Cayley, R. and Skladzien, P.: Structure, in: Regional geology and mineral
systems of the Stavely Arc, western Victoria, edited by: Schofield, A.,
Record 2018/02, Geoscience Australia, Canberra,
https://doi.org/10.11636/Record.2018.002, 2018.
Chan, Y.-C., Crespi, J. M., and Hodges, K. V.: Dating cleavage formation in
slates and phyllites with the
40Ar
39Ar laser microprobe: an example from the western New England Appalachians, USA, Terra Nova, 12, 264–271, https://doi.org/10.1046/j.1365-3121.2000.00308.x, 2000.
Clauer, N.: The K-Ar and
40Ar
39Ar methods revisited for dating fine-grained K-bearing clay minerals, Chem. Geol., 354, 163–185, https://doi.org/10.1016/j.chemgeo.2013.05.030, 2013.
Collins, W. J.: Nature of extensional accretionary orogens, Tectonics, 21,
1–6, 2002.
Cosca, M. A., Hunziker, J. C., Huon, S., and Masson, H.: Radiometric age
constraints on mineral growth, metamorphism, and tectonism of the Gummfluh
Klippe, Briançonnais domain of the Préalpes, Switzerland,
Contrib. Mineral. Petr., 112, 439–449, https://doi.org/10.1007/BF00310776, 1992.
Dallmeyer, R. D. and Takasu, A.:
40Ar
39Ar ages of detrital muscovite and
whole-rock slate/phyllite, Narragansett Basin, RI-MA, USA: implications for
rejuvenation during very low-grade metamorphism, Contrib. Mineral. Petr., 110, 515–527, https://doi.org/10.1007/BF00344085, 1992.
Dallmeyer, R. D., Mitchell, J. G., Pharaoh, T. C., Reuter, A., and Andresen,
A.: K-Ar and
40Ar
39Ar whole-rock ages of slate/phyllite from allochthonous
basement and cover in the tectonic windows of Finnmark, Norway: Evaluating
the extent and timing of Caledonian tectonothermal activity, GSA Bulletin,
100, 1493–1501, https://doi.org/10.1130/0016-7606(1988)100<1493:Kaaaaw>2.3.Co;2, 1988.
Di Vincenzo, G., Viti, C., and Rocchi, S.: The effect of chlorite
interlayering on
40Ar–
39Ar biotite dating: an
40Ar–
39Ar laser-probe and TEM investigations of variably chloritised biotites, Contrib. Mineral. Petr., 145, 643–658, https://doi.org/10.1007/s00410-003-0472-z, 2003.
Dunlap, W. J., Teyssier, C., McDougall, I., and Baldwin, S.: Ages of
deformation from K/Ar and
40Ar
39Ar dating of white micas, Geology, 19, 1213–1216, https://doi.org/10.1130/0091-7613(1991)019<1213:Aodfka>2.3.Co;2, 1991.
Dymoke, P. and Sandiford, M.: Phase relationships in Buchan facies series
pelitic assemblages: calculations with application to andalusite-staurolite
parageneses in the Mount Lofty Ranges, South Australia, Contrib. Mineral. Petr., 110, 121–132, https://doi.org/10.1007/BF00310886, 1992.
Fergusson, C. L. and Phillips, D.:
40Ar
39Ar and K–Ar age constraints on the timing of regional deformation, south coast of New South Wales, Lachlan Fold Belt: Problems and implications, Aust. J. Earth Sci., 48, 395–408, https://doi.org/10.1046/j.1440-0952.2001.00866.x, 2001.
Flottmann, T. and James, P.: Influence of basin architecture on the style of
inversion and fold-thrust belt tectonics – the southern Adelaide Fold-Thrust
Belt, South Australia, J. Struct. Geol., 19, 1093–1110,
https://doi.org/10.1016/S0191-8141(97)00033-3, 1997.
Flottmann, T., Haines, P., Jago, J., James, P., Belperio, A. P., and Gum,
J.: Formation and reactivation of the Cambrian Kanmantoo Trough, SE
Australia: implications for early Palaeozoic tectonics at eastern Gondwana's
plate margin, J. Geol. Soc., 155, 525–539, 1998.
Foden, J., Sandiford, M., Dougherty-Page, J., and Williams, I.: Geochemistry
and geochronology of the Rathjen Gneiss: Implications for the early tectonic
evolution of the Delamerian Orogen, Aust. J. Earth Sci.,
46, 377–389, https://doi.org/10.1046/j.1440-0952.1999.00712.x, 1999.
Foden, J., Elburg, M. A., Dougherty-Page, J., and Burtt, A.: The Timing and
Duration of the Delamerian Orogeny: Correlation with the Ross Orogen and
Implications for Gondwana Assembly, J. Geol., 114, 189–210, 2006.
Foden, J., Elburg, M., Turner, S., Clark, C., Blades, M. L., Cox, G.,
Collins, A. S., Wolff, K., and George, C.: Cambro-Ordovician magmatism in
the Delamerian orogeny: Implications for tectonic development of the
southern Gondwanan margin, Gondwana Res., 81, 490–521, https://doi.org/10.1016/j.gr.2019.12.006, 2020.
Foland, K. A., Hubacher, F. A., and Arehart, G. B.:
40Ar
39Ar dating of very fine-grained samples: An encapsulated-vial procedure to overcome the problem of
39Ar recoil loss, Chem. Geol., 102, 269–276, https://doi.org/10.1016/0009-2541(92)90161-W, 1992.
Forster, M. and Lister, G.: Core-complex-related extension of the Aegean
lithosphere initiated at the Eocene-Oligocene transition, J. Geophys. Res.-Sol. Ea., 114, B02401, https://doi.org/10.1029/2007JB005382, 2009.
Forster, M. A. and Lister, G. S.: The interpretation of
40Ar
39Ar apparent age spectra produced by mixing: application of the method of asymptotes and limits, J. Struct. Geol., 26, 287–305, https://doi.org/10.1016/j.jsg.2003.10.004, 2004.
Forster, M. A. and Lister, G. S.: Argon enters the retentive zone:
reassessment of diffusion parameters for K-feldspar in the South Cyclades
Shear Zone, Ios, Greece, in: Advances in Interpretation of Geological
Processes: Refinement of Multi-scale Data and Integration in Numerical
Modelling, edited by: Spalla, M. I., Marotta, A. M., and Gosso, G.,
Geological Society of London, https://doi.org/10.1144/sp332.2, 2010.
Glen, R. A.: Refining accretionary orogen models for the Tasmanides of
eastern Australia, Aust. J. Earth Sci., 60, 315–370, https://doi.org/10.1080/08120099.2013.772537, 2013.
Glen, R. A. and Cooper, R. A.: Evolution of the East Gondwana convergent
margin in Antarctica, southern Australia and New Zealand from the
Neoproterozoic to latest Devonian, Earth-Sci. Rev., 220, 103687,
https://doi.org/10.1016/j.earscirev.2021.103687, 2021.
Glen, R. A., Quinn, C. D., and Cooke, D. R.: The Macquarie Arc, Lachlan
Orogen, New South Wales: its evolution, tectonic setting and mineral
deposits, Episodes, 35, 177–186, https://doi.org/10.18814/epiiugs/2012/v35i1/017, 2012.
Haest, M., Cudahy, T., Laukamp, C., and Gregory, S.: Quantitative Mineralogy
from Infrared Spectroscopic Data. I. Validation of Mineral Abundance and
Composition Scripts at the Rocklea Channel Iron Deposit in Western
Australia, Econ. Geol., 107, 209–228, https://doi.org/10.2113/econgeo.107.2.209, 2012.
Haines, P. W., Turner, S. P., Kelley, S. P., Wartho, J.-A., and Sherlock, S.
C.:
40Ar–
39Ar dating of detrital muscovite in provenance investigations: a case study from the Adelaide Rift Complex, South Australia, Earth Planet. Sci. Lett., 227, 297–311, https://doi.org/10.1016/j.epsl.2004.08.020, 2004.
Harrison, T. M., Célérier, J., Aikman, A. B., Hermann, J., and
Heizler, M. T.: Diffusion of
40Ar in muscovite, Geochim. Cosmochim. Ac., 73, 1039–1051, https://doi.org/10.1016/j.gca.2008.09.038, 2009.
Ireland, T. R., Flottmann, T., Fanning, C. M., Gibson, G. M., and Preiss, W.
V.: Development of the early Paleozoic Pacific margin of Gandwana from
detrital-zircon ages across the Delamerian orogen, Geology, 26, 243–246,
1998.
Keeman, J., Turner, S., Haines, P. W., Belousova, E., Ireland, T., Brouwer,
P., Foden, J., and Wörner, G.: New UPb, Hf and O isotope constraints on
the provenance of sediments from the Adelaide Rift Complex – Documenting
the key Neoproterozoic to early Cambrian succession, Gondwana Res., 83,
248–278, https://doi.org/10.1016/j.gr.2020.02.005, 2020.
Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., Gray, C. M., and Blevin,
P. L.: Isotopic evidence for rapid continental growth in an extensional
accretionary orogen: The Tasmanides, eastern Australia, Earth Planet. Sci. Lett., 284, 455–466, https://doi.org/10.1016/j.epsl.2009.05.011, 2009.
Kemp, A. I. S., Blevin, P. L., and Norman, M. D.: A SIMS U-Pb (zircon) and
Re-Os (molybdenite) isotope study of the early Paleozoic Macquarie Arc,
southeastern Australia: Implications for the tectono-magmatic evolution of
the paleo-Pacific Gondwana margin, Gondwana Res., 82, 73–96, https://doi.org/10.1016/j.gr.2019.12.015, 2020.
Kendall, B., Creaser, R. A., and Selby, D.: Re-Os geochronology of
postglacial black shales in Australia: Constraints on the timing of
“Sturtian” glaciation, Geology, 34, 729–732, https://doi.org/10.1130/g22775.1, 2006.
Kirkland, C. L., Daly, J. S., Chew, D. M., and Page, L. M.: The Finnmarkian
Orogeny revisited: An isotopic investigation in eastern Finnmark, Arctic
Norway, Tectonophysics, 460, 158–177, https://doi.org/10.1016/j.tecto.2008.08.001, 2008.
Kirschner, D. L., Masson, H., and Cosca, M. A.: An
40Ar
39Ar, Rb
Sr, and stable isotope study of micas in low-grade fold-and-thrust belt: an example from the Swiss Helvetic Alps, Contrib. Mineral. Petr.,
145, 460–480, https://doi.org/10.1007/s00410-003-0461-2, 2003.
Lee, J.-Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H.-S., Lee,
J. B., and Kim, J. S.: A redetermination of the isotopic abundances of
atmospheric Ar, Geochim. Cosmochim. Ac., 70, 4507–4512, https://doi.org/10.1016/j.gca.2006.06.1563, 2006.
Lewis, C., Huston, D., Schofield, A., Cayley, R. A., and Taylor, D.: New
geochronology constraints on the development and duration of the Stavely
Arc, in: Regional geology and mineral systems of the Stavely Arc, western
Victoria, edited by: Schofield, A., Record 2018/02, Geoscience Australia,
Canberra, https://doi.org/10.11636/Record.2018.002, 2018.
Lloyd, J. C., Blades, M. L., Counts, J. W., Collins, A. S., Amos, K. J.,
Wade, B. P., Hall, J. W., Hore, S., Ball, A. L., Shahin, S., and Drabsch,
M.: Neoproterozoic geochronology and provenance of the Adelaide Superbasin,
Precambrian Res., 350, 105849, https://doi.org/10.1016/j.precamres.2020.105849, 2020.
Lo, C.-H. and Onstott, T. C.:
39Ar recoil artifacts in chloritized biotite, Geochim. Cosmochim. Ac., 53, 2697–2711, https://doi.org/10.1016/0016-7037(89)90141-5, 1989.
Mancktelow, N. S.: The structure of the southern Adelaide Fold Belt, South
Australia, in: The evolution of a late Precambrian-early Paleozoic rift
complex: the Adelaide Geosyncline, edited by: Jago, J. B. and Moore, P. S.,
Geological Society of Australia Special Publication, 16, 369–395, ISBN 0909869715, 1990.
Mason, P., Berman, M., Guo, Y., Warren, P., Lagerstrom, R., Bischof, L.,
Huntington, J., and Rodger, A.: The Spectral Geologist (8.1.0.3), CSIRO,
https://research.csiro.au/thespectralgeologist/support/downloads/ (last access: January 2021), 2020.
McDougall, I. and Harrison, T. M.: Geochronology and thermochronology by the
40Ar
39Ar method, 2nd edn., Oxford University Press, New York, 212 pp., ISBN 0195043022, 1999.
Muston, J., Forster, M., Vasegh, D., Alderton, C., Crispin, S., and Lister, G.: Direct dating of overprinting fluid systems in the Martabe epithermal gold deposit using highly retentive alunite, Geochronology Discuss. [preprint], https://doi.org/10.5194/gchron-2021-25, in review, 2021.
Najman, Y. M. R., Pringle, M. S., Johnson, M. R. W., Robertson, A. H. F.,
and Wijbrans, J. R.: Laser
40Ar
39Ar dating of single detrital muscovite grains from early foreland-basin sedimentary deposits in India: Implications for early Himalayan evolution, Geology, 25, 535–538, https://doi.org/10.1130/0091-7613(1997)025<0535:Laados>2.3.Co;2, 1997.
Nteme, J., Scaillet, S., Brault, P., and Tassan-Got, L.: Atomistic
Simulations of
40Ar Diffusion in Muscovite, Geochim. Cosmochim. Ac.,
https://doi.org/10.1016/j.gca.2022.05.004, in press, 2022.
Offler, R. and Fleming, P. D.: A synthesis of folding and metamorphism in
the Mt. Lofty Ranges, South Australia, J. Geol. Soc. Aust., 15, 245–266, https://doi.org/10.1080/00167616808728697, 1968.
Palin, R. M. and Dyck, B.: Metamorphism of Pelitic (Al-Rich) Rocks, in:
Encyclopedia of Geology (Second Edition), edited by: Alderton, D. and
Elias, S. A., Academic Press, Oxford, 445–456, https://doi.org/10.1016/B978-0-08-102908-4.00081-3, 2021.
Phillips, D., Fu, B., Wilson, C. J. L., Kendrick, M. A., Fairmaid, A. M.,
and Miller, J. M.: Timing of gold mineralisation in the western Lachlan
Orogen, SE Australia: A critical overview, Aust. J. Earth Sci., 59, 495–525, https://doi.org/10.1080/08120099.2012.682738, 2012.
Popov, D. V., Brovchenko, V. D., Nekrylov, N. A., Plechov, P. Y., Spikings,
R. A., Tyutyunnik, O. A., Krigman, L. V., Anosova, M. O., Kostitsyn, Y. A.,
and Soloviev, A. V.: Removing a mask of alteration: Geochemistry and age of
the Karadag volcanic sequence in SE Crimea, Lithos, 324–325, 371–384,
https://doi.org/10.1016/j.lithos.2018.11.024, 2019.
Preiss, W. V.: The Adelaide Geosyncline: Late Proterozoic stratigraphy,
sedimentation, palaeontology and tectonics, Geological Survey of South
Australia – Bulletin 53, Adelaide, 428 pp., ISBN 0724378456, 1987.
Preiss, W. V.: Delamerian Orogeny, in: The geology of South Australia;
Volume 2, The Phanerozoic, edited by: Drexel, J. F., Preiss, W. V., and
Parker, A. J., Geological Survey of South Australia – Bulletin 54 Adelaide,
45–59, ISBN 0730806219, 1995a.
Preiss, W. V.: Rb
Sr dating of differentiated cleavage from the upper
Adelaidean metasediments at Hallett Cove, southern Adelaide fold belt:
Discussion, J. Struct. Geol., 17, 1797–1800, https://doi.org/10.1016/0191-8141(95)00094-T, 1995b.
Preiss, W. V.: The Adelaide Geosyncline of South Australia and its
significance in Neoproterozoic continental reconstruction, Precambrian Res., 100, 21–63, 2000.
Preiss, W. V.: The tectonic history of Adelaide's scarp-forming faults,
Aust. J. Earth Sci., 66, 305–365, https://doi.org/10.1080/08120099.2018.1546228, 2019.
Reid, A. and Forster, M.: Complex
40Ar
39Ar age spectra from low metamorphic grade rocks, Delamerian Orogen, Reid et al., Mendeley Data, V2 [data set], https://doi.org/10.17632/g75hgmypbw.2, 2022.
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., and Min, K.: Response to
the comment by W. H. Schwarz et al. on “Joint determination of
40K decay constants and
40Ar
∗ 40K for the Fish Canyon sanidine standard, and improved accuracy for
40Ar
39Ar geochronology” by P. R. Renne et al. (2010), Geochim. Cosmochim. Ac., 75, 5097–5100, https://doi.org/10.1016/j.gca.2011.06.021, 2011.
Rosenbaum, G.: The Tasmanides: Phanerozoic Tectonic Evolution of Eastern
Australia, Annu. Rev. Earth Pl. Sc., 46, 291–325, https://doi.org/10.1146/annurev-earth-082517-010146, 2018.
Schodlok, M. C., Whitbourn, L., Huntington, J., Mason, P., Green, A.,
Berman, M., Coward, D., Connor, P., Wright, W., Jolivet, M., and Martinez,
R.: HyLogger-3, a visible to shortwave and thermal infrared reflectance
spectrometer system for drill core logging: functional description,
Aust. J. Earth Sci., 63, 929–940, 2016.
Spell, T. L. and McDougall, I.: Characterization and calibration of
40Ar
39Ar dating standards, Chem. Geol., 198, 189–211, https://doi.org/10.1016/S0009-2541(03)00005-6, 2003.
Stuart, F. M.: The exhumation history of orogenic belts from
40Ar
39Ar ages of detrital micas, Mineral. Mag., 66, 121–135, https://doi.org/10.1180/0026461026610017, 2002.
Tetley, N., McDougall, I., and Heydegger, H. R.: Thermal neutron
interferences in the
40Ar
39Ar dating technique, J. Geophys.
Res.-Sol. Ea., 85, 7201–7205, https://doi.org/10.1029/JB085iB12p07201, 1980.
Turner, S., Sandiford, M., Flöttmann, T., and Foden, J.: Rb
Sr dating of differentiated cleavage from the upper Adelaidean metasediments at Hallett Cove, southern Adelaide fold belt, J. Struct. Geol., 16,
1233–1241, https://doi.org/10.1016/0191-8141(94)90066-3, 1994.
Turner, S., Haines, P., Foster , D., Powell, R., Sandiford, M., and Offler,
R.: Did the Delamerian Orogeny Start in the Neoproterozoic?, J. Geol., 117, 575–583, https://doi.org/10.1086/600866, 2009.
Turner, S. P., Kelley, S. P., VandenBerg, A. H. M., Foden, J. D., Sandiford,
M., and Flöttmann, T.: Source of the Lachlan fold belt flysch linked to
convective removal of the lithospheric mantle and rapid exhumation of the
Delamerian-Ross fold belt, Geology, 24, 941–944, https://doi.org/10.1130/0091-7613(1996)024<0941:sotlfb>2.3.co;2, 1996.
Zack, T. and Hogmalm, K. J.: Laser ablation Rb
Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell, Chem. Geol., 437, 120–133, https://doi.org/10.1016/j.chemgeo.2016.05.027, 2016.