratigraphy in Middle Jurassic unconventional reservoirs in eastern Saudi Arabia, GeoArabia, 20, 79–110, https://doi.org/10.1016/j.jafrearsci.2015.01.003, 2015.
Cramer, B. and Jarvis, I.: Carbon isotope stratigraphy, in: Geologic time scale 2020, Elsevier, 309–343, https://doi.org/10.1016/B978-0-12-824360-2.00011-5, 2020.
Curtis, A., Bloem, H., Wood, R., Bowyer, F., Shields, G. A., Zhou, Y., Yilales, M., and Tetzlaff, D.: Natural sampling and aliasing of marine geochemical signals, Sci. Rep., 15, 760, https://doi.org/10.1038/s41598-024-84871-6, 2025.
De Vleeschouwer, D. and Parnell, A. C.: Reducing time-scale uncertainty for the Devonian by integrating astrochronology and Bayesian statistics, Geology, 42, 491–494, https://doi.org/10.1130/G35618.1, 2014.
Edmonsond, S. and Dyer, B.: A Bayesian framework for inferring regional and global change from stratigraphic proxy records (StratMC v1.0), Geosci. Model Dev., 18, 4759–4788, https://doi.org/10.5194/gmd-18-4759-2025, 2025.
Eichenseer, K.: StratoBayes/StratoBayes-Manuscript: manuscript release (v1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.15065336, 2025.
Eilers, P. H. and Marx, B. D.: Flexible smoothing with B-splines and penalties, Stat. Sci., 11, 89–121, https://doi.org/10.1214/ss/1038425655, 1996.
Finlay, A., Bates, R., Bensharada, M., and Davies, S.: Applying chemostratigraphic techniques to shallow bore holes: Lessons and case studies from Europe's lost frontiers, in: Europe's lost frontiers: context and methodology, vol. 1, Archaeopress, 137–153, https://doi.org/10.1214/ss/1177011136, 2022.
Gelman, A. and Rubin, D. B.: Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457–472, https://doi.org/10.1214/ss/1177011136, 1992.
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.: Bayesian data analysis, Chapman; Hall/CRC, https://doi.org/10.1201/9780429258411, 1995.
Geyman, E. C. and Maloof, A. C.: Facies control on carbonate δ13C on the Great Bahama Bank, Geology, 49, 1049–1054, https://doi.org/10.1130/G48862.1, 2021.
Hagen, C., Creveling, J., and Huybers, P.: Align: A user-friendly app for numerical stratigraphic correlation, GSA Today, 34, 4–9, https://doi.org/10.1130/GSATG575A.1, 2024.
Hagen, C. J. and Creveling, J. R.: An algorithm-guided ediacaran global composite δ13C carb–Bayesian age model, Palaeogeogr. Palaeocl., 112321, https://doi.org/10.1016/j.palaeo.2024.112321, 2024.
Halverson, G. P., Wade, B. P., Hurtgen, M. T., and Barovich, K. M.: Neoproterozoic chemostratigraphy, Precambrian Research, 182, 337–350, https://doi.org/10.1016/j.precamres.2010.04.007, 2010.
Haslett, J. and Parnell, A.: A simple monotone process with application to radiocarbon-dated depth chronologies, J. Roy. Stat. Soc. C: Applied Statistics, 57, 399–418, https://doi.org/10.1111/j.1467-9876.2008.00623.x, 2008.
Hay, C. C., Creveling, J. R., Hagen, C. J., Maloof, A. C., and Huybers, P.: A library of Early Cambrian chemostratigraphic correlations from a reproducible algorithm, Geology, 47, 457–460, https://doi.org/10.1130/G46019.1, 2019.
Heaton, T. J., Blaauw, M., Blackwell, P. G., Ramsey, C. B., Reimer, P. J., and Scott, E. M.: The IntCal20 approach to radiocarbon calibration curve construction: A new methodology using Bayesian splines and errors-in-variables, Radiocarbon, 62, 821–863, https://doi.org/10.1017/RDC.2020.46, 2020.
Holmes, J. D. and Budd, G. E.: Reassessing a cryptic history of early trilobite evolution, Communications Biology, 5, 1177, https://doi.org/10.1038/s42003-022-04146-6, 2022.
Keller, C. B., Schoene, B., and Samperton, K. M.: A stochastic sampling approach to zircon eruption age interpretation, Geochemical Perspectives Letters (Online), 8, https://doi.org/10.7185/geochemlet.1826, 2018.
Kouchinsky, A., Bengtson, S., Pavlov, V., Runnegar, B., Torssander, P., Young, E., and Ziegler, K.: Carbon isotope stratigraphy of the Precambrian–Cambrian Sukharikha river section, Northwestern Siberian platform, Geological Magazine, 144, 609–618, https://doi.org/10.1017/S0016756807003354, 2007.
Landing, E. and Kruse, P. D.: Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia: comment, Bulletin, 129, 1012–1015, https://doi.org/10.1130/B31640.1, 2017.
Landing, E., Bowring, S. A., Davidek, K. L., Westrop, S. R., Geyer, G., and Heldmaier, W.: Duration of the early Cambrian: U-pb ages of volcanic ashes from Avalon and Gondwana, Can. J. Earth Sci., 35, 329–338, 1998.
Landing, E., Schmitz, M. D., Geyer, G., Trayler, R. B., and Bowring, S. A.: Precise early cambrian U–PB zircon dates bracket the oldest trilobites and Archaeocyaths in Moroccan West Gondwana, Geological Magazine, 158, https://doi.org/10.1139/e97-107, 219–238, 2021.
Langereis, C. G., Krijgsman, W., Muttoni, G., and Menning, M.: Magnetostratigraphy-concepts, definitions, and applications, Newsletters in Stratigraphy, 43, 207, https://doi.org/10.1127/0078-0421/2010/0043-0207, 2010.
Lantink, M. L., Davies, J. H., Ovtcharova, M., and Hilgen, F. J.: Milankovitch cycles in banded iron formations constrain the Earth–Moon system 2.46 billion years ago, P. Natl. Acad. Sci. USA, 119, e2117146119, https://doi.org/10.1073/pnas.2117146119, 2022.
Lee, T., Rand, D., Lisiecki, L. E., Gebbie, G., and Lawrence, C.: Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment, Clim. Past, 19, 1993–2012, https://doi.org/10.5194/cp-19-1993-2023, 2023.
Lisiecki, L. E. and Lisiecki, P. A.: Application of dynamic programming to the correlation of paleoclimate records, Paleoceanography, 17, 1–1, https://doi.org/10.1029/2001PA000733, 2002.
Magaritz, M., Kirschvink, J. L., Latham, A. J., Zhuravlev, A. Y., and Rozanov, A. Y.: Precambrian/cambrian boundary problem: Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco, Geology, 19, 847–850, https://doi.org/10.1130/0091-7613(1991)019%3C0847:PCBPCI%3E2.3.CO;2, 1991.
Maloof, A. C., Schrag, D. P., Crowley, J. L., and Bowring, S. A.: An expanded record of early Cambrian carbon cycling from the Anti-Atlas margin, Morocco, Can. J. Earth Sci., 42, 2195–2216, https://doi.org/10.1139/e05-062, 2005.
Maloof, A. C., Ramezani, J., Bowring, S. A., Fike, D. A., Porter, S. M., and Mazouad, M.: Constraints on Early Cambrian carbon cycling from the duration of the Nemakit-Daldynian–Tommotian boundary δ13C shift, Morocco, Geology, 38, 623–626, https://doi.org/10.1130/G30726.1, 2010.
Miall, A. D.: Updating uniformitarianism: Stratigraphy as just a set of “frozen accidents,” Geological Society, London, Special Publications, 404, 11–36, https://doi.org/10.1144/SP404.4, 2015.
Middleton, J. L., Gottschalk, J., Winckler, G., Hanley, J., Knudson, C., Farmer, J. R., Lamy, F., Lisiecki, L. E., and Expedition 383 Scientists: Evaluating manual versus automated benthic foraminiferal δ18O alignment techniques for developing chronostratigraphies in marine sediment records, Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, 2024.
Paterson, J. R., Edgecombe, G. D., and Lee, M. S.: Trilobite evolutionary rates constrain the duration of the Cambrian explosion, P. Natl. Acad. Sci. USA, 116, 4394–4399, https://doi.org/10.1073/pnas.1819366116, 2019.
Ramsey, C. B. Radiocarbon calibration and analysis of stratigraphy: the OxCal program, Radiocarbon, 37, 425–430, https://doi.org/10.1017/S0033822200030903, 1995.
Roberts, G. O. and Rosenthal, J. S.: Examples of adaptive MCMC, J. Comput. Graph. Stat., 18, 349–367, https://doi.org/10.1198/jcgs.2009.06134, 2009.
Rudman, A. J. and Lankston, R. W.: Stratigraphic correlation of well logs by computer techniques, AAPG Bulletin, 57, 577–588, 1973.
Sadler, P. M.: Sediment accumulation rates and the completeness of stratigraphic sections, J. Geol., 89, 569–584, https://www.jstor.org/stable/30062397, 1981.
Sakoe, H. and Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, 26, 43–49, https://doi.org/10.1109/TASSP.1978.1163055, 1978.
Saltzman, M., Thomas, E., and Gradstein, F.: Carbon isotope stratigraphy, Geologic Time Scale, 1, 207–232, https://doi.org/10.1016/B978-0-444-59425-9.00011-1, 2012.
Sambridge, M.: A parallel tempering algorithm for probabilistic sampling and multimodal optimization, Geophys. J. Int., 196, 357–374, https://doi.org/10.1093/gji/ggt342, 2014.
Schmitz, M., Gradstein, F., and Ogg, J.: Radiogenic isotope geochronology, Geologic Time Scale, 2, 115–126, https://doi.org/10.1016/B978-0-444-59425-9.00006-8, 2012.
Sinnesael, M., Millard, A. R., and Smith, M. R.: A Bayesian astrochronology for the Cambrian first occurrence of trilobites in West Gondwana (Morocco), Geology, 52, 205–209, https://doi.org/10.1130/G51718.1, 2024.
Smith, E. F., Macdonald, F. A., Petach, T. A., Bold, U., and Schrag, D. P.: Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia, Geol. Soc. Am. Bull., 128, 442–468, https://doi.org/10.1130/B31248.1, 2016.
Sylvester, Z.: Automated multi-well stratigraphic correlation and model building using relative geologic time, Basin Res., 35, 1961–1984, https://doi.org/10.1111/bre.12787, 2023.
Trayler, R. B., Meyers, S. R., Sageman, B. B., and Schmitz, M. D.: Bayesian integration of astrochronology and radioisotope geochronology, Geochronology, 6, 107–123, https://doi.org/10.5194/gchron-6-107-2024, 2024.
Uhlein, G. J., Uhlein, A., Pereira, E., Caxito, F. A., Okubo, J., Warren, L. V., and Sial, A. N.: Ediacaran paleoenvironmental changes recorded in the mixed carbonate-siliciclastic Bambuí basin, Brazil, Palaeogeogr. Palaeocl., 517, 39–51, https://doi.org/10.1016/j.palaeo.2018.12.022, 2019.
Varlamov, A., Rozanov, A. Y., Khomentovsky, V., Shabanov, Y. Y., Abaimova, G., Demidenko, Y. E., Karlova, G., Korovnikov, I., Luchinina, V., and Malakhovskaya, Y. E.: The Cambrian system of the Siberian platform, Part 1: The Aldan-Lena region, in: XIII field conference of the Cambrian stage subcommission working group, 20 July–1 August 2008, Novosibirsk, Russia, 2008.
Vats, D. and Knudson, C.: Revisiting the Gelman–Rubin diagnostic, Stat. Sci., 36, 518–529, https://doi.org/10.1214/20-STS812, 2021.
Vats, D., Flegal, J. M., and Jones, G. L.: Multivariate output analysis for Markov chain Monte Carlo, Biometrika, 106, 321–337, https://doi.org/10.1093/biomet/asz002, 2019.
Vousden, W., Farr, W. M., and Mandel, I.: Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations, Monthly Notices of the Royal Astronomical Society, 455, 1919–1937, https://doi.org/10.1093/mnras/stv2422, 2016.
Wheeler, L. and Hale, D.: Simultaneous correlation of multiple well logs, in: SEG international exposition and annual meeting, SEG-2014, https://doi.org/10.1190/segam2014-0227.1, 2014.
Yang, J. and Rosenthal, J. S.: Automatically tuned general-purpose MCMC via new adaptive diagnostics, Computational Statistics, 32, 315–348, https://doi.org/10.1007/s00180-016-0682-2, 2017.
Zhang, X., Ahlberg, P., Babcock, L. E., Choi, D. K., Geyer, G., Gozalo, R., Hollingsworth, J. S., Li, G., Naimark, E. B., Pegel, T., Steiner, M., Wotte, T., and Zhang, Z.: Challenges in defining the base of Cambrian series 2 and stage 3, Earth-Sci. Rev., 172, 124–139, https://doi.org/10.1016/j.earscirev.2017.07.017, 2017.
Short summary
StratoBayes is a novel Bayesian method for aligning stratigraphic data from multiple sites. It integrates diverse information, such as geochemical signals and radiometric dates, and provides robust age estimates with quantified uncertainty for all sites. We use StratoBayes to correlate lower Cambrian δ13C records from Morocco with an undated record from Siberia, and estimate the age of the world’s oldest trilobites.
StratoBayes is a novel Bayesian method for aligning stratigraphic data from multiple sites. It...