Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-471-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-471-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Complex 40Ar ∕ 39Ar age spectra from low-grade metamorphic rocks: resolving the input of detrital and metamorphic components in a case study from the Delamerian Orogen
Department for Energy and Mining, Geological Survey of South Australia, GPO Box 320, Adelaide, SA 5001, Australia
Department of Earth Sciences, School of Physical Sciences, University of Adelaide, SA 5005, Australia
Marnie Forster
Mineral Exploration Cooperative Research Centre, Research School of
Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
Wolfgang Preiss
Department for Energy and Mining, Geological Survey of South Australia, GPO Box 320, Adelaide, SA 5001, Australia
Department of Earth Sciences, School of Physical Sciences, University of Adelaide, SA 5005, Australia
Alicia Caruso
Department for Energy and Mining, Geological Survey of South Australia, GPO Box 320, Adelaide, SA 5001, Australia
Stacey Curtis
Department for Energy and Mining, Geological Survey of South Australia, GPO Box 320, Adelaide, SA 5001, Australia
Mineral Exploration Cooperative Research Centre, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
Tom Wise
Department for Energy and Mining, Geological Survey of South Australia, GPO Box 320, Adelaide, SA 5001, Australia
Davood Vasegh
Mineral Exploration Cooperative Research Centre, Research School of
Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
Naina Goswami
Mineral Exploration Cooperative Research Centre, Research School of
Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
Gordon Lister
Sustainable Minerals Institute, University of Queensland, Brisbane, QLD 4072, Australia
Related authors
No articles found.
Jack Muston, Marnie Forster, Davood Vasegh, Conrad Alderton, Shawn Crispin, and Gordon Lister
Geochronology, 5, 153–179, https://doi.org/10.5194/gchron-5-153-2023, https://doi.org/10.5194/gchron-5-153-2023, 2023
Short summary
Short summary
About 2 million years ago, rich gold deposits formed at Martabe, on the island of Sumatra in Indonesia. Fluids may have moved as the result of fault dilation caused by changes in stress orientation during the earthquake cycle, so to work out exactly when and how long between cycles, we dated a potassium-bearing mineral, alunite, using argon geochronology in association with diffusion experiments during temperature-controlled furnace step-heating, showing two episodes 250 thousand years apart.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Jack Muston, Marnie Forster, Conrad Alderton, Shawn Crispin, and Gordon Lister
Geochronology Discuss., https://doi.org/10.5194/gchron-2020-41, https://doi.org/10.5194/gchron-2020-41, 2020
Publication in GChron not foreseen
Short summary
Short summary
The timing and duration of fluid activity within a gold deposit enables a greater understanding of how the deposit evolved and thus help future mineral exploration. This research uses high resolution dating methods to unravel the overprinting fluid activity at the Martabe gold field in Sumatra. Methods outline in this report can be applied to deposits globally.
L. T. White, M. P. Morse, and G. S. Lister
Solid Earth, 5, 163–179, https://doi.org/10.5194/se-5-163-2014, https://doi.org/10.5194/se-5-163-2014, 2014
Related subject area
Argon/argon dating
Volcanism straddling the Miocene–Pliocene boundary on Patmos and Chiliomodi islands (southeastern Aegean Sea): insights from new 40Ar ∕ 39Ar ages
Direct dating of overprinting fluid systems in the Martabe epithermal gold deposit using highly retentive alunite
Deformation recorded in polyhalite from evaporite detachments revealed by 40Ar ∕ 39Ar dating
Eruptive history and 40Ar∕39Ar geochronology of the Milos volcanic field, Greece
Production of 40Ar by an overlooked mode of 40K decay with implications for K-Ar geochronology
The Isotopx NGX and ATONA Faraday amplifiers
Katharina M. Boehm, Klaudia F. Kuiper, Bora Uzel, Pieter Z. Vroon, and Jan R. Wijbrans
Geochronology, 5, 391–403, https://doi.org/10.5194/gchron-5-391-2023, https://doi.org/10.5194/gchron-5-391-2023, 2023
Short summary
Short summary
The island of Patmos is situated in the southern Aegean Sea (Greece), just north of the present locus of active volcanism. The island is almost entirely built up of volcanic rocks that are 6.6 to 5.2 million years old. We obtain these ages with 40Ar / 39Ar dating technique on sanidine and biotite minerals. Our new age data indicate a geologically brief volcanic period (lasting less than 1.5 million years) that can be divided into three volcanic intervals and correlated to tectonics.
Jack Muston, Marnie Forster, Davood Vasegh, Conrad Alderton, Shawn Crispin, and Gordon Lister
Geochronology, 5, 153–179, https://doi.org/10.5194/gchron-5-153-2023, https://doi.org/10.5194/gchron-5-153-2023, 2023
Short summary
Short summary
About 2 million years ago, rich gold deposits formed at Martabe, on the island of Sumatra in Indonesia. Fluids may have moved as the result of fault dilation caused by changes in stress orientation during the earthquake cycle, so to work out exactly when and how long between cycles, we dated a potassium-bearing mineral, alunite, using argon geochronology in association with diffusion experiments during temperature-controlled furnace step-heating, showing two episodes 250 thousand years apart.
Lachlan Richards, Fred Jourdan, Alan Stephen Collins, and Rosalind Clare King
Geochronology, 3, 545–559, https://doi.org/10.5194/gchron-3-545-2021, https://doi.org/10.5194/gchron-3-545-2021, 2021
Short summary
Short summary
This research is part of a PhD thesis examining evaporite detachments characteristics. 40Ar/39Ar geochronology is employed to constrain the timing of formation and deformation events. A diagenetic age of ~514 Ma is interpreted from the oldest significant step age. Other step ages may represent a Cambrian–Permian deformation event or a complex mixing age of diagenetic Ar with partially reset Ar during the Cenozoic. We report the first closure temperature for polyhalite between 254 and 277 °C.
Xiaolong Zhou, Klaudia Kuiper, Jan Wijbrans, Katharina Boehm, and Pieter Vroon
Geochronology, 3, 273–297, https://doi.org/10.5194/gchron-3-273-2021, https://doi.org/10.5194/gchron-3-273-2021, 2021
Short summary
Short summary
High-resolution geochronology is one of the key factors to predict volcanic eruptions. To build up a high-resolution geochronological framework, we reported 21 new high-precision eruption ages (40Ar / 39Ar) for a ~ 3.3 × 106-year-old volcanic field: Milos (Greece). In combination with geochemical information and eruption volumes from the volcanoes of Milos, the long-lived volcanic history could provide important clues for the prediction of volcanic eruptions.
Jack Carter, Ryan B. Ickert, Darren F. Mark, Marissa M. Tremblay, Alan J. Cresswell, and David C. W. Sanderson
Geochronology, 2, 355–365, https://doi.org/10.5194/gchron-2-355-2020, https://doi.org/10.5194/gchron-2-355-2020, 2020
Short summary
Short summary
40K is an isotope of potassium that undergoes several different modes of radioactive decay. We use the decay of 40K to determine the ages of geologic materials that contain potassium but doing this requires us to know the rate at which 40K decays by its different decay modes. Here, we investigate one decay mode of 40K that has previously been overlooked. We demonstrate that this decay mode exists, estimate its rate, and evaluate its significance for geochronology.
Stephen E. Cox, Sidney R. Hemming, and Damian Tootell
Geochronology, 2, 231–243, https://doi.org/10.5194/gchron-2-231-2020, https://doi.org/10.5194/gchron-2-231-2020, 2020
Short summary
Short summary
We show results from a new type of ion detector technology for mass spectrometry that allows us to measure ion beams more precisely. This technology expands the range of ages we can measure using a single instrument and makes it possible to measure those ages – including all required corrections and adjustments – with more confidence. We show measurements of widely used standard materials for Ar / Ar, including air and synthetic standard gas, to illustrate the capabilities of the new detectors.
Cited articles
Betts, M. J., Paterson, J. R., Jacquet, S. M., Andrew, A. S., Hall, P. A., Jago, J. B., Jagodzinski, E. A., Preiss, W. V., Crowley, J. L., Brougham, T., Mathewson, C. P., García-Bellido, D. C., Topper, T. P., Skovsted, C. B., and Brock, G. A.: Early Cambrian chronostratigraphy and geochronology of South Australia, Earth-Sci. Rev., 185, 498–543, https://doi.org/10.1016/j.earscirev.2018.06.005, 2018.
Blewett, S. C. J., Phillips, D., and Matchan, E. L.: Provenance of Cape
Supergroup sediments and timing of Cape Fold Belt orogenesis: Constraints
from high-precision 40Ar 39Ar dating of muscovite, Gondwana Res., 70, 201–221, https://doi.org/10.1016/j.gr.2019.01.009, 2019.
Burtt, A. C. and Phillips, D.: 40Ar 39Ar dating of muscovite from a pegmatite in Kinchina Quarry, near Murray Bridge, MESA Journal, 28, 50–52, 2003.
Cawood, P. A.: Terra Australis Orogen: Rodinia breakup and development of
the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and
Paleozoic, Earth-Sci. Rev., 69, 249–279, https://doi.org/10.1016/j.earscirev.2004.09.001, 2005.
Cawood, P. A., Johnson, M. R. W., and Nemchin, A. A.: Early Palaeozoic
orogenesis along the Indian margin of Gondwana: Tectonic response to
Gondwana assembly, Earth Planet. Sci. Lett., 255, 70–84,
https://doi.org/10.1016/j.epsl.2006.12.006, 2007.
Cayley, R. and Skladzien, P.: Structure, in: Regional geology and mineral
systems of the Stavely Arc, western Victoria, edited by: Schofield, A.,
Record 2018/02, Geoscience Australia, Canberra,
https://doi.org/10.11636/Record.2018.002, 2018.
Chan, Y.-C., Crespi, J. M., and Hodges, K. V.: Dating cleavage formation in
slates and phyllites with the 40Ar 39Ar laser microprobe: an example from the western New England Appalachians, USA, Terra Nova, 12, 264–271, https://doi.org/10.1046/j.1365-3121.2000.00308.x, 2000.
Clauer, N.: The K-Ar and 40Ar 39Ar methods revisited for dating fine-grained K-bearing clay minerals, Chem. Geol., 354, 163–185, https://doi.org/10.1016/j.chemgeo.2013.05.030, 2013.
Collins, W. J.: Nature of extensional accretionary orogens, Tectonics, 21,
1–6, 2002.
Cosca, M. A., Hunziker, J. C., Huon, S., and Masson, H.: Radiometric age
constraints on mineral growth, metamorphism, and tectonism of the Gummfluh
Klippe, Briançonnais domain of the Préalpes, Switzerland,
Contrib. Mineral. Petr., 112, 439–449, https://doi.org/10.1007/BF00310776, 1992.
Dallmeyer, R. D. and Takasu, A.: 40Ar 39Ar ages of detrital muscovite and
whole-rock slate/phyllite, Narragansett Basin, RI-MA, USA: implications for
rejuvenation during very low-grade metamorphism, Contrib. Mineral. Petr., 110, 515–527, https://doi.org/10.1007/BF00344085, 1992.
Dallmeyer, R. D., Mitchell, J. G., Pharaoh, T. C., Reuter, A., and Andresen,
A.: K-Ar and 40Ar 39Ar whole-rock ages of slate/phyllite from allochthonous
basement and cover in the tectonic windows of Finnmark, Norway: Evaluating
the extent and timing of Caledonian tectonothermal activity, GSA Bulletin,
100, 1493–1501, https://doi.org/10.1130/0016-7606(1988)100<1493:Kaaaaw>2.3.Co;2, 1988.
Di Vincenzo, G., Viti, C., and Rocchi, S.: The effect of chlorite
interlayering on 40Ar–39Ar biotite dating: an 40Ar–39Ar laser-probe and TEM investigations of variably chloritised biotites, Contrib. Mineral. Petr., 145, 643–658, https://doi.org/10.1007/s00410-003-0472-z, 2003.
Dunlap, W. J., Teyssier, C., McDougall, I., and Baldwin, S.: Ages of
deformation from K/Ar and 40Ar 39Ar dating of white micas, Geology, 19, 1213–1216, https://doi.org/10.1130/0091-7613(1991)019<1213:Aodfka>2.3.Co;2, 1991.
Dymoke, P. and Sandiford, M.: Phase relationships in Buchan facies series
pelitic assemblages: calculations with application to andalusite-staurolite
parageneses in the Mount Lofty Ranges, South Australia, Contrib. Mineral. Petr., 110, 121–132, https://doi.org/10.1007/BF00310886, 1992.
Fergusson, C. L. and Phillips, D.: 40Ar 39Ar and K–Ar age constraints on the timing of regional deformation, south coast of New South Wales, Lachlan Fold Belt: Problems and implications, Aust. J. Earth Sci., 48, 395–408, https://doi.org/10.1046/j.1440-0952.2001.00866.x, 2001.
Flottmann, T. and James, P.: Influence of basin architecture on the style of
inversion and fold-thrust belt tectonics – the southern Adelaide Fold-Thrust
Belt, South Australia, J. Struct. Geol., 19, 1093–1110,
https://doi.org/10.1016/S0191-8141(97)00033-3, 1997.
Flottmann, T., Haines, P., Jago, J., James, P., Belperio, A. P., and Gum,
J.: Formation and reactivation of the Cambrian Kanmantoo Trough, SE
Australia: implications for early Palaeozoic tectonics at eastern Gondwana's
plate margin, J. Geol. Soc., 155, 525–539, 1998.
Foden, J., Sandiford, M., Dougherty-Page, J., and Williams, I.: Geochemistry
and geochronology of the Rathjen Gneiss: Implications for the early tectonic
evolution of the Delamerian Orogen, Aust. J. Earth Sci.,
46, 377–389, https://doi.org/10.1046/j.1440-0952.1999.00712.x, 1999.
Foden, J., Elburg, M. A., Dougherty-Page, J., and Burtt, A.: The Timing and
Duration of the Delamerian Orogeny: Correlation with the Ross Orogen and
Implications for Gondwana Assembly, J. Geol., 114, 189–210, 2006.
Foden, J., Elburg, M., Turner, S., Clark, C., Blades, M. L., Cox, G.,
Collins, A. S., Wolff, K., and George, C.: Cambro-Ordovician magmatism in
the Delamerian orogeny: Implications for tectonic development of the
southern Gondwanan margin, Gondwana Res., 81, 490–521, https://doi.org/10.1016/j.gr.2019.12.006, 2020.
Foland, K. A., Hubacher, F. A., and Arehart, G. B.: 40Ar39Ar dating of very fine-grained samples: An encapsulated-vial procedure to overcome the problem of 39Ar recoil loss, Chem. Geol., 102, 269–276, https://doi.org/10.1016/0009-2541(92)90161-W, 1992.
Forster, M. and Lister, G.: Core-complex-related extension of the Aegean
lithosphere initiated at the Eocene-Oligocene transition, J. Geophys. Res.-Sol. Ea., 114, B02401, https://doi.org/10.1029/2007JB005382, 2009.
Forster, M. A. and Lister, G. S.: The interpretation of 40Ar 39Ar apparent age spectra produced by mixing: application of the method of asymptotes and limits, J. Struct. Geol., 26, 287–305, https://doi.org/10.1016/j.jsg.2003.10.004, 2004.
Forster, M. A. and Lister, G. S.: Argon enters the retentive zone:
reassessment of diffusion parameters for K-feldspar in the South Cyclades
Shear Zone, Ios, Greece, in: Advances in Interpretation of Geological
Processes: Refinement of Multi-scale Data and Integration in Numerical
Modelling, edited by: Spalla, M. I., Marotta, A. M., and Gosso, G.,
Geological Society of London, https://doi.org/10.1144/sp332.2, 2010.
Glen, R. A.: Refining accretionary orogen models for the Tasmanides of
eastern Australia, Aust. J. Earth Sci., 60, 315–370, https://doi.org/10.1080/08120099.2013.772537, 2013.
Glen, R. A. and Cooper, R. A.: Evolution of the East Gondwana convergent
margin in Antarctica, southern Australia and New Zealand from the
Neoproterozoic to latest Devonian, Earth-Sci. Rev., 220, 103687,
https://doi.org/10.1016/j.earscirev.2021.103687, 2021.
Glen, R. A., Quinn, C. D., and Cooke, D. R.: The Macquarie Arc, Lachlan
Orogen, New South Wales: its evolution, tectonic setting and mineral
deposits, Episodes, 35, 177–186, https://doi.org/10.18814/epiiugs/2012/v35i1/017, 2012.
Haest, M., Cudahy, T., Laukamp, C., and Gregory, S.: Quantitative Mineralogy
from Infrared Spectroscopic Data. I. Validation of Mineral Abundance and
Composition Scripts at the Rocklea Channel Iron Deposit in Western
Australia, Econ. Geol., 107, 209–228, https://doi.org/10.2113/econgeo.107.2.209, 2012.
Haines, P. W., Turner, S. P., Kelley, S. P., Wartho, J.-A., and Sherlock, S.
C.: 40Ar–39Ar dating of detrital muscovite in provenance investigations: a case study from the Adelaide Rift Complex, South Australia, Earth Planet. Sci. Lett., 227, 297–311, https://doi.org/10.1016/j.epsl.2004.08.020, 2004.
Harrison, T. M., Célérier, J., Aikman, A. B., Hermann, J., and
Heizler, M. T.: Diffusion of 40Ar in muscovite, Geochim. Cosmochim. Ac., 73, 1039–1051, https://doi.org/10.1016/j.gca.2008.09.038, 2009.
Ireland, T. R., Flottmann, T., Fanning, C. M., Gibson, G. M., and Preiss, W.
V.: Development of the early Paleozoic Pacific margin of Gandwana from
detrital-zircon ages across the Delamerian orogen, Geology, 26, 243–246,
1998.
Keeman, J., Turner, S., Haines, P. W., Belousova, E., Ireland, T., Brouwer,
P., Foden, J., and Wörner, G.: New UPb, Hf and O isotope constraints on
the provenance of sediments from the Adelaide Rift Complex – Documenting
the key Neoproterozoic to early Cambrian succession, Gondwana Res., 83,
248–278, https://doi.org/10.1016/j.gr.2020.02.005, 2020.
Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., Gray, C. M., and Blevin,
P. L.: Isotopic evidence for rapid continental growth in an extensional
accretionary orogen: The Tasmanides, eastern Australia, Earth Planet. Sci. Lett., 284, 455–466, https://doi.org/10.1016/j.epsl.2009.05.011, 2009.
Kemp, A. I. S., Blevin, P. L., and Norman, M. D.: A SIMS U-Pb (zircon) and
Re-Os (molybdenite) isotope study of the early Paleozoic Macquarie Arc,
southeastern Australia: Implications for the tectono-magmatic evolution of
the paleo-Pacific Gondwana margin, Gondwana Res., 82, 73–96, https://doi.org/10.1016/j.gr.2019.12.015, 2020.
Kendall, B., Creaser, R. A., and Selby, D.: Re-Os geochronology of
postglacial black shales in Australia: Constraints on the timing of
“Sturtian” glaciation, Geology, 34, 729–732, https://doi.org/10.1130/g22775.1, 2006.
Kirkland, C. L., Daly, J. S., Chew, D. M., and Page, L. M.: The Finnmarkian
Orogeny revisited: An isotopic investigation in eastern Finnmark, Arctic
Norway, Tectonophysics, 460, 158–177, https://doi.org/10.1016/j.tecto.2008.08.001, 2008.
Kirschner, D. L., Masson, H., and Cosca, M. A.: An 40Ar 39Ar, Rb Sr, and stable isotope study of micas in low-grade fold-and-thrust belt: an example from the Swiss Helvetic Alps, Contrib. Mineral. Petr.,
145, 460–480, https://doi.org/10.1007/s00410-003-0461-2, 2003.
Lee, J.-Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H.-S., Lee,
J. B., and Kim, J. S.: A redetermination of the isotopic abundances of
atmospheric Ar, Geochim. Cosmochim. Ac., 70, 4507–4512, https://doi.org/10.1016/j.gca.2006.06.1563, 2006.
Lewis, C., Huston, D., Schofield, A., Cayley, R. A., and Taylor, D.: New
geochronology constraints on the development and duration of the Stavely
Arc, in: Regional geology and mineral systems of the Stavely Arc, western
Victoria, edited by: Schofield, A., Record 2018/02, Geoscience Australia,
Canberra, https://doi.org/10.11636/Record.2018.002, 2018.
Lloyd, J. C., Blades, M. L., Counts, J. W., Collins, A. S., Amos, K. J.,
Wade, B. P., Hall, J. W., Hore, S., Ball, A. L., Shahin, S., and Drabsch,
M.: Neoproterozoic geochronology and provenance of the Adelaide Superbasin,
Precambrian Res., 350, 105849, https://doi.org/10.1016/j.precamres.2020.105849, 2020.
Lo, C.-H. and Onstott, T. C.: 39Ar recoil artifacts in chloritized biotite, Geochim. Cosmochim. Ac., 53, 2697–2711, https://doi.org/10.1016/0016-7037(89)90141-5, 1989.
Mancktelow, N. S.: The structure of the southern Adelaide Fold Belt, South
Australia, in: The evolution of a late Precambrian-early Paleozoic rift
complex: the Adelaide Geosyncline, edited by: Jago, J. B. and Moore, P. S.,
Geological Society of Australia Special Publication, 16, 369–395, ISBN 0909869715, 1990.
Mason, P., Berman, M., Guo, Y., Warren, P., Lagerstrom, R., Bischof, L.,
Huntington, J., and Rodger, A.: The Spectral Geologist (8.1.0.3), CSIRO, https://research.csiro.au/thespectralgeologist/support/downloads/ (last access: January 2021), 2020.
McDougall, I. and Harrison, T. M.: Geochronology and thermochronology by the
40Ar 39Ar method, 2nd edn., Oxford University Press, New York, 212 pp., ISBN 0195043022, 1999.
Muston, J., Forster, M., Vasegh, D., Alderton, C., Crispin, S., and Lister, G.: Direct dating of overprinting fluid systems in the Martabe epithermal gold deposit using highly retentive alunite, Geochronology Discuss. [preprint], https://doi.org/10.5194/gchron-2021-25, in review, 2021.
Najman, Y. M. R., Pringle, M. S., Johnson, M. R. W., Robertson, A. H. F.,
and Wijbrans, J. R.: Laser 40Ar 39Ar dating of single detrital muscovite grains from early foreland-basin sedimentary deposits in India: Implications for early Himalayan evolution, Geology, 25, 535–538, https://doi.org/10.1130/0091-7613(1997)025<0535:Laados>2.3.Co;2, 1997.
Nteme, J., Scaillet, S., Brault, P., and Tassan-Got, L.: Atomistic
Simulations of 40Ar Diffusion in Muscovite, Geochim. Cosmochim. Ac.,
https://doi.org/10.1016/j.gca.2022.05.004, in press, 2022.
Offler, R. and Fleming, P. D.: A synthesis of folding and metamorphism in
the Mt. Lofty Ranges, South Australia, J. Geol. Soc. Aust., 15, 245–266, https://doi.org/10.1080/00167616808728697, 1968.
Palin, R. M. and Dyck, B.: Metamorphism of Pelitic (Al-Rich) Rocks, in:
Encyclopedia of Geology (Second Edition), edited by: Alderton, D. and
Elias, S. A., Academic Press, Oxford, 445–456, https://doi.org/10.1016/B978-0-08-102908-4.00081-3, 2021.
Phillips, D., Fu, B., Wilson, C. J. L., Kendrick, M. A., Fairmaid, A. M.,
and Miller, J. M.: Timing of gold mineralisation in the western Lachlan
Orogen, SE Australia: A critical overview, Aust. J. Earth Sci., 59, 495–525, https://doi.org/10.1080/08120099.2012.682738, 2012.
Popov, D. V., Brovchenko, V. D., Nekrylov, N. A., Plechov, P. Y., Spikings,
R. A., Tyutyunnik, O. A., Krigman, L. V., Anosova, M. O., Kostitsyn, Y. A.,
and Soloviev, A. V.: Removing a mask of alteration: Geochemistry and age of
the Karadag volcanic sequence in SE Crimea, Lithos, 324–325, 371–384,
https://doi.org/10.1016/j.lithos.2018.11.024, 2019.
Preiss, W. V.: The Adelaide Geosyncline: Late Proterozoic stratigraphy,
sedimentation, palaeontology and tectonics, Geological Survey of South
Australia – Bulletin 53, Adelaide, 428 pp., ISBN 0724378456, 1987.
Preiss, W. V.: Delamerian Orogeny, in: The geology of South Australia;
Volume 2, The Phanerozoic, edited by: Drexel, J. F., Preiss, W. V., and
Parker, A. J., Geological Survey of South Australia – Bulletin 54 Adelaide,
45–59, ISBN 0730806219, 1995a.
Preiss, W. V.: Rb Sr dating of differentiated cleavage from the upper
Adelaidean metasediments at Hallett Cove, southern Adelaide fold belt:
Discussion, J. Struct. Geol., 17, 1797–1800, https://doi.org/10.1016/0191-8141(95)00094-T, 1995b.
Preiss, W. V.: The Adelaide Geosyncline of South Australia and its
significance in Neoproterozoic continental reconstruction, Precambrian Res., 100, 21–63, 2000.
Preiss, W. V.: The tectonic history of Adelaide's scarp-forming faults,
Aust. J. Earth Sci., 66, 305–365, https://doi.org/10.1080/08120099.2018.1546228, 2019.
Reid, A. and Forster, M.: Complex 40Ar 39Ar age spectra from low metamorphic grade rocks, Delamerian Orogen, Reid et al., Mendeley Data, V2 [data set], https://doi.org/10.17632/g75hgmypbw.2, 2022.
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., and Min, K.: Response to
the comment by W. H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar∗ 40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar 39Ar geochronology” by P. R. Renne et al. (2010), Geochim. Cosmochim. Ac., 75, 5097–5100, https://doi.org/10.1016/j.gca.2011.06.021, 2011.
Rosenbaum, G.: The Tasmanides: Phanerozoic Tectonic Evolution of Eastern
Australia, Annu. Rev. Earth Pl. Sc., 46, 291–325, https://doi.org/10.1146/annurev-earth-082517-010146, 2018.
Schaen, A. J., Jicha, B. R., Hodges, K. V., Vermeesch, P., Stelten, M. E.,
Mercer, C. M., Phillips, D., Rivera, T. A., Jourdan, F., Matchan, E. L.,
Hemming, S. R., Morgan, L. E., Kelley, S. P., Cassata, W. S., Heizler, M.
T., Vasconcelos, P. M., Benowitz, J. A., Koppers, A. A. P., Mark, D. F.,
Niespolo, E. M., Sprain, C. J., Hames, W. E., Kuiper, K. F., Turrin, B. D.,
Renne, P. R., Ross, J., Nomade, S., Guillou, H., Webb, L. E., Cohen, B. A.,
Calvert, A. T., Joyce, N., Ganerød, M., Wijbrans, J., Ishizuka, O., He,
H., Ramirez, A., Pfänder, J. A., Lopez-Martínez, M., Qiu, H., and
Singer, B. S.: Interpreting and reporting 40Ar 39Ar geochronologic data, GSA Bulletin, 133, 461–487, https://doi.org/10.1130/b35560.1, 2020.
Schodlok, M. C., Whitbourn, L., Huntington, J., Mason, P., Green, A.,
Berman, M., Coward, D., Connor, P., Wright, W., Jolivet, M., and Martinez,
R.: HyLogger-3, a visible to shortwave and thermal infrared reflectance
spectrometer system for drill core logging: functional description,
Aust. J. Earth Sci., 63, 929–940, 2016.
Spell, T. L. and McDougall, I.: Characterization and calibration of
40Ar 39Ar dating standards, Chem. Geol., 198, 189–211, https://doi.org/10.1016/S0009-2541(03)00005-6, 2003.
Stuart, F. M.: The exhumation history of orogenic belts from 40Ar 39Ar ages of detrital micas, Mineral. Mag., 66, 121–135, https://doi.org/10.1180/0026461026610017, 2002.
Tetley, N., McDougall, I., and Heydegger, H. R.: Thermal neutron
interferences in the 40Ar 39Ar dating technique, J. Geophys.
Res.-Sol. Ea., 85, 7201–7205, https://doi.org/10.1029/JB085iB12p07201, 1980.
Turner, S., Sandiford, M., Flöttmann, T., and Foden, J.: Rb Sr dating of differentiated cleavage from the upper Adelaidean metasediments at Hallett Cove, southern Adelaide fold belt, J. Struct. Geol., 16,
1233–1241, https://doi.org/10.1016/0191-8141(94)90066-3, 1994.
Turner, S., Haines, P., Foster , D., Powell, R., Sandiford, M., and Offler,
R.: Did the Delamerian Orogeny Start in the Neoproterozoic?, J. Geol., 117, 575–583, https://doi.org/10.1086/600866, 2009.
Turner, S. P., Kelley, S. P., VandenBerg, A. H. M., Foden, J. D., Sandiford,
M., and Flöttmann, T.: Source of the Lachlan fold belt flysch linked to
convective removal of the lithospheric mantle and rapid exhumation of the
Delamerian-Ross fold belt, Geology, 24, 941–944, https://doi.org/10.1130/0091-7613(1996)024<0941:sotlfb>2.3.co;2, 1996.
Zack, T. and Hogmalm, K. J.: Laser ablation Rb Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell, Chem. Geol., 437, 120–133, https://doi.org/10.1016/j.chemgeo.2016.05.027, 2016.
Short summary
Dating low-grade metamorphic rocks with the 40Ar / 39Ar method is difficult because samples are fine-grained mixtures between detrital and newly grown metamorphic minerals. We use a careful step-heating schedule and resolve limits within the complex age spectra thus derived to infer the timing of metamorphism and deformation in the Delamerian Orogen (formerly part of eastern Gondwana). Results suggest detrital mineral from up to 1172 Ma and that metamorphic minerals grew at 470–458 Ma.
Dating low-grade metamorphic rocks with the 40Ar / 39Ar method is difficult because samples are...