Articles | Volume 8, issue 1
https://doi.org/10.5194/gchron-8-37-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-8-37-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring the relationships between Electron Spin Resonance (ESR)/Luminescence (OSL/TL) properties and trace element composition from quartz in various bedrocks (Strengbach catchment, Vosges)
Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, BP 36009, 45060 Orléans, France
Histoire naturelle des Humanités Préhistorique (HNHP) – UMR 7194, 1 Rue René Panhard, 75013 Paris, France
Magali Rizza
Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
Claire Aupart
Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, BP 36009, 45060 Orléans, France
Gilles Rixhon
Laboratoire Image Ville Environnement (LIVE UMR 7362), Université de Strasbourg CNRS ENGEES ZAEU LTER, 3 rue de l'Argonne, 67000 Strasbourg, France
Pierre G. Valla
Institut des Sciences de La Terre (ISTerre), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, Grenoble, France
Manon Boulay
Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Philippe Lach
Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, BP 36009, 45060 Orléans, France
Pierre Voinchet
Histoire naturelle des Humanités Préhistorique (HNHP) – UMR 7194, 1 Rue René Panhard, 75013 Paris, France
Related authors
No articles found.
Chloé Bouscary, Georgina E. King, Melanie Kranz-Bartz, Maxime Bernard, Rabiul H. Biswas, Lily Bossin, Arnaud Duverger, Benny Guralnik, Frédéric Herman, Ugo Nanni, Nadja Stalder, Pierre G. Valla, Vjeran Visnjevic, and Xiaoxia Wen
EGUsphere, https://doi.org/10.5194/egusphere-2025-5474, https://doi.org/10.5194/egusphere-2025-5474, 2025
Short summary
Short summary
The OSLThermo and ESRThermo MATLAB libraries simulate how luminescence signals in feldspar and electron spin resonance signals in quartz minerals accumulate and fade over time, enabling reconstruction of recent rock cooling and surface temperature changes. By sharing these tools openly, we hope to promote collaboration, reproducibility, and broader use and development of these ultra-low-temperature thermochronology methods.
Coline Ariagno, Philippe Steer, Pierre G. Valla, and Benjamin Campforts
Earth Surf. Dynam., 13, 1109–1132, https://doi.org/10.5194/esurf-13-1109-2025, https://doi.org/10.5194/esurf-13-1109-2025, 2025
Short summary
Short summary
This study explore the impact of landslides on Alpine terrain using a landscape evolution model called
Hyland, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of a broader question concerning the origin of accelerated erosion during the Quaternary period.
Madhurima Marik, Elena Serra, Gilles Rixhon, and Frank Preusser
E&G Quaternary Sci. J., 74, 169–192, https://doi.org/10.5194/egqsj-74-169-2025, https://doi.org/10.5194/egqsj-74-169-2025, 2025
Short summary
Short summary
This study examines the evolution of the lower Bruche River valley in north-eastern France through its fluvial terraces, reflecting past river dynamics and environmental changes. Terrace formations are dated using luminescence to ~ 12–14 ka, ~ 27–35 ka, and at least 200 ka. Methodological improvements over conventional luminescence dating techniques are also discussed and refined in this study.
Gilles Rixhon, Julia Meister, and Ingmar Unkel
E&G Quaternary Sci. J., 74, 147–149, https://doi.org/10.5194/egqsj-74-147-2025, https://doi.org/10.5194/egqsj-74-147-2025, 2025
Short summary
Short summary
This article is the preface of the special issue "Quaternary research in times of change – inspired by INQUA Roma 2023". It is a result of the XXI INQUA Congress held in Rome in July 2023. It briefly presents the nine contributions published in this volume.
Melanie Bartz, Mathieu Duval, María Jesús Alonso Escarza, and Gilles Rixhon
E&G Quaternary Sci. J., 73, 139–144, https://doi.org/10.5194/egqsj-73-139-2024, https://doi.org/10.5194/egqsj-73-139-2024, 2024
Short summary
Short summary
The chronostratigraphy of the Rhine’s main terrace along the Middle Rhine Valley (MRV) is poorly constrained. This study fills this gap by using electron spin resonance (ESR) dating of quartz grains collected from the famous Kärlich site. Consistent ESR results date this terrace to ~1.5 Ma and have far-reaching implications as they numerically constrain, for the first time, the aggradation time of key terrace deposits along the MRV, providing new insights into the Rhine’s Quaternary evolution.
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022, https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary
Short summary
We apply quartz 3He paleothermometry along two deglaciation profiles in the European Alps to reconstruct temperature evolution since the Last Glacial Maximum. We observe a 3He thermal signal clearly colder than today in all bedrock surface samples exposed prior the Holocene. Current uncertainties in 3He diffusion kinetics do not permit distinguishing if this signal results from Late Pleistocene ambient temperature changes or from recent ground temperature variation due to permafrost degradation.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Pierre G. Valla
E&G Quaternary Sci. J., 70, 209–212, https://doi.org/10.5194/egqsj-70-209-2021, https://doi.org/10.5194/egqsj-70-209-2021, 2021
Cited articles
Ackerer, J., Chabaux, F., Van der Woerd, J., Viville, D., Pelt, E., Kali, E., Lerouge, C., Ackerer, P., di Chiara Roupert, R., and Négrel, P.: Regolith evolution on the millennial timescale from combined U-Th-Ra isotopes and in situ cosmogenic 10Be analysis in a weathering profile (Strengbach catchment, France), Earth Planet. Sci. Lett., 453, 33–43, https://doi.org/10.1016/j.epsl.2016.08.005, 2016.
Alexanderson, H.: Luminescence characteristics of Scandinavian quartz, their connection to bedrock provenance and influence on dating results, Quaternary Geochronology, 69, 101272, https://doi.org/10.1016/j.quageo.2022.101272, 2022.
Allen, P. A.: Sediment Routing Systems: The Fate of Sediment from Source to Sink, Cambridge Core, https://doi.org/10.1017/9781316135754, 2017.
Alonso, P. J., Halliburton, L. E., Kohnke, E. E., and Bossoli, R. B.: X-ray induced luminescence in crystalline SiO2, J. Appl. Phys., 54, 5369–5375, 1983.
Bailey, R. M.: Towards a general kinetic model for optically and thermally stimulated luminescence of quartz, Radiation Measurements, 33, 17–45, https://doi.org/10.1016/S1350-4487(00)00100-1, 2001.
Beerten, K. and Stesmans, A.: Some properties of Ti-related paramagnetic centres relevant for electron spin resonance dating of single sedimentary quartz grains, Applied Radiation and Isotopes, 64, 594–602, https://doi.org/10.1016/j.apradiso.2005.12.001, 2006a.
Beerten, K. and Stesmans, A.: The use of Ti centers for estimating burial doses of single quartz grains: A case study from an aeolian deposit Ma old, Radiation Measurements, 41, 418–424, https://doi.org/10.1016/j.radmeas.2005.10.004, 2006b.
Blanalt, J.-G., von Eller, J.-P., Fluck, P., Geffroy, J., Hirlemann, G., Jehl, M., Bonnet, C., Schreiner, J., Sittler, C., Schwoerer, P., Tricart, J., Hirth, C., and Weil, R.: Notice explicative, Carte géol. France, feuille COLMAR-ARTOLSHEIM (342), Orléans: Bureau de recherches géologiques et minières, 55 pp., 1972.
Bofill, L., Bozetti, G., Schäfer, G., Ghienne, J.-F., Schuster, M., Scherer, C., and De Souza, E.: Quantitative facies analysis of a fluvio-aeolian system: Lower Triassic Buntsandstein Group, eastern France, Sedimentary Geology, 465, 106634, https://doi.org/10.1016/j.sedgeo.2024.106634, 2024.
Bonhomme, M.: Ages radiométriques de quelques granites de Vosges moyennes, Bull. Serv. Carte géol. Als. Lorr., 20, 101–106, 1967.
Bøtter-Jensen, L., Agersnap Larsen, N., Mejdahl, V., Poolton, N. R. J., Morris, M. F., and McKeever, S. W. S.: Luminescence sensitivity changes in quartz as a result of annealing, Radiation Measurements, 24, 535–541, 1995.
Boutin, R., Montigny, R., and Thuizat, R.: Chronologie K-Ar et 39Ar-40Ar du métamorphisme et du magmatisme des Vosges, Géologie de la France, 1, 3–25, 1995.
Capaldi, T. N., Rittenour, T. M., and Nelson, M. S.: Downstream changes in quartz OSL sensitivity in modern river sand reflects sediment source variability: Case studies from Rocky Mountain and Andean rivers, Quaternary Geochronology, 71, 101317, https://doi.org/10.1016/j.quageo.2022.101317, 2022.
Chithambo, M. L., Preusser, F., Ramseyer, K., and Ogundare, F. O.: Time-resolved luminescence of low sensitivity quartz from crystalline rocks, Radiat. Meas., 42, 205–212, https://doi.org/10.1016/j.radmeas.2006.07.005, 2007.
Constantin, D., Dave, A. K., Grecu, Ş., Kabacińska, Z., Antuzevics, A., Barla, A., Urdea, P., Ducea, M. N., and Timar-Gabor, A.: Tracing quartz provenance: A multi-method investigation of luminescence sensitisation mechanisms of quartz from granite source rocks and derived sediments, Chemical Geology, 683, https://doi.org/10.1016/j.chemgeo.2025.122774, 2025.
David, M. and Sunta, C. M.: Thermoluminescence of quartz – part VIII: estimation of firing temperature in ancient pottery samples, Indian Journal of Pure and Applied Physics, 19, 1054–1056, 1981.
Delmas, M., Calvet, M., Gunnell, Y., Voinchet, P., Manel, C., Braucher, R., Tissoux, H., Bahain, J.-J., Perrenoud, C., and Saos, T.: Terrestrial 10Be and electron spin resonance dating of fluvial terraces quantifies quaternary tectonic uplift gradients in the eastern Pyrenees, Quaternary Science Reviews, 193, 188–211, https://doi.org/10.1016/j.quascirev.2018.06.001, 2018.
del Río, I., Sawakuchi, A. O., Góes, A. M., Hollanda, M. H., Furukawa, N. Y., Porat, N., and Negri, F. A.: Luminescence signals of quartz and feldspar as new methods for stratigraphic discrimination and provenance analysis of siliciclastic successions: the case of the Parnaíba Basin (Brazil) of West Gondwana, Basin Res., 1–22, https://doi.org/10.1111/bre.12590, 2021.
Dennen, W. H., Blackburn, W. H., and Quesada, A.: Aluminum in quartz as a geothermometer, Contributions to Mineralogy and Petrology, 27, 332–342, 1970.
Duttine, M., Villeneuve, G., Bechtel, F., and Demazeau, G.: Caractérisation par résonance paramagnétique électronique (RPE) de quartz naturels issus de différentes sources, Comptes Rendus Geoscience, 334, 949–955, https://doi.org/10.1016/S1631-0713(02)01845-X, 2002.
Duval, M.: Dose response curve of the ESR signal of the Aluminum center in quartz grains extracted from sediment, Ancient TL, 30, 41, 2012.
Fitzsimmons, K. E.: An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history, Geochronometria, 38, 199–208, 2011.
Fitzsimmons, K. E., Perić, Z., Nowatzki, M., Lindauer, S., Vinnepand, M., Prud'homme, C., Dave, A. K., Vött, A., and Fischer, P.: Luminescence Sensitivity of Rhine Valley Loess: Indicators of Source Variability?, Quaternary, 5, 1, https://doi.org/10.3390/quat5010001, 2022.
Fluck, P.: Métamorphisme et magmatisme dans les Vosges moyennes d'Alsace, Contribution à l'histoire de la chaîne varisque, Institut de Géologie, Université Louis-Pasteur, Strasbourg, 282 pp., 1980.
Fluck, P., Piqué, A., Schneider, J.-L., and Whitechurch, H.: Le socle vosgien/The vosgian basement, sgeol, 44, 207–235, https://doi.org/10.3406/sgeol.1991.1867, 1991.
Fukuchi, T.: Increase of radiation sensitivity of ESR centres by faulting and criteria of fault dates, Earth Planet. Sci. Lett., 94, 109–122, 1989.
Gall, J. C.: Fluvial depositional environment evolving into deltaic setting with marine influences in the Buntsandstein of Northern Vosges (France), Lecture Notes in Earth Sciences, 4, 449–477, https://doi.org/10.1007/BFb0010532, 2006.
Gliganic, L. A., Cohen, T. J., Meyer, M., and Molenaar, A.: Variations in luminescence properties of quartz and feldspar from modern fluvial sediments in three rivers, Quaternary Geochronology, 41, 70–82, https://doi.org/10.1016/j.quageo.2017.06.005, 2017.
Godfrey-Smith, D. I. and Cada, M.: IR Stimulation Spectroscopy of Plagioclase and Potassium Feldspars, and Quartz, Radiation Protection Dosimetry, 66, 379–385, https://doi.org/10.1093/oxfordjournals.rpd.a031759, 1996.
Götze, J., Plötze, M., Tichomirowa, M., Fuchs, H., and Pilot, J.: Aluminum in quartz, as an indicator of the temperature of formation of agate, Mineralogical Magazine, 65, 407–413, https://doi.org/10.1180/002646101300119484, 2001.
Götze, J., Plötze, M., Graupner, T., Hallbauer, D. K., and Bray, C. J.: Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography, Geochim. Cosmochim. Acta, 68, 3741–3759, https://doi.org/10.1016/j.gca.2004.01.003, 2004.
Goswami, K., Panda, S. K., Alappat, L., and Chauhan, N.: Luminescence for sedimentary provenance quantification in river basins: A methodological advancement, Quaternary Geochronology, 79, 101488, https://doi.org/10.1016/j.quageo.2023.101488, 2024.
Gray, H. J., Tucker, G. E., Mahan, S. A., McGuire, C., and Rhodes, E. J.: On extracting sediment transport information from measurements of luminescence in river sediment, Journal of Geophysical Research: Earth Surface, 122, 654–677, 2017.
Gray, H. J., Jain, M., Sawakuchi, A. O., Mahan, S. A., and Tucker, G. E.: Luminescence as a sediment tracer and provenance tool, Reviews of Geophysics, 57, https://doi.org/10.1029/2019RG000646, 2019.
Guralnik, B., Jain, M., Herman, F., Ankjærgaard, C., Murray, A. S., Valla, P. G., Preusser, F., King, G. E., Chen, R., Lowick, S. E., Kook, M., and Rhodes, E. J.: OSL-thermochronometry of feldspar from the KTB borehole, Germany, Earth and Planetary Science Letters, 423, 232–243, https://doi.org/10.1016/j.epsl.2015.04.032, 2015.
Hu, G., Zeng-Liu, J., Shao, Y., Qin, K., and Gao, Y.: The applications of optically stimulated luminescence dating in active fault and paleo-earthquake studies: A review, Quaternary International, 688, 53–62, https://doi.org/10.1016/j.quaint.2024.01.016, 2024.
Ikeya, M.: New Applications of Electron Spin Resonance, Dating, Dosimetry, and Microscopy, World Scientific, Singapore, 520 pp., https://doi.org/10.1142/1854, 1993.
Ingicco, T., Van Den Bergh, G. D., Jago-on, C., Bahain, J.-J., Chacón, M. G., Amano, N., Forestier, H., King, C., Magyar, G., Bartyik, T., Marković, R. S., Filyó, D., Kiss, T., Marković, S. B., Homolya, V., Balla, Z., Bozsó, G., Baranya, S., Alexanderson, H., Lukić, T., and Sipos, G.: Downstream change of luminescence sensitivity in sedimentary quartz and the rearrangement of optically stimulated luminescence (OSL) components along two large rivers, Quaternary Geochronology, 85, 101629, https://doi.org/10.1016/j.quageo.2024.101629, 2024.
Jain, M., Murray, A. S., and Bøtter-Jensen, L.: Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement, Radiat. Meas., 37, 441–449, https://doi.org/10.1016/S1350-4487(03)00052-0, 2003.
Jani, M. G., Bossoli, R. B., and Halliburton, L. E.: Further characterization of the E'1 center in crystalline SiO2, Phys. Rev. B, 27, 2285–2293, https://doi.org/10.1103/PhysRevB.27.2285, 1983.
Jeong, G. Y. and Choi, J.-H.: Variations in quartz OSL components with lithology, weathering and transportation, Quaternary Geochronology, 10, 320–326, https://doi.org/10.1016/j.quageo.2012.02.023, 2012.
Kotova, E. N., Lyutoev, V. P., and Kuznetsov, S. K.: Paramagnetic centers in quartz of basic industry deposits, Acta Crystallographica Section A: Foundations and Advances, A63, s249, https://doi.org/10.1107/S0108767307094378, 2007.
Kotova, E. N., Lyutoev, V. P., and Kuznetsov, S. K.: Aluminum and germanium paramagnetic centers in vein quartz and rock crystals from the Subpolar Urals, Geol. Ore Deposits, 50, 634–641, https://doi.org/10.1134/S1075701508070155, 2008.
Koul, D. K.: Role of alkali ions in limiting the capacity of the 110 °C peak of quartz to remember the firing temperature, Applied Radiation and Isotopes, 64, 110–115, https://doi.org/10.1016/j.apradiso.2005.07.008, 2006.
Koul, D. K. and Chougaonkar, M. P.: The pre-dose phenomenon in the OSL signal of quartz, Radiation Measurements, 42, 1265–1272, https://doi.org/10.1016/j.radmeas.2007.04.001, 2007.
Kratinova, Z., Schulmann, K., Edel, J. B., and Ježek, J.: Model of successive granite sheet emplacement in transtensional setting: integrated microstructural and anisotropy of magnetic susceptibility study, Tectonics, 26, 1–7, https://doi.org/10.1029/2006TC002035, 2007.
Latouche, L., Fabriès, J., and Guiraud, M.: Retrograde evolution in the Central Vosges mountains (northeastern France): implications for the metamorphic history of high-grade rocks during the Variscan orogeny, Tectonophysics, 205, 387–407, https://doi.org/10.1016/0040-1951(92)90444-B, 1992.
Li, S. H.: Luminescence sensitivity changes of quartz by bleaching, annealing and UV exposure, Radiation Effects and Defects in Solids, 157, 357–364, https://doi.org/10.1080/10420150212998, 2002.
Liu, C.-R., Ji, H., Li, W.-P., Wei, C.-Y., and Yin, G.-M.: The relationship between irradiation sensitivity of quartz Al and Ti centers and baking temperature by volcanic lava flow: Example of Datong volcanic group, China, Radiation Measurements, 157, 106823, https://doi.org/10.1016/j.radmeas.2022.106823, 2022.
Lukas, S., Spencer, J. Q. G., Robinson, R. A. J., and Benn, D. I.: Problems associated with luminescence dating of Late Quaternary glacial sediments in the NW Scottish Highlands, Quaternary Geochronology, 2, 243–248, https://doi.org/10.1016/j.quageo.2006.04.007, 2007.
Lutoev, V. P.: Application of the ESR method in geological correlation problems, Applied Magnetic Resonance, 28, 311–330, https://doi.org/10.1007/BF03166764, 2005.
Magyar, G., Bartyik, T., Marković, R. S., Filyó, D., Kiss, T., Marković, S., Homolya, V., Balla, A., Bozsó, G., Baranya, S., Alexanderson, H., Lukić, T., and Sipos, G.: Downstream change of luminescence sensitivity in sedimentary quartz and the rearrangement of optically stimulated luminescence (OSL) components along two large rivers, Quaternary Geochronology, 85, 101629, https://doi.org/10.1016/j.quageo.2024.101629, 2024.
McKeever, S. W. S., Bøtter-Jensen, L., Agersnap Larsen, N., Mejdahl, V., and Poolton, N. R. J.: Optically stimulated luminescence sensitivity changes in quartz due to repeated use in single aliquot readout: experiments and computer simulations, Radiation Protection Dosimetry, 65, 49–54, https://doi.org/10.1093/oxfordjournals.rpd.a031680, 1996.
Mineli, T. D., Sawakuchi, A. O., Guralnik, B., Lambert, R., Jain, M., Pupim, F. N., Rio, I. del, Guedes, C. C. F., and Nogueira, L.: Variation of luminescence sensitivity, characteristic dose and trap parameters of quartz from rocks and sediments, Radiation Measurements, 144, 106583, https://doi.org/10.1016/j.radmeas.2021.106583, 2021.
Moska, P. and Murray, A. S.: Stability of the quartz fast-component in insensitive samples, Radiation Measurements, 41, 878–885, https://doi.org/10.1016/j.radmeas.2006.06.005, 2006.
Murray, A. S. and Roberts, R. G.: Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol, Radiation Measurements, 29, 503–515, https://doi.org/10.1016/S1350-4487(98)00044-4, 1998.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Radiation Measurements, 32, 57–73, https://doi.org/10.1016/S1350-4487(99)00253-X, 2000.
Nelson, M. S., Eppes, M. C., and Rittenour, T. M.: Quartz luminescence sensitivity from sediment versus bedrock in highly weathered soils of the Piedmont of North Carolina, south-eastern USA, Quaternary Geochronology, 101343, https://doi.org/10.1016/j.quageo.2022.101343, 2022.
Niyonzima, P., Sawakuchi, A. O., Jain, M., Kumar, R., Mineli, T. D., del Río, I., and Pupim, F. N.: Radiofluorescence of quartz from rocks and sediments and its correlation with thermoluminescence and optically stimulated luminescence sensitivities, Ancient TL, 38, 11–20, https://doi.org/10.1016/j.epsl.2018.04.006, 2020.
Odlum, M. L., Rittenour, T., Ault, A. K., Nelson, M., and Ramos, E. J.: Investigation of quartz luminescence properties in bedrock faults: Fault slip processes reduce trap depths, lifetimes, and sensitivity, Radiation Measurements, 155, 106784, https://doi.org/10.1016/j.radmeas.2022.106784, 2022.
Ono, Y., Naruse, T., Ikeya, M., Kohno, H., and Toyoda, S.: Origin and derived courses of eolian dust quartz deposited during marine isotope stage 2 in East Asia, suggested by ESR signal intensity, Global and Planetary Change, 18, 129–135, https://doi.org/10.1016/S0921-8181(98)00012-5, 1998.
Parida, S., Kaushal, R. K., Chauhan, N., and Singhvi, A. K.: Changes in thermoluminescence sensitivity of 110 °C glow peak of quartz grains from sediments of River Ganga: Observation and implications, Earth and Planetary Science Letters, 656, 119267, https://doi.org/10.1016/j.epsl.2025.119267, 2025.
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., and Chenery, S. P.: A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials, Geostandards Newsletter, 21, 115–144, https://doi.org/10.1111/j.1751-908X.1997.tb00538.x, 1997.
Pietsch, T. J., Olley, J. M., and Nanson, G. C.: Fluvial transport as a natural luminescence sensitiser of quartz, Quaternary Geochronology, 3, 365–376, https://doi.org/10.1016/j.quageo.2007.12.005, 2008.
Polymeris, G. S., Sakalisa, A., Papadopoulou, D., Dallasa, G., Kitis, G., and Tsirliganis, N. C.: Firing temperature of pottery using TL and OSL techniques, Nuclear Instruments and Methods in Physics Research A, 580, 747–750, https://doi.org/10.1016/j.nima.2007.05.139, 2007.
Poolton, N. R. J., Smith, G. M., Riedi, P. C., Bulur, E., Bøtter-Jensen, L., Murray, A. S., and Adrian, M.: Luminescence sensitivity changes in natural quartz induced by high temperature annealing: a high frequency EPR and OSL study, Journal of Physics D: Applied Physics, 33, 1007–1017, https://doi.org/10.1088/0022-3727/33/8/318, 2000.
Preusser, F., Ramseyer, K., and Schlüchter, C.: Characterization of low OSL intensity quartz from the New Zealand Alps, Radiation Measurements, 41, 871–877, 2006.
Preusser, F., Chithambo, M. L., Götte, T., Martini, M., Ramseyer, K., Sendezera, E. J., Susino, G. J., and Wintle, A. G.: Quartz as a natural luminescence dosimeter, Earth Sci. Rev. 97, 184e214, https://doi.org/10.1016/j.earscirev.2009.09.006, 2009.
Rey, P., Burg, J.-P., and Caron, J.-M.: Middle and Late Carboniferous extension In the Variscan Belt: structural and petrological evidences from the Vosges massif (Eastern France), Geodinamica Acta, 5, 17–36, https://doi.org/10.1080/09853111.1992.11105217, 1992.
Rhodes, E. J. and Pownall, L.: Zeroing of the OSL signal in quartz from young glaciofluvial sediments, Radiat. Meas., 23, 329–333, 1994.
Rink, W. J., Rendell, H., Marseglia, E. A., Luff, B. J., and Townsend, P. D.: Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz, Phys. Chem. Minerals, 20, https://doi.org/10.1007/BF00215106, 1993.
Rink, W. J., Bartoll, J., Schwarz, H. P., Shane, P., and Bar-Yosef, O.: Testing the reliability of ESR dating of optically exposed buried quartz sediments, Radiat. Meas., 42, 1618–1626, 2007.
Rixhon, G., Briant, R. M., Cordier, S., Duval, M., Jones, A., and Scholz, D.: Revealing the pace of river landscape evolution during the Quaternary: recent developments in numerical dating methods, Quaternary Science Reviews, 166, 91–113, https://doi.org/10.1016/j.quascirev.2016.08.016, 2017.
Saavedra, J., de la Roche, H., Leterrier, J., and Pellitero, E.: Essai de typologie géochimique de quelques granites à deux micas des Vosges moyennes, Bull. Soc. géol. Fr., 7, XV, 541–554, 1973.
Sawakuchi, A. O., Blair, M. W., De Witt, R., Faleiros, F. M., Hyppolito, T., and Guedes, C. C. F.: Thermal history versus sedimentary history: OSL sensitivity of quartz grains extracted from rocks and sediments, Quat. Geochronol., 6, 261–272, 2011a.
Sawakuchi, A. O., DeWitt, R., and Faleiros, F. M.: Correlation between thermoluminescence sensitivity and crystallization temperatures of quartz: potential application in geothermometry, Radiation Measurements, 46, 51–58, https://doi.org/10.1016/j.radmeas.2010.08.005, 2011b.
Sawakuchi, A. O., Jain, M., Mineli, T. D., Nogueira, L., Bertassoli Jr., D. J., Häggi, C., Sawakuchi, H. O., Pupim, F. N., Grohmann, C. H., Chiessi, C. M., Zabel, M., Schefuß, E., Mulitza, S., and the TS47 team: Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin, Earth Planet. Sci. Lett., 492, 152–162, 2018.
Sawakuchi, A. O., Rodrigues, F. C. G., Mineli, T. D., Mendes, V. R., Melo, D. B., Chiessi, C. M., Giannini, P. C. F., Häggi, C., Sawakuchi, H. O., Pupim, F. N., Grohmann, C. H., and Chiessi, C. M.: Optically Stimulated Luminescence Sensitivity of Quartz for Provenance Analysis, Methods Protoc., 3, 6, https://doi.org/10.3390/mps3010006, 2020.
Schilles, T., Poolton, N. R. J., Bulur, E., Bøtter-Jensen, L., Murray, A. S., Smith, G. M., Riedi, P. C., and Wagner, G. A.: A multi-spectroscopic study of luminescence sensitivity changes in natural quartz induced by high-temperature annealing, Journal of Physics D: Applied Physics, 34, 722–731, 2001.
Schulmann, K.: Rapid burial and exhumation during orogeny: Thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan orogen in Western Europe), American Journal of Science, 302, 856–879, https://doi.org/10.2475/ajs.302.10.856, 2002.
Schulmann, K., Martinez Catalan, J. R., Lardeaux, J. M., Janoušek, V., and Oggiano, G.: The Variscan orogeny: extent, timescale and the formation of the European crust, Geol. Soc. Lond. Spec. Publ., 405, 1–6, 2014.
Sharma, S. K., Chawla, S., Sastry, M. D., Gaonkar, M., Mane, S., Balaram, V., and Singhvi, A. K.: Understanding the reasons for variations in luminescence sensitivity of natural quartz using spectroscopic and chemical studies, Proc. Ind. Nat. Sci. Acad., 83, 645–653, https://doi.org/10.16943/ptinsa/2017/49024, 2017.
Shimada, A., Takada, M., and Toyoda, S.: Characteristics of ESR signals and TL/CLs of quartz included in various source rocks and sediments in Japan: A clue to sediment provenance, Geochronometria, 40, 334–340, https://doi.org/10.2478/s13386-013-0111-z, 2013.
Shimada, A., Takada, M., and Toyoda, S.: Electron spin resonance signals of quartz in present-day river bed sediments and possible source rocks in the Kizu River basin, Western Japan, Geochronometria, 43, 155–161, https://doi.org/10.1515/geochr-2015-0039, 2016.
Skrzypek, E., Stipska, P., and Cocherie, A.: The Origin of zircon and the significance of U-Pb ages in high-grade metamorphic rocks: a case study from the Variscan orogenic root (Vosges Mountains, NE France), Contrib. Mineral Petrol., 164, 935–957, https://doi.org/10.1007/s00410-012-0781-1, 2012.
Skrzypek, E., Schulmann, K., Tabaud, A. S., and Edel, J. B.: Palaeozoic evolution of the Variscan Vosges Mountains, Geol. Soc. Lond. Spec. Publ., 405, 45–75, 2014.
Souza, P. E., Pupim, F. N., Mazoca, C. E. M., Río, I. D., Mineli, T. D., Rodrigues, F. C. G., Porat, N., Hartmann, G. A., and Sawakuchi, A. O.: Quartz OSL sensitivity from dating data for provenance analysis of pleistocene and holocene fluvial sediments from lowland Amazonia, Quaternary Geochronology, 74, 101422, https://doi.org/10.1016/j.quageo.2023.101422, 2023.
Stalder, R., Jaeger, D., Andò, S., Garzanti, E., Chiessi, C. M., Sawakuchi, A. O., and Strasser, M.: Trace element and OH content of quartz grains in the Amazon river: Potential application in provenance analysis, Sedimentary Geology, 480, 106853, https://doi.org/10.1016/j.sedgeo.2025.106853 2025.
Stavrov, O. D.: Geochemistry of Lithium, Rubidium and Cesium in the Magmatic Process, Nedra, Moscow, 216 pp., 1978 (in Russian).
Tabaud, A.-S., Whitechurch, H., Rossi, P., Schulmann, K., Guerrot, C., and Cocherie, A.: Devonian–Permian magmatic pulses in the northern Vosges Mountains (NE France): result of continuous subduction of the Rhenohercynian Ocean and Avalonian passive margin, Geol. Soc. Lond. Spec. Publ., 405, 197–223, 2014.
Timar-Gabor, A.: Electron spin resonance characterisation of sedimentary quartz of different grain sizes, Radiation Measurements, 120, 59–65, https://doi.org/10.1016/j.radmeas.2018.06.023, 2018.
Tissoux, H., Toyoda, S., Falguères, C., Voinchet, P., Takada, M., Bahain, J.-J., and Despriée, J.: ESR Dating of Sedimentary Quartz from Two Pleistocene Deposits Using Al and Ti-Centers, Geochronometria, 30, 23–31, https://doi.org/10.2478/v10003-008-0004-y, 2008.
Tissoux, H., Voinchet, P., Lacquement, F., and Despriée, J.: ESR as a method for the characterization of alluvial sediments, Radiation Measurements, 81, 2–8, https://doi.org/10.1016/j.radmeas.2015.05.010, 2015.
Toyoda, S.: Paramagnetic lattice defects in quartz for applications to ESR dating, Quaternary Geochronology, 30, 498–505, https://doi.org/10.1016/j.quageo.2015.05.010, 2015.
Toyoda, S. and Falguères, C.: The method to represent ESR signal intensity of the aluminium hole center in quartz for the purpose of dating, Advances in ESR Applications, 20, 7–10, 2003.
Toyoda, S. and Ikeya, M.: Thermal stabilities of paramagnetic defect and impurity centers in quartz: Basis for ESR dating of thermal history, Geochem. J., 25, 437–445, https://doi.org/10.2343/geochemj.25.437, 1991.
Toyoda, S. and Ikeya, M.: ESR dating of quartz with stable component of impurity centers, Quaternary Science Reviews, 13, 625–628, https://doi.org/10.1016/0277-3791(94)90089-2, 1994.
Toyoda, S., Voinchet, P., Falguères, C., Dolo, J. M., and Laurent, M.: Bleaching of ESR signals by the sunlight: a laboratory experiment for establishing the ESR dating of sediments, Appl. Radiat. Isot., 52, 1357–1362, 2000.
Toyoda, S., Miura, H., and Tissoux, H.: Signal regeneration in ESR dating of tephra with quartz, Radiation Measurements, 44, 483–487, https://doi.org/10.1016/j.radmeas.2009.03.002, 2009.
Toyoda, S., Nagashima, K., and Yamamoto, Y.: ESR signals in quartz: Applications to provenance research – A review, Quaternary International, 397, 258–266, https://doi.org/10.1016/j.quaint.2015.05.048, 2016.
Tsukamoto, S., Nagashima, K., Murray, A. S., and Tada, R.: Variations in OSL components from quartz from Japan sea sediments and the possibility of reconstructing provenance, Quaternary International, 234, 182–189, 2011.
Vartanian, E., Guibert, P., Roque, C., Bechtel, F., and Schvoerer, M.: Changes in OSL properties of quartz by preheating: an interpretation, Radiat. Meas., 32, 647–652, 2000.
von Eller, J.-P.: Carte géologique et pétrographique des Vosges moyennes, partie centrale et partie orientale 1 : 50 000, Bull. Serv. Carte Géol. Alsace Lorraine, 14, 1–22, https://doi.org/10.3406/sgeol.1961.1223, 1961.
Wark, D. A. and Watson, E. B.: TitaniQ: a titanium-in-quartz geothermometer, Contributions to Mineralogy and Petrology, 152, 743–754, 2006.
Wild, B., Daval, D., Beaulieu, E., Pierret, M.-C., Viville, D., and Imfeld, G.: In-situ dissolution rates of silicate minerals and associated bacterial communities in the critical zone (Strengbach catchment, France), Geochimica et Cosmochimica Acta, 249, 95–120, https://doi.org/10.1016/j.gca.2019.01.003, 2019.
Zular, A., Sawakuchi, A. O., Guedes, C. C. F., and Giannini, P. C. F.: Attaining provenance proxies from OSL and TL sensitivities: Coupling with grain size and heavy minerals data from southern Brazilian coastal sediments, Radiat. Meas., 81, 39–45, 2015.
Short summary
In this study, Optically Stimulated Luminescence (OSL), Electron Spin Resonance (ESR) and Laser Ablation-Induced Coupled Plasma-Mass Spectroscopy (La-ICPMS) trace element (TE) analyses shows that TE composition may influence OSL and ESR-Ti sensitivities in quartz, which vary with bedrock type. Pressure may take a part in OSL/ESR-Ti sensitivities variability while ESR-Al intensities could be linked to initial fluid composition and crystallization conditions
In this study, Optically Stimulated Luminescence (OSL), Electron Spin Resonance (ESR) and Laser...