Articles | Volume 2, issue 2
https://doi.org/10.5194/gchron-2-355-2020
https://doi.org/10.5194/gchron-2-355-2020
Research article
 | 
26 Nov 2020
Research article |  | 26 Nov 2020

Production of 40Ar by an overlooked mode of 40K decay with implications for K-Ar geochronology

Jack Carter, Ryan B. Ickert, Darren F. Mark, Marissa M. Tremblay, Alan J. Cresswell, and David C. W. Sanderson

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by editor) (03 Aug 2020) by Clare Warren
AR by Jack Carter on behalf of the Authors (27 Aug 2020)  Author's response   Manuscript 
ED: Publish as is (30 Sep 2020) by Clare Warren
ED: Publish as is (30 Sep 2020) by Klaus Mezger (Editor)
AR by Jack Carter on behalf of the Authors (08 Oct 2020)  Author's response   Manuscript 
Download
Short summary
40K is an isotope of potassium that undergoes several different modes of radioactive decay. We use the decay of 40K to determine the ages of geologic materials that contain potassium but doing this requires us to know the rate at which 40K decays by its different decay modes. Here, we investigate one decay mode of 40K that has previously been overlooked. We demonstrate that this decay mode exists, estimate its rate, and evaluate its significance for geochronology.