Articles | Volume 2, issue 2
https://doi.org/10.5194/gchron-2-355-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-2-355-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Production of 40Ar by an overlooked mode of 40K decay with implications for K-Ar geochronology
Jack Carter
CORRESPONDING AUTHOR
SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Scotland, UK
Ryan B. Ickert
SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Scotland, UK
Department of Earth, Atmospheric, and Planetary Sciences, Purdue
University, West Lafayette, IN 47901, USA
Darren F. Mark
SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Scotland, UK
Earth and Environmental Sciences, University of St Andrews, College Gate, St Andrews, Scotland, UK
Marissa M. Tremblay
Department of Earth, Atmospheric, and Planetary Sciences, Purdue
University, West Lafayette, IN 47901, USA
Alan J. Cresswell
SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Scotland, UK
David C. W. Sanderson
SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Scotland, UK
Related authors
No articles found.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahandar Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
Geochronology, 7, 409–425, https://doi.org/10.5194/gchron-7-409-2025, https://doi.org/10.5194/gchron-7-409-2025, 2025
Short summary
Short summary
We present the first community-wide evaluation of the reproducibility of U–Pb zircon geochronology by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). Eleven labs analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon, which removed geological bias inherent to using heterogeneous natural zircon grain populations. We discuss remaining sources of inter-lab bias and propose areas of improvement to analytical procedures.
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022, https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary
Short summary
We apply quartz 3He paleothermometry along two deglaciation profiles in the European Alps to reconstruct temperature evolution since the Last Glacial Maximum. We observe a 3He thermal signal clearly colder than today in all bedrock surface samples exposed prior the Holocene. Current uncertainties in 3He diffusion kinetics do not permit distinguishing if this signal results from Late Pleistocene ambient temperature changes or from recent ground temperature variation due to permafrost degradation.
Cited articles
Aldrich, L. T. and Nier, A. O.: Argon 40 in potassium minerals, Phys. Rev.,
74, 876–877, https://doi.org/10.1103/PhysRev.74.876, 1948.
Altherr, R., Mertz-Kraus, R., Volker, F., Kreuzer, H., Henjes-Kunst, F., and
Lange, U.: Geodynamic setting of Upper Miocene to Quaternary alkaline
basalts from Harrat al `Uwayrid (NW Saudi Arabia): Constraints from KAr
dating, chemical and Sr-Nd-Pb isotope compositions, and petrological
modelling, Lithos, 330, 120–138, https://doi.org/10.1016/j.lithos.2019.02.007, 2019.
Audi, G., Bersillon, O., Blachot, J., and Wapstra, A. H.: The NUBASE
evaluation of nuclear and decay properties, Nucl. Phys. A, 729, 3–128,
https://doi.org/10.1016/j.nuclphysa.2003.11.001, 2003.
Baerg, A. P.: Electron capture to positron branching ratios in the decay of
22Na and 44Sc, Can. J. Phys., 61, 1222–1226, https://doi.org/10.1139/p83-155, 1983.
Bahcall, J. N.: Electron Capture and Nuclear Matrix Elements of Be7,
Phys. Rev., 128, 1297–1301,
https://doi.org/10.1201/9780429502811-65, 1962.
Bambynek, W., Behrens, H., Chen, M. H., Crasemann, B., Fitzpatrick, M. L.,
Ledingham, K. W. D., Genz, H., Mutterer, M., and Intemann, R. L.: Orbital
electron capture by the nucleus, Rev. Mod. Phys., 49, 77–221,
https://doi.org/10.1103/RevModPhys.49.77, 1977.
Bé, M.-M., Chisté, V., Dulieu, C., Mougeot, X., Browne, E., Chechev, V., Kuzmenko, N., Kondev, F., Luca, A., and Galan, M.: Table of radionuclides (Vol. 5-A = 22 to 244), Mongraphie BIPM-5, available at: https://hal-cea.archives-ouvertes.fr/cea-02476352/document (last access: 12 November 2020), 2010.
Beckinsale, R. D. and Gale, N. H.: A reappraisal of the decay constants and
branching ratio of 40K, Earth Planet. Sc. Lett., 6, 289–294,
https://doi.org/10.1016/0012-821X(69)90170-8, 1969.
Bethe, H. A. and Bacher, R. F.: Nuclear physics A. Stationary states of
nuclei, Rev. Mod. Phys., 8, 82–229,
https://doi.org/10.1103/RevModPhys.8.82, 1936.
Bosch, H. E., Davidson, J., Davidson, M., and Szybisz, L.: The electron
capture to positron emission ratios in the decay of 22Na and 65Zn,
Z. Phys. A., 280, 321–327, https://doi.org/10.1007/BF01435440, 1977.
Carter, J., Ickert, R., Mark, D., Tremblay, M. M., Cresswell, A., and Sanderson, D.: Potassium_counting_experiment.csv, figshare, Dataset, https://doi.org/10.6084/m9.figshare.13280795.v1, 2020.
Chen, J.: Nuclear Data Sheets for A=40, Nuclear Data Sheets, 140, 1–376,
https://doi.org/10.1016/j.nds.2017.02.001, 2017.
Cresswell, A. J., Carter, J., and Sanderson, D. C. W.: Dose rate conversion
parameters: Assessment of nuclear data, Radiat. Meas., 120, 195–201,
https://doi.org/10.1016/j.radmeas.2018.02.007, 2018.
Cresswell, A. J., Sanderson, D. C. W., and Carter, J.: Review of nuclear data for
naturally occurring radionuclides applied to environmental applications,
Eur. Phys. J. Plus, 134, 69, https://doi.org/10.1140/epjp/i2019-12437-1, 2019.
Di Stefano, P. C. F., Brewer, N., Fijałkowska, A., Gai, Z., Goetz, K. C.,
Grzywacz, R., Hamm, D., Lechner, P., Liu, Y., Lukosi, E., and Mancuso, M.:
The KDK (potassium decay) experiment, J. Phys. Conf. Ser., 1342,
012062, IOP Publishing, https://doi.org/10.1088/1742-6596/1342/1/012062, 2020.
Emery, G. T.: Ionization through Nuclear Electron Capture and Internal
Conversion, in: Atomic Inner-Shell Processes, Academic Press, New York, 201–231, https://doi.org/10.1016/B978-0-12-196901-1.50010-8, 1975.
Engelkemeir, D. W., Flynn, K. F., and Glendenin, L. E.: Positron Emission in the
Decay of K40, Phys. Rev., 126, 1818–1822, https://doi.org/10.1103/PhysRev.126.1818, 1962.
Endt, P. M.: Energy levels of A=21–44 nuclei (VII), Nucl. Phys. A, 521,
1–400, https://doi.org/10.1016/0375-9474(90)90598-G, 1990.
Endt, P. M. and Van der Leun, C.: Energy levels of A=21–44 nuclei (V),
Nucl. Phys. A, 214, 1–625,
https://doi.org/10.1016/0375-9474(73)91131-7, 1973.
Endt, P. M. and Van der Leun, C.: Energy levels of A=21–44 nuclei (VI),
Nucl. Phys. A, 310, 1–751,
https://doi.org/10.1016/0375-9474(78)90611-5, 1978.
ENSDF Collaboration: LOGFT, available at: https://www-nds.iaea.org/public/ensdf_pgm/, last access: 12 November 2020.
Fermi, E.: Versuch einer Theorie der β-Strahlen. I, Z. Phys., 88,
161–177, https://doi.org/10.1007/BF01351864, 1934.
Fireman, E. L.: On the Decay of K40, Phys. Rev., 75, 1447, https://doi.org/10.1103/PhysRev.75.1447.2, 1949.
Garner, E. L., Murphy, T. J., Gramlich, J. W., Paulsen, P. J., and Barnes, I. L.:
Absolute isotopic abundance ratios and the atomic weight of a reference
sample of potassium, J. Res. Natl. Bur. Stand. A Phys. Chem., 79A,
713–725, https://doi.org/10.6028/jres.079A.028, 1975.
Huber, P.: Determination of antineutrino spectra from nuclear
reactors, Phys. Rev. C, 84, 024617, https://doi.org/10.1103/PhysRevC.84.024617, 2011.
Krane, K. S. and Halliday, D.: Introductory nuclear physics, 3rd edn., Wiley, New
York, 845 pp., 1987.
Kreger, W. E.: K Capture to positron ratio for Na22, Phys. Rev., 96,
1554–1555, https://doi.org/10.1103/PhysRev.96.1554, 1954.
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans,
J. R.: Synchronizing rock clocks of Earth history, Science, 320,
500–504, https://doi.org/10.1126/science.1154339, 2008.
Kunze, V., Schmidt-Ott, W. D., and Behrens, H.: Remeasurement of capture to
positron decay ratios in 22Na and 65Zn and comparison with theory,
Z. Phys. A, 337, 169–173, https://doi.org/10.1007/BF01294288, 1990.
Leutz, H., Schulz, G., and Wenninger, H.: The decay of potassium-40, Z.
Phys., 187, 151–164, https://doi.org/10.1007/BF01387190,
1965.
MacMahon, T. D. and Baerg, A. P.: The electron capture to positron branching
ratio in the decay of 22Na, Can. J. Phys., 54, 1433–1437,
https://doi.org/10.1139/p76-168, 1976.
Marshall, B. D. and DePaolo, D. J.: Precise age determinations and petrogenetic
studies using the K-Ca method, Geochim. Cosmochim. Ac., 46, 2537–2545,
https://doi.org/10.1016/0016-7037(82)90376-3, 1982.
McCann, M. F. and Smith, K. M.: Direct measurement of the K electron capture to
positron emission ratio in the decay of 22Na, J. Phys. A-Gen. Phys.,
2, 392–397, https://doi.org/10.1088/0305-4470/2/3/018,
1969.
McDougall, I. and Harrison, T. M.: Geochronology and Thermochronology
by the 40Ar∕39Ar Method, 2nd edn., Oxford University Press, Oxford, 269,
1999.
Merrihue, C. and Turner, G.: Potassium-argon dating by activation with fast
neutrons, J. Geophys. Res.-Sol. Ea., 71, 2852–2857, https://doi.org/10.1029/JZ071i011p02852, 1966.
Min, K., Mundil, R., Renne, P. R., and Ludwig, K. R.: A test for systematic
errors in 40Ar∕39Ar geochronology through comparison with U/Pb
analysis of a 1.1-Ga rhyolite, Geochim. Cosmochim. Ac., 64, 73–98,
https://doi.org/10.1016/S0016-7037(99)00204-5, 2000.
Morgan, L. E., Mark, D. F., Imlach, J., Barfod, D., and Dymock, R.: FCs-EK: A
new sampling of the Fish Canyon Tuff 40Ar/39Ar neutron flux monitor, Geol.
Soc. Spec. Publ., 378, 63–67, https://doi.org/10.1144/SP378.21, 2014.
Mougeot, X.: Improved calculations of electron capture transitions for decay
data and radionuclide metrology, Appl. Radiat. Isot., 134, 225–232,
https://doi.org/10.1016/j.apradiso.2017.07.027, 2018.
Mougeot, X. and Helmer, R. G.: 40K – Comments on evaluation of decay data, LNHB/INEEL, available at: http://www.nucleide.org/DDEP_WG/Nuclides/K-40_com.pdf (last access: 12 November 2020), 2009.
Nähle, O., Kossert, K., and Klein, R.: Activity standardization of 22Na,
Appl. Radiat. Isot., 66, 865–871, https://doi.org/10.1016/j.apradiso.2008.02.028, 2008.
Pradler, J., Singh, B., and Yavin, I.: On an unverified nuclear decay and its
role in the DAMA experiment, Phys. Lett. B, 720, 399–404, https://doi.org/10.1016/j.physletb.2013.02.033, 2013.
Preece, K., Mark, D. F., Barclay, J., Cohen, B. E., Chamberlain, K. J., Jowitt,
C., Vye-Brown, C., Brown, R. J., and Hamilton, S.: Bridging the gap:
40Ar∕39Ar dating of volcanic eruptions from the “Age of
Discovery”, Geology, 46, 1035–1038, https://doi.org/10.1130/G45415.1, 2018.
Renne, P. R.: 40Ar∕39Ar age of plagioclase from Acapulco meteorite
and the problem of systematic errors in cosmochronology, Earth Planet. Sc. Lett., 175, 13–26, https://doi.org/10.1016/S0012-821X(99)00287-3, 2000.
Renne, P. R., Sharp, W. D., Deino, A. L., Orsi, G., and Civetta, L.:
40Ar∕39Ar dating into the historical realm: Calibration against
Pliny the Younger, Science, 277, 1279–1280, https://doi.org/10.1126/science.277.5330.1279, 1997.
Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L., and
DePaolo, D. J.: Intercalibration of standards, absolute ages and
uncertainties in 40Ar∕39Ar dating, Chem. Geol., 145, 117–152,
https://doi.org/10.1016/S0009-2541(97)00159-9, 1998.
Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R.: Joint
determination of 40K decay constants and 40Ar
for the Fish Canyon sanidine standard, and improved accuracy for
40Ar∕39Ar geochronology, Geochim. Cosmochim. Ac., 74,
5349–5367, https://doi.org/10.1016/j.gca.2010.06.017, 2010.
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., and Min, K.: Response to the
comment by W.H. Schwarz et al. on “Joint determination of 40K decay
constants and 40Ar*/40K for the Fish Canyon sanidine standard, and
improved accuracy for 40Ar∕39Ar geochronology” by P.R. Renne et
al. (2010), Geochim. Cosmochim. Ac., 75, 5097–5100, https://doi.org/10.1016/j.gca.2011.06.021, 2011.
Rivera, T. A., Storey, M., Zeeden, C., Hilgen, F. J., and Kuiper, K.: A refined
astronomically calibrated 40Ar∕39Ar age for Fish Canyon sanidine,
Earth Planet. Sc. Lett., 311, 420–426, https://doi.org/10.1016/j.epsl.2011.09.017, 2011.
Schmidt-Ott, W.-D., Lauerwald, J., Bosch, U., Dornhöfer, H., Schrewe, U. J., and
Behrens, H.: Electron-capture to positron ratio in the decays of 22Na
and 65Zn: Proceedings of the 7th International Conference on Atomic
Masses and Fundamental Constants AMCO-7, Technische Hochschule
Darmstadt, Lehrdruckerei, Darmstadt, 3–7 September 1984.
Steiger, R. and Jäger, E.: Subcommission on geochronology: convention on
the use of decay constants in geo-and cosmochronology, Earth Planet. Sc.
Lett., 36, 359–362, https://doi.org/10.1016/0012-821X(77)90060-7, 1977.
Stukel, M.: Characterization of Large Area Avalanche Photodiodes For The Measurement of The Electron Capture Decay Of 40K To The Ground State Of 40Ar, MSc Thesis, Queen's University, Australia, 159 pp., 2018.
Sýkora, I. and Povinec, P.: Measurement of electron capture to positron
emission ratios in light and medium nuclides, Nucl. Instrum. Methods Phys.
Res. B, 17, 467–471, https://doi.org/10.1016/0168-583X(86)90189-8, 1986.
Vatai, E., Varga, D., and Uchrin, J.: Measurement of the ϵ/β+ ratio in the decay of 22Na and 74As, Nucl. Phys. A, 116,
637–642, https://doi.org/10.1016/0375-9474(68)90396-5, 1968.
Wang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., and Xu, X.: The
AME2016 atomic mass evaluation (II). Tables, graphs and references, Chinese
Phys. C, 41, 030003, https://doi.org/10.1088/1674-1137/41/3/030003, 2017.
Wasserburg, G. J. and Hayden, R. J.: A40-K40 dating, Geochim.
Cosmochim. Ac., 7, 51–60, https://doi.org/10.1016/0016-7037(55)90045-4, 1955.
Williams, A.: Measurement of the ratio of electron capture to positon
emission in the decay of Na-22, Nucl. Phys., 52, 324–332, https://doi.org/10.1016/0029-5582(64)90696-0, 1964.
Yukawa, H. and Sakata, S.: On the Theory of the β-Disintegration 30 and the Allied Phenomenon, Proc. Phys. Math. Soc. Jpn., 3rd Series, 17, 467–479, available at: https://www.jstage.jst.go.jp/article/ppmsj1919/17/0/17_0_467/_pdf (last access: 12 November 2020), 1935.
Short summary
40K is an isotope of potassium that undergoes several different modes of radioactive decay. We use the decay of 40K to determine the ages of geologic materials that contain potassium but doing this requires us to know the rate at which 40K decays by its different decay modes. Here, we investigate one decay mode of 40K that has previously been overlooked. We demonstrate that this decay mode exists, estimate its rate, and evaluate its significance for geochronology.
40K is an isotope of potassium that undergoes several different modes of radioactive decay. We...