Articles | Volume 8, issue 1
https://doi.org/10.5194/gchron-8-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-8-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid dose rate estimation for trapped charge dating using pXRF measurements of potassium concentration
Sam Woor
CORRESPONDING AUTHOR
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Department of Geoscience, University of the Fraser Valley, Abbottsford, BC V27 7M7, Canada
Mitch K. D'Arcy
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Olav B. Lian
Department of Geoscience, University of the Fraser Valley, Abbottsford, BC V27 7M7, Canada
Maria Schaarschmidt
Department of Geoscience, University of the Fraser Valley, Abbottsford, BC V27 7M7, Canada
Julie A. Durcan
School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Cited articles
Aitken, M. J.: Thermoluminescence dating: past progress and future trends, Nuclear Tracks and Radiation Measurements, 10, 3–6, https://doi.org/10.1016/0735-245X(85)90003-1, 1985.
Alexanderson, H. and Bernhardson, M.: OSL dating and luminescence characteristics of aeolian deposits and their source material in Dalarna, central Sweden, Boreas, 45, 876–893, https://doi.org/10.1111/bor.12197, 2016.
Andrew, B. S. and Barker, S. L.: Determination of carbonate vein chemistry using portable X-ray fluorescence and its application to mineral exploration. Geochemistry: Exploration, Environment, Analysis, 18, 85–93, https://doi.org/10.1144/geochem2016-011, 2018.
Ankjærgaard, C. and Murray, A. S.: Total beta and gamma dose rates in trapped charge dating based on beta counting, Radiation Measurements, 42, 352–359, https://doi.org/10.1016/j.radmeas.2006.12.007, 2007.
Balescu, S. and Lamothe, M.: Comparison of TL and IRSL age estimates of feldspar coarse grains from waterlain sediments, Quaternary Science Reviews, 13, 437–444, https://doi.org/10.1016/0277-3791(94)90056-6, 1994.
Bateman, M. D., Stein, S., Ashurst, R. A., and Selby, K.: Instant luminescence chronologies? High resolution luminescence profiles using a portable luminescence reader, Quaternary Geochronology, 30, 141–146, https://doi.org/10.1016/j.quageo.2014.12.007, 2015.
Bell, W. T.: Attenuation factors for the absorbed radiation dose in quartz inclusions for thermoluminescence dating, Ancient TL, 8, 12, https://doi.org/10.26034/la.atl.1979.022, 1979.
Brennan, B. J., Lyons, R. G., and Phillips, S. W.: Attenuation of alpha particle track dose for spherical grains, International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 18, 249–253, https://doi.org/10.1016/1359-0189(91)90119-3, 1991.
Burrough, S. L., Thomas, D. S., Allin, J. R., Coulson, S. D., Mothulatshipi, S. M., Nash, D. J., and Staurset, S.: Lessons from a lakebed: unpicking hydrological change and early human landscape use in the Makgadikgadi basin, Botswana, Quaternary Science Reviews, 291, 107662, https://doi.org/10.1016/j.quascirev.2022.107662, 2022.
Cresswell, A. J., Carter, J., and Sanderson, D. C. W.: Dose rate conversion parameters: Assessment of nuclear data, Radiation Measurements, 120, 195–201, https://doi.org/10.1016/j.radmeas.2018.02.007, 2018.
Davids, F., Roberts, H. M. and Duller, G. A.: Is X-ray core scanning non-destructive? Assessing the implications for optically stimulated luminescence (OSL) dating of sediments, Journal of Quaternary Science: Published for the Quaternary Research Association, 25, 348–353, https://doi.org/10.1002/jqs.1329, 2010.
Duller, G. A. T.: Luminescence chronology of raised marine terraces, south-west North Island, New Zealand, PhD thesis, University of Wales, Aberystwyth, https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-research-laboratory/ancient-tl/onlinetheses/ (last access: 3 December 2025), 1992.
Durcan, J. A., King, G. E., and Duller, G. A.: DRAC: Dose Rate and Age Calculator for trapped charge dating, Quaternary Geochronology, 28, 54–61, https://doi.org/10.1016/j.quageo.2015.03.012, 2015.
Durcan, J. A., Roberts, H. M., Duller, G. A. T., and Alizai, A. H.: Testing the use of range-finder OSL dating to inform field sampling and laboratory processing strategies, Quaternary Geochronology, 5, 86–90, https://doi.org/10.1016/j.quageo.2009.02.014, 2010.
Durcan, J. A., Thomas, D. S., Gupta, S., Pawar, V., Singh, R. N., and Petrie, C. A.: Holocene landscape dynamics in the Ghaggar-Hakra palaeochannel region at the northern edge of the Thar Desert, northwest India, Quaternary International, 501, 317–327, https://doi.org/10.1016/j.quaint.2017.10.012, 2019.
Fenn, K., Durcan, J. A., Thomas, D. S., Millar, I. L., and Marković, S. B.: Re-analysis of late Quaternary dust mass accumulation rates in Serbia using new luminescence chronology for loess–palaeosol sequence at Surduk, Boreas, 49, 634–652, https://doi.org/10.1111/bor.12445, 2020.
Gliganic, L. A., McDonald, J., and Meyer, M. C.: Luminescence rock surface exposure and burial dating: a review of an innovative new method and its applications in archaeology, Archaeological and Anthropological Sciences, 16, 17, https://doi.org/10.1007/s12520-023-01915-0, 2024.
Gliganic, L. A., Meyer, M. C., May, J. H., Aldenderfer, M. S., and Tropper, P.: Direct dating of lithic surface artifacts using luminescence, Science Advances, 7, eabb3424, https://doi.org/10.1126/sciadv.abb3424, 2021.
Goodale, N., Bailey, D. G., Jones, G. T., Prescott, C., Scholz, E., Stagliano, N., and Lewis, C.: pXRF: a study of inter-instrument performance, Journal of Archaeological Science, 39, 875–883, https://doi.org/10.1016/j.jas.2011.10.014, 2012.
Gray, H. J., Mahan, S. A., Springer, K. B., and Pigati, J. S.: Examining the relationship between portable luminescence reader measurements and depositional ages of paleowetland sediments, Las Vegas Valley, Nevada, Quaternary Geochronology, 48, 80–90, https://doi.org/10.1016/j.quageo.2018.07.006, 2018.
Guérin, G., Mercier, N., and Adamiec, G.: Dose-rate conversion factors: update, Ancient TL, 29, 5–8, 2011.
Guérin, G., Mercier, N., Nathan, R., Adamiec, G., and Lefrais, Y.: On the use of the infinite matrix assumption and associated concepts: a critical review, Radiation Measurements, 47, 778–785, https://doi.org/10.1016/j.radmeas.2012.04.004, 2012.
Hall, G. E., Bonham-Carter, G. F., and Buchar, A.: Evaluation of portable X-ray fluorescence (pXRF) in exploration and mining: Phase 1, control reference materials, Geochemistry: Exploration, Environment, Analysis, 14, 99–123, https://doi.org/10.1144/geochem2013-241, 2014.
Hossain, S. M., De Corte, F., and Vandenberghe, D.: A comparison of methods for the annual radiation dose determination in the luminescence dating of loess sediment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 490, 598–613, https://doi.org/10.1016/S0168-9002(02)01078-1, 2002.
Huntley, D. J., Nissen, M. K., Thomson, J., and Calvert, S. E.: An improved alpha scintillation counting method for determination of Th, U, Ra-226, Th-230 excess, and Pa-231 excess in marine sediments, Canadian Journal of Earth Sciences, 23, 959–966, https://doi.org/10.1139/e86-097, 1986.
Huntley, D. J. and Baril, M. R.: The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating, Ancient TL, 15, 11–13, 1997.
Jankowski, N. R. and Jacobs, Z. Beta dose variability and its spatial contextualisation in samples used for optical dating: An empirical approach to examining beta microdosimetry, Quaternary Geochronology, 44, 23–37, https://doi.org/10.1016/j.quageo.2017.08.005, 2018.
Jenkins, G. T. H., Duller, G. A. T., Roberts, H. M., Chiverrell, R. C., and Glasser, N. F.: A new approach for luminescence dating glaciofluvial deposits-High precision optical dating of cobbles, Quaternary Science Reviews, 192, 263–273, https://doi.org/10.1016/j.quascirev.2018.05.036, 2018.
Lawley, C. J., Somers, A. M., and Kjarsgaard, B. A.: Rapid geochemical imaging of rocks and minerals with handheld laser induced breakdown spectroscopy (LIBS), Journal of Geochemical Exploration, 222, 106694, https://doi.org/10.1016/j.gexplo.2020.106694, 2021.
Leighton, C. L. and Bailey, R. M.: Investigating the potential of HCl-only treated samples using range-finder OSL dating, Quaternary Geochronology, 25, 1–9, https://doi.org/10.1016/j.quageo.2014.08.002, 2015.
Lemiere, B.: A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry, Journal of Geochemical Exploration, 188, 350–363, https://doi.org/10.1016/j.gexplo.2018.02.006, 2018.
Le Vaillant, M., Barnes, S. J., Fisher, L., Fiorentini, M. L., and Caruso, S.: Use and calibration of portable X-Ray fluorescence analysers: application to lithogeochemical exploration for komatiite-hosted nickel sulphide deposits, Geochemistry: Exploration, Environment, Analysis, 14, 199–209, 2014.
Mauz, B., Packman, S., and Lang, A.: The alpha effectiveness in silt-sized quartz: new data obtained by single and multiple aliquot protocols, Ancient TL, 24, 47–52, https://doi.org/10.26034/la.atl.2006.396, 2006.
Mejdahl, V.: Internal radioactivity in quartz and feldspar grains, Ancient TL, 5, 10–17, https://doi.org/10.26034/la.atl.1987.119, 1987.
Mejía-Piña, K. G., Huerta-Diaz, M. A., and González-Yajimovich, O.: Calibration of handheld X-ray fluorescence (XRF) equipment for optimum determination of elemental concentrations in sediment samples, Talanta, 161, 359–367, https://doi.org/10.1016/j.talanta.2016.08.066, 2016.
Melquiades, F. L., Bastos, R. O., Rampim, L., Sandrino, I. I., Rodriguez, D. G., and Parreira, P. S.: Thorium and uranium rapid quantification in soil with portable X-ray fluorescence, Soil Science Society of America Journal, 88, 557–564, https://doi.org/10.1002/saj2.20639, 2024.
Moayed, N. K., Sohbati, R., Murray, A. S., Rades, E. F., Fattahi, M., and Ruiz López, J. F.: Rock surface luminescence dating of prehistoric rock art from central Iberia, Archaeometry, 65, 319–334, https://doi.org/10.1111/arcm.12826, 2023.
Munyikwa, K., Kinnaird, T. C., and Sanderson, D. C.: The potential of portable luminescence readers in geomorphological investigations: a review, Earth Surface Processes and Landforms, 46, 131–150, https://doi.org/10.1002/esp.4975, 2021.
Nathan, R. P., Thomas, P. J., Jain, M., Murray, A. S., and Rhodes, E. J.: Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation, Radiation Measurements, 37, 305–313, https://doi.org/10.1016/S1350-4487(03)00008-8, 2003.
Nuchdang, S., Niyomsat, T., Pitiphatharabun, S., Sukhummek, B., Leelanupat, O., and Rattanaphra, D.: Effect of grain size and moisture content on major and minor elements concentrations using portable X-ray fluorescence, in: Journal of Physics: Conference Series, 1144, 012060, https://doi.org/10.1088/1742-6596/1144/1/012060, 2018.
Olley, J. M., Pietsch, T., and Roberts, R. G.: Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz, Geomorphology, 60, 337–358, https://doi.org/10.1016/j.geomorph.2003.09.020, 2004.
Ou, X. J., Roberts, H. M., and Duller, G. A. T.: Rapid assessment of beta dose variation inside cobbles, and implications for rock luminescence dating, Quaternary Geochronology, 72, 101349, https://doi.org/10.1016/j.quageo.2022.101349, 2022.
Padilla, J. T., Hormes, J., and Selim, H. M.: Use of portable XRF: Effect of thickness and antecedent moisture of soils on measured concentration of trace elements, Geoderma, 337, 143–149, https://doi.org/10.1016/j.geoderma.2018.09.022, 2019.
Porat, N., Faerstein, G., Medialdea, A., and Murray, A. S.: Re-examination of common extraction and purification methods of quartz and feldspar for luminescence dating, Ancient TL, 33, 22–30, 2015.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations, Radiation Measurements, 23, 497–500, https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Rees-Jones, J.: Optical dating of young sediments using fine-grain quartz, Ancient TL, 13, 9–14, 1995.
Ribeiro, B. T., Weindorf, D. C., Silva, B. M., Tassinari, D., Amarante, L. C., Curi, N., and Guimarães Guilherme, L. R.: The Influence of Soil Moisture on Oxide Determination in Tropical Soils via Portable X-ray Fluorescence, Soil Science Society of America Journal, 82, 632–644, https://doi.org/10.2136/sssaj2017.11.0380, 2018.
Rizza, M., Rixhon, G., Valla, P. G., Gairoard, S., Delanghe, D., Fleury, J., Tal, M., and Groleau, S.: Revisiting a proof of concept in quartz-OSL bleaching processes using sands from a modern-day river (the Séveraisse, French Alps), Quaternary Geochronology, 82, 101520, https://doi.org/10.1016/j.quageo.2024.101520, 2024.
Roberts, H. M.: The development and application of luminescence dating to loess deposits: a perspective on the past, present and future, Boreas, 37, 483–507, https://doi.org/10.1111/j.1502-3885.2008.00057.x, 2008.
Roberts, H. M., Durcan, J. A., and Duller, G. A.: Exploring procedures for the rapid assessment of optically stimulated luminescence range-finder ages, Radiation Measurements, 44, 582–587, https://doi.org/10.1016/j.radmeas.2009.02.006, 2009.
Rosin, N. A., Dematte, J. A., Leite, M. C. A., de Carvalho, H. W. P., Costa, A. C., Greschuk, L. T., Curi, N., and Silva, S. H. G.: The fundamental of the effects of water, organic matter, and iron forms on the pXRF information in soil analyses, Catena, 210, 105868, https://doi.org/10.1016/j.catena.2021.105868, 2022.
Rothwell, R. G. and Croudace, I. W. (Eds.): Twenty years of XRF core scanning marine sediments: what do geochemical proxies tell us?, in: 70 Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences, Springer, Dordrecht, 25–102, https://doi.org/10.1007/978-94-017-9849-5_2, 2015.
Sanderson, D. C. and Murphy, S.: Using simple portable OSL measurements and laboratory characterisation to help understand complex and heterogeneous sediment sequences for luminescence dating, Quaternary Geochronology, 5, 299–305, https://doi.org/10.1016/j.quageo.2009.02.001, 2010.
Singhvi, A. K., Bluszcz, A., Bateman, M. D., and Rao, M. S.: Luminescence dating of loess–palaeosol sequences and coversands: methodological aspects and palaeoclimatic implications, Earth-Science Reviews, 54, 193–211, https://doi.org/10.1016/S0012-8252(01)00048-4, 2001.
Smedley, R. K., Duller, G. A., Pearce, N. J. G., and Roberts, H. M.: Determining the K-content of single-grains of feldspar for luminescence dating, Radiation Measurements, 47, 790–796, https://doi.org/10.1016/j.radmeas.2012.01.014, 2012.
Smedley, R. K., Duller, G. A. T., Rufer, D., and Utley, J. E. P.: Empirical assessment of beta dose heterogeneity in sediments: Implications for luminescence dating, Quaternary Geochronology, 56, 101052, https://doi.org/10.1016/j.quageo.2020.101052, 2020.
Sohbati, R., Murray, A. S., Porat, N., Jain, M., and Avner, U.: Age of a prehistoric “Rodedian” cult site constrained by sediment and rock surface luminescence dating techniques, Quaternary Geochronology, 30, 90–99, https://doi.org/10.1016/j.quageo.2015.09.002 2015.
Srivastava, A., Durcan, J. A., and Thomas, D. S.: Analysis of late Quaternary linear dune development in the Thar Desert, India, Geomorphology, 344, 90–98, https://doi.org/10.1016/j.geomorph.2019.07.013, 2019.
Stockmann, U., Cattle, S. R., Minasny, B., and McBratney, A. B.: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis, Catena, 139, 220–231, https://doi.org/10.1016/j.catena.2016.01.007, 2016.
Stone, A., Bateman, M. D., Burrough, S. L., Garzanti, E., Limonta, M., Radeff, G., and Telfer, M. W.: Using a portable luminescence reader for rapid age assessment of aeolian sediments for reconstructing dunefield landscape evolution in southern Africa, Quaternary Geochronology, 49, 57–64, https://doi.org/10.1016/j.quageo.2018.03.002, 2019.
Stone, A., Bateman, M. D., Sanderson, D., Burrough, S. L., Cutts, R., and Cresswell, A.: Probing sediment burial age, provenance and geomorphic processes in dryland dunes and lake shorelines using portable luminescence data, Quaternary Geochronology, 82, 101542, https://doi.org/10.1016/j.quageo.2024.101542, 2024.
Wallinga, J.: Optically stimulated luminescence dating of fluvial deposits: a review, Boreas, 31, 303–322, https://doi.org/10.1111/j.1502-3885.2002.tb01076.x, 2002.
Walsh, E. V., Burrough, S. L., and Thomas, D. S.: A chronological database assessing the late Quaternary palaeoenvironmental record from fluvial sediments in southwestern Africa, Earth-Science Reviews, 236, 104288, https://doi.org/10.1016/j.earscirev.2022.104288, 2023.
Wintle, A .G.: Luminescence dating of aeolian sands: an overview, Geological Society, London, Special Publications, 72, 49–58, https://doi.org/10.1144/GSL.SP.1993.072.01.06, 1993.
Wolfe, S. A., Demitroff, M., Neudorf, C. M., Woronko, B., Chmielowska-Michalak, D., and Lian, O. B.: Late Quaternary eolian dune-field mobilization and stabilization near the Laurentide Ice Sheet limit, New Jersey Pine Barrens, eastern USA, Aeolian Research, 62, 100877, https://doi.org/10.1016/j.aeolia.2023.100877, 2023.
Woor, S., Buckland, C., Parton, A., and Thomas, D.S.: Assessing the robustness of geochronological records from the Arabian Peninsula: A new synthesis of the last 20 ka, Global and Planetary Change, 209, 103748, https://doi.org/10.1016/j.gloplacha.2022.103748, 2022.
Woor, S., Thomas, D. S., Durcan, J. A., Burrough, S. L., and Parton, A.: The aggradation of alluvial fans in response to monsoon variability over the last 400 ka in the Hajar Mountains, south-east Arabia, Quaternary Science Reviews, 322, 108384, https://doi.org/10.1016/j.quascirev.2023.108384, 2023.
Woor, S., D'Arcy, M. K., Lian, O. B., Schaarschmidt, M., and Durcan, J. A.: Rapid dose rate estimation for trapped charge dating using pXRF measurements of potassium concentration – supplementary data, Zenodo [data set], https://doi.org/10.5281/zenodo.17808545 (last access: 16 December 2025), 2025.
Zhou, S., Wang, J., Bai, Y., Wang, W., and Wang, S.: The Application of Portable X-ray Fluorescence (pXRF) for Elemental Analysis of Sediment Samples in the Laboratory and Its Influencing Factors, Minerals, 13, 989, https://doi.org/10.3390/min13080989, 2023.
Zimmerman, D. W.: Thermoluminescent dating using fine grains from pottery, Archaeometry, 13, 29–52, https://doi.org/10.1111/j.1475-4754.1971.tb00028.x, 1971.
Short summary
We show that portable X-ray fluorescence can be used to rapidly (ca. 90 s) estimate the rate of background radioactivity in sediment used to calculate burial ages in trapped charge dating studies. This procedure involves inputting a measurement of potassium concentration into a set of simple regression equations, defined by a large radionuclide dataset. Results show good agreement with high-precision methods. Our rapid method will help to quickly generate burial age estimates.
We show that portable X-ray fluorescence can be used to rapidly (ca. 90 s) estimate the rate of...