Articles | Volume 2, issue 2
https://doi.org/10.5194/gchron-2-367-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-2-367-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a multi-method chronology spanning the Last Glacial Interval from Orakei maar lake, Auckland, New Zealand
School of Environment, The University of Auckland, Auckland, New Zealand
Kathryn E. Fitzsimmons
Research Group for Terrestrial Palaeoclimates, Max Planck Institute for Chemistry, Mainz, Germany
Jenni L. Hopkins
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
Andreas Nilsson
Department of Geology, Lund University, Lund, Sweden
Toshiyuki Fujioka
Australian Nuclear Science and Technology Organisation (ANSTO), Lucas
Heights, Australia
currently at: Centro Nacional de Investigación sobre
la Evolución Humana, Burgos, Spain
David Fink
Australian Nuclear Science and Technology Organisation (ANSTO), Lucas
Heights, Australia
Charles Mifsud
Australian Nuclear Science and Technology Organisation (ANSTO), Lucas
Heights, Australia
Marcus Christl
Laboratory of Ion Beam Physics, ETH Zurich, Zürich, Switzerland
Raimund Muscheler
Department of Geology, Lund University, Lund, Sweden
Paul C. Augustinus
School of Environment, The University of Auckland, Auckland, New Zealand
Related authors
Benjamin Läuchli, Paul Christian Augustinus, Leonie Peti, and Jenni Louise Hopkins
Sci. Dril., 29, 19–37, https://doi.org/10.5194/sd-29-19-2021, https://doi.org/10.5194/sd-29-19-2021, 2021
Short summary
Short summary
Auckland Volcanic Field maar lake sediments exhibit enormous potential for the identification and interpretation of short-duration climate events and long-term climate trends as well as intra- and inter-hemispheric climate. In tandem with ongoing work on Orakei maar, the study of Onepoto maar lake sediments will extend this record by providing high-resolution palaeoclimate and palaeoenvironmental reconstructions spanning the last two glacial cycles.
Niklas Kappelt, Eric Wolff, Marcus Christl, Christof Vockenhuber, Philip Gautschi, and Raimund Muscheler
Clim. Past, 21, 1585–1594, https://doi.org/10.5194/cp-21-1585-2025, https://doi.org/10.5194/cp-21-1585-2025, 2025
Short summary
Short summary
By measuring the radioactive decay of atmospherically produced 36Cl and 10Be in an ice core drilled in West Antarctica, we were able to determine the age of the deepest sample close to bedrock to be about 550 thousand years old. This means that the ice in this location, known as Skytrain Ice Rise, has survived several warm periods in the past, at least since marine isotope stage 11.
Qin Tao, Cheng Shen, Raimund Muscheler, and Jesper Sjolte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3471, https://doi.org/10.5194/egusphere-2025-3471, 2025
Short summary
Short summary
Using model simulations and reconstructions over the last millennium, we identify distinct North Atlantic Oscillation-related winter climate responses following tropical versus extratropical eruptions, with improved model-data agreement in simulations that use the latest volcanic forcing. Our paleoclimate data-model comparison provides new evidence of volcanic climate impacts, which are strongly dependent on the choice of forcing dataset, model configuration, and eruption event selection.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Anne-Marie Wefing, Annabel Payne, Marcel Scheiwiller, Christof Vockenhuber, Marcus Christl, Toste Tanhua, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-1322, https://doi.org/10.5194/egusphere-2025-1322, 2025
Short summary
Short summary
Here we used the anthropogenic radionuclides I-129 and U-236 as tracers for Atlantic Water circulation in the Arctic Ocean. New data collected in 2021 allowed to assess the distribution of Atlantic Water and mixing with Pacific-origin water in the surface layer in that year. By using historical tracer data from 2011 to 2021, we looked into temporal changes of the circulation and found slightly older waters in the central Arctic Ocean in 2021 compared to 2015.
Ixeia Vidaller, Toshiyuki Fujioka, Juan Ignacio López-Moreno, Ana Moreno, and the ASTER Team
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-75, https://doi.org/10.5194/cp-2024-75, 2024
Preprint under review for CP
Short summary
Short summary
Since the Pyrenean Last Glacial Maximum (75 ka), the deglaciation of the Ésera glacier (central Pyrenees) was characterized by complex dynamics, with advances and rapid retreats. Cosmogenic dates of moraines along the headwaters of the valley and lacustrine sediments analyses allowed to reconstruct evolutionary history of the Ésera glacier and the associated environmental implications during the last deglaciation and calculate the Equilibrium Line Altitude to determine changes in temperature.
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, and Jean Chéry
Earth Surf. Dynam., 12, 679–690, https://doi.org/10.5194/esurf-12-679-2024, https://doi.org/10.5194/esurf-12-679-2024, 2024
Short summary
Short summary
In the Grands Causses area (Southern France), we study the relationship between the evolution of the river, its incision through time, and the location of the nearby caves. It is commonly accepted that horizontal caves are formed during a period of river stability (no incision) at the elevation of the river. Our original results show that it is wrong in our case study. Therefore, another model of cave formation is proposed that does not rely on direct river control over cave locations.
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057, https://doi.org/10.5194/gmd-16-7037-2023, https://doi.org/10.5194/gmd-16-7037-2023, 2023
Short summary
Short summary
The radionuclides 7Be and 10Be are useful tracers for atmospheric transport studies. Here we use the GEOS-Chem to simulate 7Be and 10Be with different production rates: the default production rate in GEOS-Chem and two from the state-of-the-art beryllium production model. We demonstrate that reduced uncertainties in the production rates can enhance the utility of 7Be and 10Be as tracers for evaluating transport and scavenging processes in global models.
Jacob T. H. Anderson, Toshiyuki Fujioka, David Fink, Alan J. Hidy, Gary S. Wilson, Klaus Wilcken, Andrey Abramov, and Nikita Demidov
The Cryosphere, 17, 4917–4936, https://doi.org/10.5194/tc-17-4917-2023, https://doi.org/10.5194/tc-17-4917-2023, 2023
Short summary
Short summary
Antarctic permafrost processes are not widely studied or understood in the McMurdo Dry Valleys. Our data show that near-surface permafrost sediments were deposited ~180 000 years ago in Pearse Valley, while in lower Wright Valley sediments are either vertically mixed after deposition or were deposited < 25 000 years ago. Our data also record Taylor Glacier retreat from Pearse Valley ~65 000–74 000 years ago and support antiphase dynamics between alpine glaciers and sea ice in the Ross Sea.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Preprint withdrawn
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Mathias Vinnepand, Peter Fischer, Ulrich Hambach, Olaf Jöris, Carol-Ann Craig, Christian Zeeden, Barry Thornton, Thomas Tütken, Charlotte Prud'homme, Philipp Schulte, Olivier Moine, Kathryn E. Fitzsimmons, Christian Laag, Frank Lehmkuhl, Wolfgang Schirmer, and Andreas Vött
E&G Quaternary Sci. J., 72, 163–184, https://doi.org/10.5194/egqsj-72-163-2023, https://doi.org/10.5194/egqsj-72-163-2023, 2023
Short summary
Short summary
Loess–palaeosol sequences (LPSs) represent continental and non-aquatic archives providing detailed information on Quaternary environmental and climate changes. We present an integrative approach combining sedimentological, rock magnetic, and bulk geochemical data, as well as information on Sr and Nd isotope composition. The approach adds to a comprehensive understanding of LPS formation including changes in dust composition and associated circulation patterns during Quaternary climate changes.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Giulia Sinnl, Mai Winstrup, Tobias Erhardt, Eliza Cook, Camilla Marie Jensen, Anders Svensson, Bo Møllesøe Vinther, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 18, 1125–1150, https://doi.org/10.5194/cp-18-1125-2022, https://doi.org/10.5194/cp-18-1125-2022, 2022
Short summary
Short summary
A new Greenland ice-core timescale, covering the last 3800 years, was produced using the machine learning algorithm StratiCounter. We synchronized the ice cores using volcanic eruptions and wildfires. We compared the new timescale to the tree-ring timescale, finding good alignment both between the common signatures of volcanic eruptions and of solar activity. Our Greenlandic timescales is safe to use for the Late Holocene, provided one uses our uncertainty estimate.
Aditi Krishna Dave, Lenka Lisa, Giancarlo Scardia, Saida Nigmatova, and Kathryn Elizabeth Fitzsimmons
EGUsphere, https://doi.org/10.5194/egusphere-2022-309, https://doi.org/10.5194/egusphere-2022-309, 2022
Preprint archived
Short summary
Short summary
Mass accumulation rates (MAR’s) from wind blown dust (loess) archives are one of the primary tools to gauge past climate conditions in a region. However, many of these reconstructions are based on individual loess sites, which may not be representative of the regional climate. This study investigates the relationship between loess MAR’s and climate, in the context of topography, sediment availability and supply and past circulation in Central and East Asia.
Jenni L. Hopkins, Janine E. Bidmead, David J. Lowe, Richard J. Wysoczanski, Bradley J. Pillans, Luisa Ashworth, Andrew B. H. Rees, and Fiona Tuckett
Geochronology, 3, 465–504, https://doi.org/10.5194/gchron-3-465-2021, https://doi.org/10.5194/gchron-3-465-2021, 2021
Short summary
Short summary
Here we present the foundation dataset for TephraNZ, a formal, comprehensive, open-access reference dataset of glass-shard compositions for New Zealand tephras. We geochemically characterise 45 eruptive episodes ranging from Kaharoa (ca. 636 cal yr BP) to the Hikuroa Pumice member (ca. 2.0 Ma) from six or more caldera sources, most from the central Taupō Volcanic Zone.
Nathalie Van der Putten, Florian Adolphi, Anette Mellström, Jesper Sjolte, Cyriel Verbruggen, Jan-Berend Stuut, Tobias Erhardt, Yves Frenot, and Raimund Muscheler
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-69, https://doi.org/10.5194/cp-2021-69, 2021
Manuscript not accepted for further review
Short summary
Short summary
In recent decades, Southern Hemisphere westerlies (SHW) moved equator-ward during periods of low solar activity leading to increased winds/precipitation at 46° S, Indian Ocean. We present a terrestrial SHW proxy-record and find stronger SHW influence at Crozet, shortly after 2.8 ka BP, synchronous with a climate shift in the Northern Hemisphere, attributed to a major decline in solar activity. The bipolar response to solar forcing is supported by a climate model forced by solar irradiance only.
Benjamin Läuchli, Paul Christian Augustinus, Leonie Peti, and Jenni Louise Hopkins
Sci. Dril., 29, 19–37, https://doi.org/10.5194/sd-29-19-2021, https://doi.org/10.5194/sd-29-19-2021, 2021
Short summary
Short summary
Auckland Volcanic Field maar lake sediments exhibit enormous potential for the identification and interpretation of short-duration climate events and long-term climate trends as well as intra- and inter-hemispheric climate. In tandem with ongoing work on Orakei maar, the study of Onepoto maar lake sediments will extend this record by providing high-resolution palaeoclimate and palaeoenvironmental reconstructions spanning the last two glacial cycles.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Marius L. Huber, Maarten Lupker, Sean F. Gallen, Marcus Christl, and Ananta P. Gajurel
Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, https://doi.org/10.5194/esurf-8-769-2020, 2020
Short summary
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
Cited articles
Adamiec, G. and Aitken, M.: Dose-rate conversion factors: update, Ancient TL,
16, 37–50, 1998.
Aitchison, J.: The statistical analysis of compositional data, Chapman and
Hall, London, New York, 1986.
Aitken, M. J.: Science-based Dating in Archaeology, Longman, London, New York, 1990.
Allen, J.: Holocene coastal lowlands in NW Europe?: autoeompaction and the
uncertain ground, in: Coastal and Estuarine Enviromnents: sedimentology,
geomorphology and geoarchaeolog, edited by: Pye, K. and Allen, J.,
The Geological Society of London, London, 239–252, 2000.
Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M.,
Pielke Jr., R. A., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F.,
Talley, L. D., and Wallace, J. M.: Abrupt Climate Change, Science,
299, 2005–2010, 2003.
Alloway, B. V., Lowe, D. J., Barrell, D. J. A., Newnham, R. M., Almond, P.
C., Augustinus, P. C., Bertler, N. A. N., Carter, L., Litchfield, N. J.,
McGlone, M. S., Shulmeister, J., Vandergoes, M. J., Williams, P. W., and
NZ-INTIMATE members: Towards a Climate Event Stratigraphy for New Zealand
over the past 30000 years (NZ-INTIMATE project), J. Quat. Sci., 22,
9–35, https://doi.org/10.1002/Jqs.1079, 2007.
Almond, P. C., Shanhun, F. L., Rieser, U., and Shulmeister, J.: An OSL, radiocarbon and tephra isochron-based chronology for Birdlings Flat loess at Ahuriri Quarry, Banks Peninsula, Canterbury, New Zealand, Quatern. Geochronol., 2, 4–8, https://doi.org/10.1016/j.quageo.2006.06.002, 2007.
Augustinus, P., Cochran, U., Kattel, G., D'Costa, D., and Shane, P.: Late
Quaternary paleolimnology of Onepoto maar, Auckland, New Zealand:
Implications for the drivers of regional paleoclimate, Quat. Int., 253,
18–31, https://doi.org/10.1016/j.quaint.2011.02.028, 2012.
Augustinus, P. C.: NZ-Maars: Extracting High Resolution Paleoclimate Records
from Maar Crater Lakes, Auckland, New Zealand, Past Clim. Dyn. A South.
Perspect., 15, 18–20, 2007.
Augustinus, P. C.: Probing the history of New Zealand's Orakei maar, EOS T. Am. Geophys. Un., 97, 1–7, https://doi.org/10.1029/2016EO059227,
2016.
Barrell, D. J. A., Almond, P. C., Vandergoes, M. J., Lowe, D. J., and
Newnham, R. M.: A composite pollen-based stratotype for inter-regional
evaluation of climatic events in New Zealand over the past 30 000 years
(NZ-INTIMATE project), Quat. Sci. Rev., 74, 4–20,
https://doi.org/10.1016/j.quascirev.2013.04.002, 2013.
Bird, M. I., Fifield, L. K., Chua, S., and Goh, B.: Calculating Sediment
Compaction For Radiocarbon Dating Of Intertidal Sediments, Radiocarbon,
46, 421–435, 2004.
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon
sequences, Quat. Geochronol., 5, 512–518,
https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Blaauw, M.: Out of tune: The dangers of aligning proxy archives, Quat. Sci.
Rev., 36, 38–49, https://doi.org/10.1016/j.quascirev.2010.11.012, 2012.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using
an autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/11-BA618, 2011.
Blaauw, M. and Christen, J. A.: rbacon: Age-Depth Modelling using Bayesian Statistics, R package version 2.4.2, available at: https://CRAN.R-project.org/package=rbacon, last access: 14 December 2020.
Bleil, U. and Gard, G.: Chronology and correlation of Quaternary
magnetostratigraphy and nanno- fossil biostratigraphy in Norwegian-Greenland
Sea sediments, Geol. Rundschau, 78, 1173–1187, 1989.
Bøtter-Jensen, L.: Luminescence techniques: Instrumentation and methods,
Radiat. Meas., 27, 749–768, https://doi.org/10.1016/S1350-4487(97)00206-0, 1997.
Bøtter-Jensen, L., Mejdahl, V., and Murray, A. S.: New light on OSL, Quat.
Sci. Rev., 18, 303–309, https://doi.org/10.1016/S0277-3791(98)00063-8, 1999.
Bøtter-Jensen, L., Bulur, E., Duller, G. A. T., and Murray, A. S.:
Advances in luminescence measurement systems, Radiat. Meas., 32, 523–528, 2000.
Bourlès, D., Raisbeck, G. M., and Yiou, F.: 10Be and 9Be in marine sediments and their potential for dating, Geochim. Cosmochim. Act., 53, 443–452, 1989.
Broecker, W. S.: Does the Trigger for Abrupt Climate Change Reside in the
Ocean or in the Atmosphere?, Science, 300, 1519–1522, 2003.
Bronk Ramsey, C.: Bayesian Analysis of Radiocarbon Dates, Radiocarbon,
51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Buylaert, J. P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and
Sohbati, R.: A robust feldspar luminescence dating method for Middle and
Late Pleistocene sediments, Boreas, 41, 435–451,
https://doi.org/10.1111/j.1502-3885.2012.00248.x, 2012.
Carolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau,
S., Malang, J.. and Tuen, A. A.: Varied Response of Western Pacific Hydrology
to Climate Forcings over the Last Glacial Period, Science, 340,
1564–1567, 2013.
Cassata, W. S., Singer, B. S., and Cassidy, J.: Laschamp and Mono Lake
geomagnetic excursions recorded in New Zealand, Earth Planet. Sc. Lett.,
268, 76–88, https://doi.org/10.1016/j.epsl.2008.01.009, 2008.
Channell, J. E. T., Hodell, D. A., and Lehman, B.: Relative geomagnetic
paleointensity and δ18O at ODP Site 983 (Gardar Drift, North
Atlantic) since 350 ka, Earth Planet. Sc. Lett., 153, 103–118, 1997.
Channell, J. E. T., Stoner, J. S., Hodell, D. A., and Charles, C. D.:
Geomagnetic paleointensity for the last 100 kyr from the sub-antarctic South
Atlantic: a tool for inter-hemispheric correlation, Earth Planet. Sc.
Lett., 175, 145–160, 2000.
Channell, J. E. T., Xuan, C., and Hodell, D. A.: Stacking paleointensity and
oxygen isotope data for the last 1.5 Myr (PISO-1500), Earth Planet. Sc.
Lett., 283, 14–23, https://doi.org/10.1016/j.epsl.2009.03.012, 2009.
Child, D., Elliott, G., Mifsud, C., Smith, A. M., and Fink, D.: Sample
processing for earth science studies at ANTARES, Nucl. Instruments Methods
Phys. Res. B, 172, 856–860, 2000.
Christen, J. A. and Pérez E, S.: A New Robust Statistical Model for
Radiocarbon Data, Radiocarbon, 51, 1047–1059,
https://doi.org/10.1017/s003382220003410x, 2009.
Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J.,
Alfimov, V., Synal, H.-A., and Synal, H.: The ETH Zurich AMS facilities:
Performance parameters and reference materials, Nucl. Inst. Methods Phys.
Res. B, 294, 29–38, https://doi.org/10.1016/j.nimb.2012.03.004, 2013.
Czymzik, M., Muscheler, R., Brauer, A., Adolphi, F., Ott, F., Kienel, U.,
Dräger, N., Słowiński, M., Aldahan, A., and Possnert, G.: Solar
cycles and depositional processes in annual 10Be from two varved lake
sediment records, Earth Planet. Sc. Lett., 428, 44–51,
https://doi.org/10.1016/j.epsl.2015.07.037, 2015.
Danišík, M., Shane, P., Schmitt, A. K., Hogg, A., Santos, G. M.,
Storm, S., Evans, N. J., Keith Fifield, L., and Lindsay, J. M.: Re-anchoring
the late Pleistocene tephrochronology of New Zealand based on concordant
radiocarbon ages and combined 238U/230Th disequilibrium and (U-Th) ∕ He zircon
ages, Earth Planet. Sc. Lett., 349–350, 240–250,
https://doi.org/10.1016/j.epsl.2012.06.041, 2012.
Danišík, M., Lowe, D. J., Schmitt, A. K., Friedrichs, B., Hogg, A.
G., and Evans, N. J.: Sub-millennial eruptive recurrence in the silicic
Mangaone Subgroup tephra sequence , New Zealand , from Bayesian modelling of
zircon double-dating and radiocarbon ages, Quat. Sci. Rev., 246, 106517,
https://doi.org/10.1016/j.quascirev.2020.106517, 2020.
Doerschner, N., Hernandez, M., and Fitzsimmons, K. E.: Sources of variability
in single grain dose recovery experiments: Insights from Moroccan and
Australian samples, Ancient TL, 34, 14–25, 2016.
Dunbar, N. W., Iverson, N. A., Van Eaton, A. R., Sigl, M., Alloway, B. V.,
Kurbatov, A. V., Mastin, L. G., McConnell, J. R., and Wilson, C. J. N.: New
Zealand supereruption provides time marker for the Last Glacial Maximum in
Antarctica, Sci. Rep., 7, 3–10, https://doi.org/10.1038/s41598-017-11758-0, 2017.
Egli, R.: Characterization of individual rock magnetic components by
analysis of remanence curves, 1. Unmixing natural sediments, Stud. Geophys.
Geod., 48, 391–446, 2004.
Elsasser, W., Ney, E. P., and Winckler, J. R.: Cosmic-Ray intensity and
geomagnetism, Nature, 178, 1226–1227, 1956.
EPICA Community Members: One-to-one coupling of glacial climate variability
in Greenland and Antarctica, Nature, 444, 195–198,
https://doi.org/10.1038/nature05301, 2006.
Fink, D., Hotchkis, M., Hua, Q., Jacobsen, G., Smith, A. M., Zoppi, U.,
Child, D., Mifsud, C., Van Der Gaast, H., Williams, A., and Williams, M.: The
ANTARES AMS facility at ANSTO, Nucl. Instruments Methods Phys. Res. B,
223–224, 109–115, https://doi.org/10.1016/j.nimb.2004.04.025, 2004.
Flude, S. and Storey, M.: 40Ar ∕ 39Ar age of the Rotoiti Breccia and Rotoehu
Ash, Okataina Volcanic Complex, New Zealand, and identification of
heterogeneously distributed excess40Ar in supercooled crystals, Quat.
Geochronol., 33, 13–23, https://doi.org/10.1016/j.quageo.2016.01.002, 2016.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression, 2nd edn.,
SAGE Publications, Thousand Oaks, California, USA, 2011.
Frank, M., Schwarz, B., Baumann, S., Kubik, P. W., Suter, M., and Mangini,
A.: A 200 kyr record of cosmogenic radionuclide production rate and
geomagnetic field intensity from 10Be in globally stacked deep-sea
sediments, Earth Planet. Sc. Lett., 149, 121–129,
https://doi.org/10.1016/S0012-821X(97)00070-8, 1997.
Frank, M., Backman, J., Jakobsson, M., Moran, K., Regan, M. O., King, J.,
Haley, B. A., Kubik, P. W., and Garbe-Schönberg, D.: Beryllium isotopes
in central Arctic Ocean sediments over the past 12.3 million years:
Stratigraphic and paleoclimatic implications, Paleoceanography, 23, 1–12,
https://doi.org/10.1029/2007PA001478, 2008.
Froggatt, P. C. and Lowe, D. J.: A review of late quaternary silicic and
some other tephra formations from New Zealand: Their stratigraphy,
nomenclature, distribution, volume, and age, New Zeal. J. Geol. Geophys.,
33, 89–109, https://doi.org/10.1080/00288306.1990.10427576, 1990.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J.
M.: Optical Dating of Single and Multiple Grains of Quartz From Jinmium Rock
Shelter, Northern Australia: Part I, Experimental Design and Statistical
Models, Archaeometry, 41, 339–364, 1999.
Giorgino, T.: Computing and Visualizing Dynamic Time Warping Alignments in this reference of Giorgino 2009: The dtw Package, J. Stat. Softw., 31, 1–24, 2009.
Guerin, G., Mercier, N., and Adamiec, G.: Dose-rate conversion factors:
update, Ancient TL, 29, 5–8, 2011.
Hagen, C. J., Reilly, B. T., Stoner, J. S., and Creveling, J. R.: Dynamic
Time Warping of Paleomagnetic Secular Variation Data, Geophys. J. Int.,
1–45, 2020.
Hatfield, R. G., Stoner, J. S., Solada, K. E., Morey, A. E., Woods, A.,
Chen, C. Y., McGee, D., Abbott, M. B., and Rodbell, D. T.: Paleomagnetic
Constraint of the Brunhes Age Sedimentary Record From Lake Junín, Peru,
Front. Earth Sci., 8, 1–18, https://doi.org/10.3389/feart.2020.00147, 2020.
Hay, C. C., Creveling, J. R., Hagen, C. J., Maloof, A. C., and Huybers, P.: A
library of early Cambrian chemostratigraphic correlations from a
reproducible algorithm, Geology, 47, 457–460, 2019.
Hayward, B. W., Morley, M. S., Sabaa, A. T., Grenfell, H. R., Daymond-King,
R., Molloy, C., Shane, P. A., and Augustinus, P. A.: Fossil Record Of The
Post-Glacial Marine Breaching Of Auckland's Volcanic Maar Craters, Rec.
Auckl. Museum, 45, 79–99, 2008.
Hayward, C. M. and Hayward, B. W.: Human Impact On Orakei Basin, Auckland,
Tane, 37, 137–152, 1999.
Heiken, G.: Morphology and Petrography of Volcanic Ashes, Geol. Soc. Am.
Bull., 83, 1961–1988, 1972.
Hessell, J. W. D.: The climate and weather of the Auckland region, New Zealand Meteorological Service,
1988.
Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S. M.,
Southon, J., Bayliss, A., Blackwell, P. G., Boswijk, G., Bronk Ramsey, C.,
Pearson, C., Petchey, F., Reimer, P., Reimer, R., and Wacker, L.: Shcal20
Southern Hemisphere Calibration, 0–55 000 YEARS CAL BP, Radiocarbon, 62,
759–778, https://doi.org/10.1017/RDC.2020.59, 2020.
Hopkins, J. L., Millet, M. A., Timm, C., Wilson, C. J. N., Leonard, G. S.,
Palin, J. M., and Neil, H.: Tools and techniques for developing tephra
stratigraphies in lake cores: A case study from the basaltic Auckland
Volcanic Field, New Zealand, Quat. Sci. Rev., 123, 58–75,
https://doi.org/10.1016/j.quascirev.2015.06.014, 2015.
Hopkins, J. L., Wilson, C. J. N., Millet, M. A., Leonard, G. S., Timm, C.,
McGee, L. E., Smith, I. E. M., and Smith, E. G. C.: Multi-criteria
correlation of tephra deposits to source centres applied in the Auckland
Volcanic Field, New Zealand, Bull. Volcanol., 79, 55,
https://doi.org/10.1007/s00445-017-1131-y, 2017.
Hurnard, S. M.: Auckland's climate, in: Natural History of Auckland: an
Introduction, edited by: Brook, P. J., Auckland Institute and
Museum, Auckland, 31–34, 1979.
Ingham, E., Turner, G. M., Conway, C. E., Heslop, D., Roberts, A. P.,
Leonard, G., Townsend, D., and Calvert, A.: Volcanic records of the Laschamp
geomagnetic excursion from Mt Ruapehu, New Zealand, Earth Planet. Sc. Lett., 472, 131–141, https://doi.org/10.1016/j.epsl.2017.05.023, 2017.
Kemp, C. W., Tibby, J., Arnold, L. J., Barr, C., Gadd, P. S., Marshall, J.
C., Mcgregor, G. B., and Jacobsen, G. E.: Climates of the last three
interglacials in subtropical eastern Australia inferred from wetland
sediment geochemistry, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
538, 109463, https://doi.org/10.1016/j.palaeo.2019.109463, 2020.
Kidson, J. W.: An Analysis of New Zealand Synoptic Types and Their Use in
Defining Weather Regimes, Int. J. Climatol., 20, 299–316, 2000.
King, R. F.: The Remanent Magnetism Of Artificially Deposited Sediments,
eophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 7, 115–134,
https://doi.org/10.1111/j.1365-246X.1955.tb06558.x, 1955.
Kirschvink, J. L.: The least-squares line and plane and the analysis of
palaeomagnetic data, Geophys. J. Int., 62, 699–718, 1980.
Laj, C. and Channell, J. E. T.: Geomagnetic Excursions, in: Treatise on
Geophysics, Elsevier B.V., 343–383, 2015.
Laj, C., Kissel, C., and Beer, J.: High Resolution Global Paleointensity
Stack Since 75 kyr (GLOPIS-75) Calibrated to Absolute Values, in: Timescales
of the paleomagnetic field, vol. 145, edited by: Channell, J. E. T.,
Kent, D. V., Lowrie, W., and Meert, J. G., American Geophysical Union,
Washington, DC, 255–265, 2004.
Laj, C., Guillou, H., and Kissel, C.: Dynamics of the earth magnetic field in
the 10–75 kyr period comprising the Laschamp and Mono Lake excursions: New
results from the French Chaîne des Puys in a global perspective, Earth Planet. Sc. Lett., 387, 184–197, https://doi.org/10.1016/j.epsl.2013.11.031, 2014.
Lascu, I., Feinberg, J. M., Dorale, J. A., Cheng, H., and Edwards, R. L.: Age
of the Laschamp excursion determined by U-Th dating of a speleothem
geomagnetic record from North America, Geology, 44, 139–142,
https://doi.org/10.1130/G37490.1, 2016.
Leonard, G. S., Calvert, A. T., Hopkins, J. L., Wilson, C. J. N., Smid, E.
R., Lindsay, J. M., and Champion, D. E.: High-precision 40Ar ∕ 39Ar dating of
Quaternary basalts from Auckland Volcanic Field, New Zealand, with
implications for eruption rates and paleomagnetic correlations, J. Volcanol.
Geotherm. Res., 343, 60–74, https://doi.org/10.1016/j.jvolgeores.2017.05.033, 2017.
Lézine, A., Grafenstein, U. Von, Andersen, N., Belmecheri, S., Bordon,
A., Caron, B., and Cazet, J.: Lake Ohrid, Albania, provides an exceptional
multi-proxy record of environmental changes during the last glacial –
interglacial cycle, Palaeogeogr. Palaeoclimatol. Palaeoecol., 287, 116–127,
https://doi.org/10.1016/j.palaeo.2010.01.016, 2010.
Lindsay, J., Leonard, G., Smid, E., and Hayward, B.: Age of the Auckland
Volcanic Field: a review of existing data, New Zeal. J. Geol. Geophys.,
54, 379–401, https://doi.org/10.1080/00288306.2011.595805, 2011.
Liu, E. J., Cashman, K. V., and Rust, A. C.: Optimising shape analysis to
quantify volcanic ash morphology, GeoResJ, 8, 14–30,
https://doi.org/10.1016/j.grj.2015.09.001, 2015.
Liu, J., Nowaczyk, N. R., Panovska, S., Korte, M., and Arz, H. W.: The
Norwegian-Greenland Sea, the Laschamps, and the Mono Lake Excursions
Recorded in a Black Sea Sedimentary Sequence, J. Geophys. Res.-Sol. Ea.,
125, 1–22, https://doi.org/10.1029/2019JB019225, 2020.
Loame, R. C., Villamor, P., Lowe, D. J., Milicich, S. D., Pittari, A.,
Barker, S. L. L., Rae, A., Gomez-vasconcelos, M. G., Martinez-Martos, M., and Ries,
W. F.: Using paleoseismology and tephrochronology to reconstruct fault
rupturing and hydrothermal activity since ca. 40 ka in Taupo Rift, New
Zealand, Quat. Int., 500, 52–70, https://doi.org/10.1016/j.quaint.2019.02.031, 2019.
Løvlie, R.: Palaeomagnetic excursions during the last
interglacial/glacial cycle: A synthesis, Quat. Int., 3/4, 5–11, 1989.
Lowe, D. J.: Tephrochronology and its application: A review, Quat.
Geochronol., 6, 107–153, https://doi.org/10.1016/j.quageo.2010.08.003, 2011.
Lowe, D. J., Blaauw, M., Hogg, A. G., and Newnham, R. M.: Ages of 24
widespread tephras erupted since 30 000 years ago in New Zealand, with
re-evaluation of the timing and palaeoclimatic implications of the
Lateglacial cool episode recorded at Kaipo bog, Quat. Sci. Rev., 74,
170–194, https://doi.org/10.1016/j.quascirev.2012.11.022, 2013.
Lowick, S. E. and Preusser, F.: A method for retrospectively calculating the
water content for silt-dominated desiccated core samples, Ancient TL, 27,
9–14, 2009.
Lund, S., Schwartz, M., and Stott, L.: Long-term palaeomagnetic secular
variation and excursions from the western Equatorial Pacific Ocean (MIS2-4),
Geophys. J. Int., 209, 587–596, https://doi.org/10.1093/gji/ggx029, 2017.
Mauz, B. and Lang, A.: Removal of the feldspar-derived luminescence
component from polymineral fine silt samples for optical dating
applications: evaluation of chemical treatment protocols and quality control
procedures, Ancient TL, 22, 1–8, 2004.
McHargue, L. R., Damon, P. E., and Donahue, D. J.: Enhanced cosmic-ray
production of 10Be coincident with the Mono Lake and Laschamp Geomagnetic
Excursions, Geophys. Res. Lett., 22, 659–662, https://doi.org/10.1029/95GL00169,
1995.
Mejdahl, V.: Thermoluminescence Dating: Beta-Dose Attenuation in Quartz
Grains, Archaeometry, 21, 61–72, 1979.
Ménabréaz, L., Thouveny, N., Bourlès, D. L., Deschamps, P.,
Hamelin, B., and Demory, F.: The Laschamp geomagnetic dipole low expressed as
a cosmogenic 10Be atmospheric overproduction at ∼ 41 ka, Earth Planet. Sc. Lett., 312, 305–317, https://doi.org/10.1016/j.epsl.2011.10.037,
2011.
Mochizuki, N., Tsunakawa, H., Shibuya, H., Cassidy, J., and Smith, I. E. M.:
Palaeointensities of the Auckland geomagnetic excursions by the LTD-DHT Shaw
method, Phys. Earth Planet. Int., 154, 168–179,
https://doi.org/10.1016/j.pepi.2005.09.005, 2006.
Molloy, C., Shane, P., and Augustinus, P.: Eruption recurrence rates in a
basaltic volcanic field based on tephralayers in maar sediments:
Implications for hazards in the Auckland volcanic field, Bull. Geol. Soc.
Am., 121, 1666–1677, https://doi.org/10.1130/B26447.1, 2009.
Muscheler, R., Beer, J., Kubik, P. W., and Synal, H.-A.: Geomagnetic field
intensity during the last 60 000 years based on 10Be and 36Cl from the
Summit ice cores and 14C, Quat. Sci. Rev., 24, 1849–1860,
https://doi.org/10.1016/j.quascirev.2005.01.012, 2005.
Needham, A. J., Lindsay, J. M., Smith, I. E. M., Augustinus, P., and Shane,
P. A.: Sequential eruption of alkaline and sub-alkaline magmas from a small
monogenetic volcano in the Auckland Volcanic Field, New Zealand, J.
Volcanol. Geotherm. Res., 201, 126–142,
https://doi.org/10.1016/j.jvolgeores.2010.07.017, 2011.
Newnham, R., Lowe, D. J., Gehrels, M., and Augustinus, P.: Two-step human–environmental impact history for northern New Zealand linked to
late-Holocene climate change, Holocene, 28, 1093–1106, 2018.
NGRIP Members: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151,
2004.
Nilsson, A., Muscheler, R., Snowball, I., Aldahan, A., Possnert, G.,
Augustinus, P., Atkin, D., and Stephens, T.: Multi-proxy identification of
the Laschamp geomagnetic field excursion in Lake Pupuke, New Zealand, Earth Planet. Sc. Lett., 311, 155–164, https://doi.org/10.1016/j.epsl.2011.08.050,
2011.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C.,
and Mcaninch, J.: Absolute calibration of 10Be AMS standards Kunihiko, Nucl.
Instruments Methods Phys. Res. B, 258, 403–413,
https://doi.org/10.1016/j.nimb.2007.01.297, 2007.
Nowaczyk, N. R. and Baumann, M.: Combined high-resolution
magnetostratigraphy and nannofossil biostratigraphy for late Quaternary
Arctic Ocean sediments, Deep-Sea Res., 39, S567–S601, 1992.
Nowaczyk, N. R. and Frederichs, T. W.: Geomagnetic events and relative
palaeointensity variations during the past 300 ka as recorded in Kolbeinsey
Ridge sediments, Iceland Sea?: indication for a strongly variable
geomagnetic field, Int. J. Earth Sci., 88, 116–131, 1999.
Nowaczyk, N. R., Frederichs, T. W., Eisenhauer, A., and Gard, G.:
Magnetostratigraphic data from late Quaternary sediments from the Yermak
Plateau , Arctic Ocean: evidence for four geomagnetic polarity events within
the last 170 Ka of the Brunhes Chron, Geophys. J. Int., 117, 453–471, 1994.
Nowaczyk, N. R., Antonow, M., Knies, J., and Spielhagen, R. F.: Further rock
magnetic and chronostratigraphic results on reversal excursions during the
last 50 ka as derived from northern high latitudes and discrepancies in
precise AMS 14C dating, Geophys. J. Int., 155, 1065–1080, 2003.
Nowaczyk, N. R., Frank, U., Kind, J., and Arz, H. W.: A high-resolution
paleointensity stack of the past 14 to 68 ka from Black Sea sediments, Earth Planet. Sc. Lett., 384, 1–16, https://doi.org/10.1016/j.epsl.2013.09.028, 2013.
Olley, J. M., Pietsch, T., and Roberts, R. G.: Optical dating of Holocene
sediments from a variety of geomorphic settings using single grains of
quartz, Geomorphology, 60, 337–358,
https://doi.org/10.1016/j.geomorph.2003.09.020, 2004.
Osete, M.-L., Martin-Chivelet, J., Rossi, C., Edwards, R. L., Egli, R.,
Munoz-Garcia, M. B., Wang, X., Pavon-Carrasco, F. J., and Heller, F.: The
Blake geomagnetic excursion recorded in a radiometrically dated speleothem,
Earth Planet. Sc. Lett., 353–354, 173–181,
https://doi.org/10.1016/j.epsl.2012.07.041, 2012.
Pepper, A. C., Shulmeister, J., Nobes, D. C., and Augustinus, P. A.: Possible
ENSO signals prior to the Last Glacial Maximum, during the last deglaciation
and the early Holocene, from New Zealand, Geophys. Res. Lett., 31, 1–4,
https://doi.org/10.1029/2004GL020236, 2004.
Peters, C. and Thompson, R.: Magnetic identification of selected natural
iron oxides and sulphides, J. Magn. Magn. Mater., 183, 365–374, 1998.
Peti, L. and Augustinus, P. C.: Stratigraphy and sedimentology of the Orakei
maar lake sediment sequence (Auckland Volcanic Field , New Zealand), Sci.
Drill., 25, 47–56, 2019.
Peti, L., Gadd, P. S., Hopkins, J. L., and Augustinus, P. C.: Itrax μ-XRF core scanning for rapid tephrostratigraphic analysis: a case study
from the Auckland Volcanic Field maar lakes, J. Quat. Sci., 1–12,
https://doi.org/10.1002/jqs.3133, 2019.
Peti, L., Nilsson, A., Muscheler, R., Fitzsimmons, K. E., Fink, D., Fujioka, T., Mifsud, C., Hopkins, J. L., Christl, M., andAugustinus, P. C.: Beryllium-10 in sediment cores OB16A and OB16B from Orakei maar, Auckland, New Zealand, PANGAEA, https://doi.org/10.1594/PANGAEA.920773, 2020a.
Peti, L., Nilsson, A., Muscheler, R., Fitzsimmons, K. E., Fink, D., Fujioka, T., Mifsud, C., Hopkins, J. L., Christl, M., andAugustinus, P. C.: Rhyolitic tephra composition in sediment cores OB16A and OB16B from Orakei maar, Auckland, New Zealand, PANGAEA, https://doi.org/10.1594/PANGAEA.921121, 2020b.
Peti, L., Nilsson, A., Muscheler, R., Fitzsimmons, K. E., Fink, D., Fujioka, T., Mifsud, C., Hopkins, J. L., Christl, M., andAugustinus, P. C.: Basaltic tephra composition in sediment cores OB16A and OB16B from Orakei maar, Auckland, New Zealand, PANGAEA, https://doi.org/10.1594/PANGAEA.921122, 2020c.
Peti, L., Nilsson, A., Muscheler, R., Fitzsimmons, K. E., Fink, D., Fujioka, T., Mifsud, C., Hopkins, J. L., Christl, M., and Augustinus, P. C.: Paleomagnetic data from sediment cores OB16A and OB16B from Orakei maar, Auckland, New Zealand, PANGAEA, https://doi.org/10.1594/PANGAEA.921134, 2020d.
Philippsen, B.: The freshwater reservoir effect in radiocarbon dating,
Herit. Sci., 1, 1–19, https://doi.org/10.1186/2050-7445-1-24, 2013.
Pickarski, N., Kwiecien, O., Djamali, M., and Litt, T.: Vegetation and
environmental changes during the last interglacial in eastern Anatolia (Turkey): a new high-resolution pollen record from Lake Van, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 435, 145–158,
https://doi.org/10.1016/j.palaeo.2015.06.015, 2015.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates
for luminescence and ESR dating: Large depths and long-term time variations,
Radiat. Meas., 23, 497–500, https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, available
at: https://www.r-project.org, last access: 30 October 2020.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer,
H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp,
T., Seierstad, I. K., Peder Steffensen, J., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quat. Sci. Rev., 106, 14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Rees-Jones, J.: Optical dating of young sediments using fine-grain quartz,
Ancient TL, 13, 9–14, 1995.
Rees-Jones, J. and Tite, M. S.: Optical Dating Results for British
Archaeological Sediments, Archaeometry, 39, 177–187,
https://doi.org/10.1111/j.1475-4754.1997.tb00797.x, 1997.
Roberts, H. M., Bryant, C. L., Huws, D. G., and Lamb, H. F.: Generating long chronologies for lacustrine sediments using luminescence dating: a 250,000 year record from Lake Tana, Ethiopia, Quaternary Sci. Rev., 202, 66–77, https://doi.org/10.1016/j.quascirev.2018.10.037, 2018.
Roperch, P., Bonhommet, N., and Levi, S.: Paleointensity of the earth's
magnetic field during the Laschamp excursion and its geomagnetic
implications, Earth Planet. Sc. Lett., 88, 209–219, 1988.
Seelos, K., Sirocko, F., and Dietrich, S.: A continuous high-resolution dust
record for the reconstruction of wind systems in central Europe (Eifel,
Western Germany) over the past 133 ka, Geophys. Res. Lett., 36, L20712,
https://doi.org/10.1029/2009GL039716, 2009.
Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J.
E., Dettman, D. L., Peck, J. A., Scholz, C. A., and King, J. W.: Atlantic
Forcing of Persistent Drought in West Africa, Science, 324,
377–380, 2009.
Shane, P.: Tephrochronology: a New Zealand case study,
Earth-Sci. Rev., 49, 223–259, 2000.
Shane, P. and Hoverd, J.: Distal record of multi-sourced tephra in Onepoto Basin, Auckland, New Zealand: Implications for volcanic chronology, frequency and hazards, Bull. Volcanol., 64, 441–454, 2002.
Shane, P. and Sandiford, A.: Paleovegetation of marine isotope stages 4 and
3 in Northern New Zealand and the age of the widespread Rotoehu tephra,
Quat. Res., 59, 420–429, https://doi.org/10.1016/S0033-5894(03)00044-9, 2003.
Simon, Q., St-Onge, G., and Hillaire-Marcel, C.: Late Quaternary
chronostratigraphic framework of deep Baffin Bay glaciomarine sediments from
high-resolution paleomagnetic data, Geochem. Geophy. Geosy.,
13, 1–24, 2012.
Simon, Q., Bourlès, D. L., Bassinot, F., Nomade, S., Marino, M.,
Ciaranfi, N., Girone, A., Maiorano, P., Thouveny, N., Choy, S., Dewilde, F.,
Scao, V., Isguder, G., and Blamart, D.: Authigenic 10Be/9Be ratio signature
of the Matuyama–Brunhes boundary in the Montalbano Jonico marine
succession, Earth Planet. Sc. Lett., 460, 255–267,
https://doi.org/10.1016/j.epsl.2016.11.052, 2016.
Simon, Q., Ledru, M.-P., Oliveira Sawakuchi, A., Favier, C., Mineli, T. D.,
Grohmann, C. H., Guedes, M., Bard, E., Thouveny, N., Garcia, M., Tachikawa,
K., Rodríguez-Zorro, P. A., and ASTER Team: Chronostratigraphy of a
1.5 ± 0.1 Ma composite sedimentary record from Colônia basin (SE
Brazil): Bayesian modeling based on paleomagnetic, authigenic 10Be/9Be, radiocarbon and luminescence dating, Quat. Geochronol., 58, 101081, https://doi.org/10.1016/j.quageo.2020.101081, 2020a.
Simon, Q., Thouveny, N., Bourlès, D. L., and Valet, J.: Cosmogenic 10Be production records reveal dynamics of geomagnetic dipole moment (GDM) over the Laschamp excursion (20–60 ka), Earth Planet. Sc. Lett., 550,
116547, https://doi.org/10.1016/j.epsl.2020.116547, 2020b.
Smith, J. D. and Foster, J. H.: Geomagnetic Reversal in Brunhes Normal
Polarity Epoch, Science, 163,
565–567, 1969.
Stanley, D. J. and Hait, A. K.: Deltas, radiocarbon dating, and measurements
of sediment storage and subsidence, Geology, 28, 295–298, 2000.
Stanton, T., Nilsson, A., Snowball, I., and Muscheler, R.: Assessing the
reliability of Holocene relative palaeointensity estimates: a case study
from Swedish varved lake sediments, Geophys. J. Int., 187, 1195–1214,
https://doi.org/10.1111/j.1365-246X.2011.05049.x, 2011.
Stephens, T., Atkin, D., Cochran, U., Augustinus, P., Reid, M., Lorrey, A.,
Shane, P., and Street-Perrott, A.: A diatom-inferred record of reduced
effective precipitation during the Last Glacial Coldest Phase (28.8–18.0 cal kyr BP) and increasing Holocene seasonality at Lake Pupuke, Auckland, New
Zealand, J. Paleolimnol., 48, 801–817, https://doi.org/10.1007/s10933-012-9645-y,
2012.
Stockhecke, M., Kwiecien, O., Vigliotti, L., Anselmetti, F. S., Beer, J.,
Çağatay, M. N., Channell, J. E. T., Kipfer, R., Lachner, J., Litt,
T., Pickarski, N., and Sturm, M.: Chronostratigraphy of the 600 000 year old
continental record of Lake Van (Turkey), Quat. Sci. Rev., 104, 8–17,
https://doi.org/10.1016/j.quascirev.2014.04.008, 2014.
Tauxe, L.: Sedimentary records of relative paleointensity of the geomagnetic
field: Theory and practice, Rev. Geophys., 31, 319–354, 1993.
Thiel, C., Buylaert, J. P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto,
S., and Frechen, M.: Luminescence dating of the Stratzing loess profile
(Austria) – Testing the potential of an elevated temperature post-IR IRSL
protocol, Quat. Int., 234, 23–31, https://doi.org/10.1016/j.quaint.2010.05.018,
2011.
Thiel, C., Horváth, E., and Frechen, M.: Revisiting the loess/palaeosol
sequence in Paks, Hungary: A post-IR IRSL based chronology for the “Young
Loess Series”, Quat. Int., 319, 88–98, https://doi.org/10.1016/j.quaint.2013.05.045,
2014.
Thompson, R. and Oldfield, F.: Environmental magnetism, 1st edn., Allen &
Unwin, London, 1986.
Thouveny, N., Carcaillet, J., Moreno, E., Leduc, G., and Nérini, D.:
Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP:
a stacked record from sedimentary sequences of the Portuguese margin, Earth Planet. Sc. Lett., 219, 377–396, https://doi.org/10.1016/S0012-821X(03)00701-5, 2004.
Tric, E., Laj, C., Valet, J. P., Tucholka, P., Paterne, M., and Guichard, F.:
The Blake geomagnetic event: transition geometry, dynamical characteristics
and geomagnetic significance, Earth Planet. Sc. Lett., 102, 1–13,
https://doi.org/10.1016/0012-821X(91)90013-8, 1991.
Valet, J.-P. and Meynadier, L.: A comparison of different techniques for
relative paleointensity, Geophys. Res. Lett., 25, 89–92, 1998.
van den Boogaart, K. G., Tolosana-Delgado, R., and Bren, M.: compositions:
Compositional Data Analysis R package version 1.40-2, available
at: https://cran.r-project.org/package=compositions (last access: 10 July 2020), 2018.
Vandergoes, M. J., Newnham, R. M., Preusser, F., Hendy, C. H., Lowell, T. V,
Fitzsimons, S. J., Hogg, A. G., Kasper, H. U., and Schluchter, C.: Regional
insolation forcing of late Quaternary climate change in the Southern
Hemisphere, Nature, 436, 242–245, https://doi.org/10.1038/nature03826, 2005.
Vandergoes, M. J., Hogg, A. G., Lowe, D. J., Newnham, R. M., Denton, G. H.,
Southon, J., Barrell, D. J. A., Wilson, C. J. N., McGlone, M. S., Allan, A.
S. R., Almond, P. C., Petchey, F., Dabell, K., Dieffenbacher-Krall, A. C.,
and Blaauw, M.: A revised age for the Kawakawa/Oruanui tephra, a key marker
for the Last Glacial Maximum in New Zealand, Quat. Sci. Rev., 74, 195–201,
https://doi.org/10.1016/j.quascirev.2012.11.006, 2013.
Wagner, G., Masarik, J., Beer, J., Baumgartner, S., Imboden, D., Kubik, P.
W., Synal, H.-A., and Suter, M.: Reconstruction of the geomagnetic field
between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core,
Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater.
Atoms, 172, 597–604, https://doi.org/10.1016/S0168-583X(00)00285-8, 2000.
White, D. A., Fink, D., Post, A. L., Simon, K., Galton-Fenzi, B., Foster,
S., Fujioka, T., Jeromson, M. R., Blaxell, M., and Yokoyama, Y.: Beryllium
isotope signatures of ice shelves and sub-ice shelf circulation, Earth Planet. Sc. Lett., 505, 86–95, 2019.
Wilcken, K. M., Fujioka, T., Fink, D., Fülöp, R. H., Codilean, A.
T., Simon, K., Mifsud, C., and Kotevski, S.: SIRIUS Performance: 10Be, 26Al
and 36Cl measurements at ANSTO, Nucl. Inst . Methods Phys. Res. B,
455, 300–304, https://doi.org/10.1016/j.nimb.2019.02.009, 2019.
Willenbring, J. K. and von Blanckenburg, F.: Meteoric cosmogenic
Beryllium-10 adsorbed to river sediment and soil: Applications for
Earth-surface dynamics, Earth-Sci. Rev., 98, 105–122,
https://doi.org/10.1016/j.earscirev.2009.10.008, 2010.
Wittmann, H., Blanckenburg, F. Von, Bouchez, J., Dannhaus, N., Naumann, R.,
Christl, M., and Gaillardet, J.: The dependence of meteoric 10Be
concentrations on particle size in Amazon River bed sediment and the
extraction of reactive 10Be/9Be ratios, Chem. Geol., 318–319, 126–138,
https://doi.org/10.1016/j.chemgeo.2012.04.031, 2012.
Wittmann, H., Blanckenburg, F., Dannhaus, N., Bouchez, J., Gaillardet, J.,
Guyot, J. L., Maurice, L., Roig, H., Filizola, N., and Christl, M.: A test of
the cosmogenic 10Be(meteoric)/9Be proxy for simultaneously determining
basin-wide erosion rates, denudation rates, and the degree of weathering in
the Amazon basin, J. Geophys. Res.-Earth Surf., 120, 2498–2528,
https://doi.org/10.1002/2015JF003581.Received, 2015.
Xuan, C., Channell, J. E. T., Polyak, L., and Darby, D. A.: Paleomagnetism of
Quaternary sediments from Lomonosov Ridge and Yermak Plateau: implications
for age models in the Arctic Ocean, Quat. Sci. Rev., 32, 48–63,
https://doi.org/10.1016/j.quascirev.2011.11.015, 2012.
Zawalna-Geer, A., Lindsay, J. M., Davies, S., Augustinus, P., and Davies, S.: Extracting a primary Holocene crytoptephra record from Pupuke maar sediments, Auckland, New Zealand, J. Quaternary Sci., 31, 442–457, https://doi.org/10.1002/jqs.2866, 2016.
Zhu, R. X., Zhou, L. P., Laj, C., Mazaud, A., and Ding, Z. L.: The Blake
geomagnetic polarity episode recorded in Chinese loess, Geophys. Res. Lett.,
21, 697–700, 1994.
Zolitschka, B., Anselmetti, F., Ariztegui, D., Corbella, H., Francus, P.,
Lücke, A., Maidana, N. I., Ohlendorf, C., Schäbitz, F., and
Wastegård, S.: Environment and climate of the last 51 000 years – new
insights from the Potrok Aike maar lake Sediment Archive Drilling prOject
(PASADO), Quat. Sci. Rev., 71, 1–12, https://doi.org/10.1016/j.quascirev.2012.11.024,
2013.
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment...