Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-551-2022
https://doi.org/10.5194/gchron-4-551-2022
Short communication/technical note
 | 
19 Aug 2022
Short communication/technical note |  | 19 Aug 2022

Short communication: Mechanism and prevention of irreversible trapping of atmospheric He during mineral crushing

Stephen E. Cox, Hayden B. D. Miller, Florian Hofmann, and Kenneth A. Farley

Related authors

U and Th zonation in apatite observed by synchrotron X–ray fluorescence tomography and implications for the (U–Th)/He system
Francis J. Sousa, Stephen E. Cox, E. Troy Rasbury, Sidney R. Hemming, Antonio Lanzirotti, and Matthew Newville
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-8,https://doi.org/10.5194/gchron-2024-8, 2024
Revised manuscript accepted for GChron
Short summary
The Isotopx NGX and ATONA Faraday amplifiers
Stephen E. Cox, Sidney R. Hemming, and Damian Tootell
Geochronology, 2, 231–243, https://doi.org/10.5194/gchron-2-231-2020,https://doi.org/10.5194/gchron-2-231-2020, 2020
Short summary

Related subject area

Helium diffusion systems
The Geometric Correction Method for zircon (U–Th) ∕ He chronology: correcting systematic error and assigning uncertainties to alpha-ejection corrections and eU concentrations
Spencer D. Zeigler, Morgan Baker, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 6, 199–226, https://doi.org/10.5194/gchron-6-199-2024,https://doi.org/10.5194/gchron-6-199-2024, 2024
Short summary
U and Th zonation in apatite observed by synchrotron X–ray fluorescence tomography and implications for the (U–Th)/He system
Francis J. Sousa, Stephen E. Cox, E. Troy Rasbury, Sidney R. Hemming, Antonio Lanzirotti, and Matthew Newville
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-8,https://doi.org/10.5194/gchron-2024-8, 2024
Revised manuscript accepted for GChron
Short summary
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023,https://doi.org/10.5194/gchron-5-323-2023, 2023
Short summary
A practical method for assigning uncertainty and improving the accuracy of alpha-ejection corrections and eU concentrations in apatite (U–Th) ∕ He chronology
Spencer D. Zeigler, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 197–228, https://doi.org/10.5194/gchron-5-197-2023,https://doi.org/10.5194/gchron-5-197-2023, 2023
Short summary
Cosmogenic 3He paleothermometry on post-LGM glacial bedrock within the central European Alps
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022,https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary

Cited articles

Blard, P.-H.: Cosmogenic 3He in terrestrial rocks: A review, Chem. Geol., 586, 120543, https://doi.org/10.1016/j.chemgeo.2021.120543, 2021. 
Blard, P.-H., Pik, R., Lavé, J., Bourlés, D., Burnard, P. G., Yokochi, R., Marty, B., and Trusdell, F.: Cosmogenic 3He production rates revisited from evidences of grain size dependent release of matrix-sited helium, Earth Planet. Sci. Lett., 247, 222–234, https://doi.org/10.1016/j.epsl.2006.05.012, 2006. 
Blard, P.-H., Balco, G., Burnard, P. G., Farley, K. A., Fenton, C. R., Friedrich, R., Jull, A. J. T., Niedermann, S., Pik, R., Schaefer, J. M., Scott, E. M., Shuster, D. L., Stuart, F. M., Stute, M., Tibari, B., Winckler, G., and Zimmerman, L.: An inter-laboratory comparison of cosmogenic 3He and radiogenic 4He in the CRONUS-P pyroxene standard, Quat. Geochron., 26, 11–19, https://doi.org/10.1016/j.quageo.2014.08.004, 2015. 
Boucher, C., Lan, T., Mabry, J., Bekaert, D. V., Burnard, P. G., and Marty, B.: Spatial analysis of the atmospheric helium isotopic composition: Geochemical and environmental implications, Geochim. Cosmochim. Ac., 237, 120–130, https://doi.org/10.1016/j.gca.2018.06.010, 2018. 
Cox, S. E.: Dataset for Cox et al. (2022), “Short communication: Mechanism and prevention of irreversible trapping of atmospheric He during mineral crushing,” Geochronology 2021-42 [Data set], Zenodo, https://doi.org/10.5281/zenodo.6901795, 2022. 
Download
Short summary
Noble gases are largely excluded from minerals during rock formation, but they are produced by certain radioactive decay schemes and trapped in mineral lattices. However, they are present in the atmosphere, which means that they can be adsorbed or trapped by physical processes. We present details of a troublesome trapping mechanism for helium during sample crushing and show when it can be ignored and how it can be easily avoided during common laboratory procedures.