Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-713-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-713-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constraining the aggradation mode of Pleistocene river deposits based on cosmogenic radionuclide depth profiling and numerical modelling
Nathan Vandermaelen
CORRESPONDING AUTHOR
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
Koen Beerten
Engineered and Geosystems Analysis, Waste and Disposal, Belgian
Nuclear Research Centre SCK CEN, Boeretang 200, 2400 Mol, Belgium
François Clapuyt
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
Fonds de la Recherche Scientifique FRS-FNRS, Brussels, Belgium
Marcus Christl
Laboratory of Ion Beam Physics, Department of Physics, ETH Zurich,
Zurich, Switzerland
Veerle Vanacker
CORRESPONDING AUTHOR
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
Related authors
No articles found.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2553, https://doi.org/10.5194/egusphere-2024-2553, 2024
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains, within south Africa they are regarded as ancient landforms and can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Alberto Casillas-Trasvina, Bart Rogiers, Koen Beerten, Laurent Wouters, and Kristine Walraevens
Hydrol. Earth Syst. Sci., 26, 5577–5604, https://doi.org/10.5194/hess-26-5577-2022, https://doi.org/10.5194/hess-26-5577-2022, 2022
Short summary
Short summary
Heat in the subsurface can be used to characterize aquifer flow behaviour. The temperature data obtained can be useful for understanding the groundwater flow, which is of particular importance in waste disposal studies. Satellite images of surface temperature and a temperature–time curve were implemented in a heat transport model. Results indicate that conduction plays a major role in the aquifer and support the usefulness of temperature measurements.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Min Lu, Bart Rogiers, Koen Beerten, Matej Gedeon, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 26, 3629–3649, https://doi.org/10.5194/hess-26-3629-2022, https://doi.org/10.5194/hess-26-3629-2022, 2022
Short summary
Short summary
Lowland rivers and shallow aquifers are closely coupled. We study their interactions here using a combination of impulse response modeling and hydrological data analysis. The results show that the lowland catchments are groundwater dominated and that the hydrological system from precipitation impulse to groundwater inflow response is a very fast response regime. This study also provides an alternative method to estimate groundwater inflow to rivers from the perspective of groundwater level.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Marius L. Huber, Maarten Lupker, Sean F. Gallen, Marcus Christl, and Ananta P. Gajurel
Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, https://doi.org/10.5194/esurf-8-769-2020, 2020
Short summary
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
David Mair, Alessandro Lechmann, Romain Delunel, Serdar Yeşilyurt, Dmitry Tikhomirov, Christof Vockenhuber, Marcus Christl, Naki Akçar, and Fritz Schlunegger
Earth Surf. Dynam., 8, 637–659, https://doi.org/10.5194/esurf-8-637-2020, https://doi.org/10.5194/esurf-8-637-2020, 2020
Benjamin Campforts, Veerle Vanacker, Frédéric Herman, Matthias Vanmaercke, Wolfgang Schwanghart, Gustavo E. Tenorio, Patrick Willems, and Gerard Govers
Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020, https://doi.org/10.5194/esurf-8-447-2020, 2020
Short summary
Short summary
In this contribution, we explore the spatial determinants of bedrock river incision in the tropical Andes. The model results illustrate the problem of confounding between climatic and lithological variables, such as rock strength. Incorporating rock strength explicitly into river incision models strongly improves the explanatory power of all tested models and enables us to clarify the role of rainfall variability in controlling river incision rates.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
François Clapuyt, Veerle Vanacker, Marcus Christl, Kristof Van Oost, and Fritz Schlunegger
Solid Earth, 10, 1489–1503, https://doi.org/10.5194/se-10-1489-2019, https://doi.org/10.5194/se-10-1489-2019, 2019
Short summary
Short summary
Using state-of-the-art geomorphic techniques, we quantified a 2-order of magnitude discrepancy between annual, decadal, and millennial sediment fluxes of a landslide-affected mountainous river catchment in the Swiss Alps. Our results illustrate that the impact of a single sediment pulse is strongly attenuated at larger spatial and temporal scales by sediment transport. The accumulation of multiple sediment pulses has rather a measurable impact on the regional pattern of sediment fluxes.
He Zhang, Emilien Aldana-Jague, François Clapuyt, Florian Wilken, Veerle Vanacker, and Kristof Van Oost
Earth Surf. Dynam., 7, 807–827, https://doi.org/10.5194/esurf-7-807-2019, https://doi.org/10.5194/esurf-7-807-2019, 2019
Short summary
Short summary
We evaluated the performance of a drone system to reconstruct 3-D topography. We used a direct georeferencing method to make the pictures have precise coordinates, which also improves the survey efficiency. With both consumer-grade and professional-grade camera and drone setups, we obtained centimetric accuracy, which provides a flexible application in topography remote sensing using drones.
Maxi Castrillejo, Núria Casacuberta, Marcus Christl, Christof Vockenhuber, Hans-Arno Synal, Maribel I. García-Ibáñez, Pascale Lherminier, Géraldine Sarthou, Jordi Garcia-Orellana, and Pere Masqué
Biogeosciences, 15, 5545–5564, https://doi.org/10.5194/bg-15-5545-2018, https://doi.org/10.5194/bg-15-5545-2018, 2018
Short summary
Short summary
The investigation of water mass transport pathways and timescales is important to understand the global ocean circulation. Following earlier studies, we use artificial radionuclides introduced to the oceans in the 1950s to investigate the water transport in the subpolar North Atlantic (SPNA). For the first time, we combine measurements of the long-lived iodine-129 and uranium-236 to confirm earlier findings/hypotheses and to better understand shallow and deep ventilation processes in the SPNA.
Max Boxleitner, Susan Ivy-Ochs, Dagmar Brandova, Marcus Christl, Markus Egli, and Max Maisch
Geogr. Helv., 73, 241–252, https://doi.org/10.5194/gh-73-241-2018, https://doi.org/10.5194/gh-73-241-2018, 2018
Catharina Dieleman, Susan Ivy-Ochs, Kristina Hippe, Olivia Kronig, Florian Kober, and Marcus Christl
E&G Quaternary Sci. J., 67, 17–23, https://doi.org/10.5194/egqsj-67-17-2018, https://doi.org/10.5194/egqsj-67-17-2018, 2018
Antoine Cogez, Frédéric Herman, Éric Pelt, Thierry Reuschlé, Gilles Morvan, Christopher M. Darvill, Kevin P. Norton, Marcus Christl, Lena Märki, and François Chabaux
Earth Surf. Dynam., 6, 121–140, https://doi.org/10.5194/esurf-6-121-2018, https://doi.org/10.5194/esurf-6-121-2018, 2018
Short summary
Short summary
Sediments produced by glaciers are transported by rivers and wind toward the ocean. During their journey, these sediments are weathered, and we know that this has an impact on climate. One key factor is time, but the duration of this journey is largely unknown. We were able to measure the average time that sediment spends only in the glacial area. This time is 100–200 kyr, which is long and allows a lot of processes to act on sediments during their journey.
Lorenz Wüthrich, Claudio Brändli, Régis Braucher, Heinz Veit, Negar Haghipour, Carla Terrizzano, Marcus Christl, Christian Gnägi, and Roland Zech
E&G Quaternary Sci. J., 66, 57–68, https://doi.org/10.5194/egqsj-66-57-2017, https://doi.org/10.5194/egqsj-66-57-2017, 2017
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
Maarten Lupker, Jérôme Lavé, Christian France-Lanord, Marcus Christl, Didier Bourlès, Julien Carcaillet, Colin Maden, Rainer Wieler, Mustafizur Rahman, Devojit Bezbaruah, and Liu Xiaohan
Earth Surf. Dynam., 5, 429–449, https://doi.org/10.5194/esurf-5-429-2017, https://doi.org/10.5194/esurf-5-429-2017, 2017
Short summary
Short summary
We use geochemical approaches (10Be) on river sediments to quantify the erosion rates across the Tsangpo-Brahmaputra (TB) catchment in the eastern Himalayas. Our approach confirms the high erosion rates in the eastern Himalayan syntaxis region and we suggest that the abrasion of landslide material in the syntaxis is a key process in explaining how erosion signals are transferred to the sediment load.
Eric Laloy, Koen Beerten, Veerle Vanacker, Marcus Christl, Bart Rogiers, and Laurent Wouters
Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017, https://doi.org/10.5194/esurf-5-331-2017, 2017
Short summary
Short summary
Over very long timescales, 100 000 years or more, landscapes may drastically change. Sediments preserved in these landscapes have a cosmogenic radionuclide inventory that tell us when and how fast such changes took place. In this paper, we provide first evidence of an elevated long-term erosion rate of the northwestern Campine Plateau (lowland Europe), which can be explained by the loose nature of the subsoil.
Jean L. Dixon, Friedhelm von Blanckenburg, Kurt Stüwe, and Marcus Christl
Earth Surf. Dynam., 4, 895–909, https://doi.org/10.5194/esurf-4-895-2016, https://doi.org/10.5194/esurf-4-895-2016, 2016
Short summary
Short summary
We quantify the glacial legacy of Holocene erosion at the eastern edge of the European Alps and add insight to the debate on drivers of Alpine erosion. We present the first data explicitly comparing 10Be-based erosion rates in previously glaciated and non-glaciated basins (n = 26). Erosion rates vary 5-fold across the region, correlating with local topography and glacial history. Our approach and unique study site allow us to isolate the role of glacial topographic legacies from other controls.
Joan Govaerts, Koen Beerten, and Johan ten Veen
The Cryosphere, 10, 2907–2922, https://doi.org/10.5194/tc-10-2907-2016, https://doi.org/10.5194/tc-10-2907-2016, 2016
Short summary
Short summary
The Rupelian Clay in the Netherlands is currently the subject of a feasibility study with respect to the storage of radioactive waste in the Netherlands (OPERA-project). Many features need to be considered in the assessment of the long-term evolution of the natural environment surrounding a geological waste disposal facility. One of these is permafrost development since it may have an impact on various components of the disposal system.
A. Molina, V. Vanacker, E. Brisson, D. Mora, and V. Balthazar
Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, https://doi.org/10.5194/hess-19-4201-2015, 2015
Short summary
Short summary
Andean catchments play a key role in the provision of freshwater resources. The development of megacities in the inter-Andean valleys raises severe concerns about growing water scarcity. This study is one of the first long-term (1970s-now) analyses of the role of land cover and climate change on provision and regulation of streamflow in the tropical Andes. Forest conversion had the largest impact on streamflow, leading to a 10 % net decrease in streamflow over the last 40 years.
C. Elsässer, D. Wagenbach, I. Levin, A. Stanzick, M. Christl, A. Wallner, S. Kipfstuhl, I. K. Seierstad, H. Wershofen, and J. Dibb
Clim. Past, 11, 115–133, https://doi.org/10.5194/cp-11-115-2015, https://doi.org/10.5194/cp-11-115-2015, 2015
B. Rogiers, K. Beerten, T. Smeekens, D. Mallants, M. Gedeon, M. Huysmans, O. Batelaan, and A. Dassargues
Hydrol. Earth Syst. Sci., 17, 5155–5166, https://doi.org/10.5194/hess-17-5155-2013, https://doi.org/10.5194/hess-17-5155-2013, 2013
Related subject area
Cosmogenic nuclide dating
Technical note: Altitude scaling of 36Cl production from Fe
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Technical note: Optimizing the in situ cosmogenic 36Cl extraction and measurement workflow for geologic applications
Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand
Last ice sheet recession and landscape emergence above sea level in east-central Sweden, evaluated using in situ cosmogenic 14C from quartz
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Regional beryllium-10 production rate for the mid-elevation mountainous regions in central Europe, deduced from a multi-method study of moraines and lake sediments in the Black Forest
Short communication: Cosmogenic noble gas depletion in soils by wildfire heating
Early Holocene ice retreat from Isle Royale in the Laurentian Great Lakes constrained with 10Be exposure-age dating
Technical note: Studying lithium metaborate fluxes and extraction protocols with a new, fully automated in situ cosmogenic 14C processing system at PRIME Lab
Cosmogenic 10Be in pyroxene: laboratory progress, production rate systematics, and application of the 10Be–3He nuclide pair in the Antarctic Dry Valleys
Technical note: A software framework for calculating compositionally dependent in situ 14C production rates
10Be age control of glaciation in the Beartooth Mountains, USA, from the latest Pleistocene through the Holocene
Technical note: Evaluating a geographical information system (GIS)-based approach for determining topographic shielding factors in cosmic-ray exposure dating
Combined linear-regression and Monte Carlo approach to modeling exposure age depth profiles
Cosmogenic nuclide weathering biases: corrections and potential for denudation and weathering rate measurements
Cosmogenic nuclide and solute flux data from central Cuban rivers emphasize the importance of both physical and chemical mass loss from tropical landscapes
Technical note: Accelerator mass spectrometry of 10Be and 26Al at low nuclide concentrations
Reconciling the apparent absence of a Last Glacial Maximum alpine glacial advance, Yukon Territory, Canada, through cosmogenic beryllium-10 and carbon-14 measurements
Cosmogenic ages indicate no MIS 2 refugia in the Alexander Archipelago, Alaska
In situ-produced cosmogenic krypton in zircon and its potential for Earth surface applications
Cosmogenic nuclide exposure age scatter records glacial history and processes in McMurdo Sound, Antarctica
Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis
Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite
Calibrating a long-term meteoric 10Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced 10Be depth profiles
Delayed and rapid deglaciation of alpine valleys in the Sawatch Range, southern Rocky Mountains, USA
Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating
Isolation of quartz for cosmogenic in situ 14C analysis
Chlorine-36∕beryllium-10 burial dating of alluvial fan sediments associated with the Mission Creek strand of the San Andreas Fault system, California, USA
Angus K. Moore and Darryl E. Granger
Geochronology, 6, 541–552, https://doi.org/10.5194/gchron-6-541-2024, https://doi.org/10.5194/gchron-6-541-2024, 2024
Short summary
Short summary
Cosmogenic nuclide geochronology requires accurately scaling production rates with altitude. The energy spectrum of cosmic radiation changes with altitude, and reactions that are sensitive to different energies may have different scaling behavior. Here, we model the altitude scaling of 36Cl production from Fe and evaluate this model against calibration data. The data are broadly consistent with the prediction of larger-altitude scaling factors for 36Cl from Fe than for other reactions.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024, https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary
Short summary
We present an improved workflow for extracting and measuring chlorine isotopes in rocks and minerals. Experiments on seven geologic samples demonstrate that our workflow provides reliable results while offering several distinct advantages over traditional methods. Most notably, our workflow reduces the amount of isotopically enriched chlorine spike used per rock sample by up to 95 %, which will allow researchers to analyze more samples using their existing laboratory supplies.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-18, https://doi.org/10.5194/gchron-2024-18, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
Cosmogenic nuclide exposure dating is an exceptional tool for reconstructing glacier histories, but reconstructions based on common target nuclides (e.g., 10Be) can be costly and time consuming to generate. Here, we present a low-cost proof-of-concept 21Ne exposure age chronology from Lassen Volcanic National Park, CA, USA that broadly agrees with nearby 10Be chronologies but at lower precision.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
Eric W. Portenga, David J. Ullman, Lee B. Corbett, Paul R. Bierman, and Marc W. Caffee
Geochronology, 5, 413–431, https://doi.org/10.5194/gchron-5-413-2023, https://doi.org/10.5194/gchron-5-413-2023, 2023
Short summary
Short summary
New exposure ages of glacial erratics on moraines on Isle Royale – the largest island in North America's Lake Superior – show that the Laurentide Ice Sheet did not retreat from the island nor the south shores of Lake Superior until the early Holocene, which is later than previously thought. These new ages unify regional ice retreat histories from the mainland, the Lake Superior lake-bottom stratigraphy, underwater moraines, and meltwater drainage pathways through the Laurentian Great Lakes.
Nathaniel Lifton, Jim Wilson, and Allie Koester
Geochronology, 5, 361–375, https://doi.org/10.5194/gchron-5-361-2023, https://doi.org/10.5194/gchron-5-361-2023, 2023
Short summary
Short summary
We describe a new, fully automated extraction system for in situ 14C at PRIME Lab that incorporates more reliable components and designs than our original systems. We use a LiBO2 flux to dissolve a quartz sample in oxygen after removing contaminant 14C with a lower-temperature combustion step. Experiments with new Pt/Rh sample boats demonstrated reduced procedural blanks, and analyses of well-characterized intercomparison materials tested the effects of process variables on 14C yields.
Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco
Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, https://doi.org/10.5194/gchron-5-301-2023, 2023
Short summary
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.
Alexandria J. Koester and Nathaniel A. Lifton
Geochronology, 5, 21–33, https://doi.org/10.5194/gchron-5-21-2023, https://doi.org/10.5194/gchron-5-21-2023, 2023
Short summary
Short summary
In situ 14C’s short half-life (5.7 kyr) is unique among cosmogenic nuclides, making it sensitive to complex exposure and burial histories since 25 ka. Current extraction methods focus on quartz, but the ability to extract it from other minerals would expand applications. We developed MATLAB® scripts to calculate in situ 14C production rates from a broad range of mineral compositions. Results confirm O, Si, Al, and Mg as key targets but also find significant production from Na for the first time.
Aaron M. Barth, Elizabeth G. Ceperley, Claire Vavrus, Shaun A. Marcott, Jeremy D. Shakun, and Marc W. Caffee
Geochronology, 4, 731–743, https://doi.org/10.5194/gchron-4-731-2022, https://doi.org/10.5194/gchron-4-731-2022, 2022
Short summary
Short summary
Deposits left behind by past glacial activity provide insight into the previous size and behavior of glaciers and act as another line of evidence for past climate. Here we present new age control for glacial deposits in the mountains of Montana and Wyoming, United States. While some deposits indicate glacial activity within the last 2000 years, others are shown to be older than previously thought, thus redefining the extent of regional Holocene glaciation.
Felix Martin Hofmann
Geochronology, 4, 691–712, https://doi.org/10.5194/gchron-4-691-2022, https://doi.org/10.5194/gchron-4-691-2022, 2022
Short summary
Short summary
If topographical obstructions are present in the surroundings of sampling sites, exposure ages of rock surfaces need to be corrected. A toolbox for the ESRI ArcGIS software allows for quantifying topographic shielding with a digital elevation model, but it has only been validated with few field data. In this study, the output of the toolbox is evaluated with a more extensive dataset. If suitable elevation data are chosen, the toolbox provides a sound approach to determine topographic shielding.
Yiran Wang and Michael E. Oskin
Geochronology, 4, 533–549, https://doi.org/10.5194/gchron-4-533-2022, https://doi.org/10.5194/gchron-4-533-2022, 2022
Short summary
Short summary
When first introduced together with the depth profile technique to determine the surface exposure age, the linear inversion approach has suffered with the drawbacks of not incorporating erosion and muons into calculation. In this paper, we increase the accuracy and applicability of the linear inversion approach by fully considering surface erosion, muogenic production, and radioactive decay, while maintaining its advantage of being straightforward to determine an exposure age.
Richard F. Ott, Sean F. Gallen, and Darryl E. Granger
Geochronology, 4, 455–470, https://doi.org/10.5194/gchron-4-455-2022, https://doi.org/10.5194/gchron-4-455-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are a tool to quantify denudation – the total removal of mass from near the Earth's surface. Chemical weathering can introduce biases to cosmogenic-nuclide-based denudation rates measurements. Here, we investigate the effects of weathering on cosmogenic nuclides and develop tools to correct for this influence. Our results highlight which additional measurements are required to determine accurate denudation rates in regions where weathering is not negligible.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Klaus M. Wilcken, Alexandru T. Codilean, Réka-H. Fülöp, Steven Kotevski, Anna H. Rood, Dylan H. Rood, Alexander J. Seal, and Krista Simon
Geochronology, 4, 339–352, https://doi.org/10.5194/gchron-4-339-2022, https://doi.org/10.5194/gchron-4-339-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are now widely applied in the Earth sciences; however, more recent applications often push the analytical limits of the technique. Our study presents a comprehensive method for analysis of cosmogenic 10Be and 26Al samples down to isotope concentrations of a few thousand atoms per gram of sample, which opens the door to new and more varied applications of cosmogenic nuclide analysis.
Brent M. Goehring, Brian Menounos, Gerald Osborn, Adam Hawkins, and Brent Ward
Geochronology, 4, 311–322, https://doi.org/10.5194/gchron-4-311-2022, https://doi.org/10.5194/gchron-4-311-2022, 2022
Short summary
Short summary
We explored surface exposure dating with two nuclides to date two sets of moraines from the Yukon Territory and explain the reasoning for the observed ages. Results suggest multiple processes, including preservation of nuclides from a prior exposure period, and later erosion of the moraines is required to explain the data. Our results only allow for the older moraines to date to Marine Isotope Stage 3 or 4 and the younger moraines to date to the very earliest Holocene.
Caleb K. Walcott, Jason P. Briner, James F. Baichtal, Alia J. Lesnek, and Joseph M. Licciardi
Geochronology, 4, 191–211, https://doi.org/10.5194/gchron-4-191-2022, https://doi.org/10.5194/gchron-4-191-2022, 2022
Short summary
Short summary
We present a record of ice retreat from the northern Alexander Archipelago, Alaska. During the last ice age (~ 26 000–19 000 years ago), these islands were covered by the Cordilleran Ice Sheet. We tested whether islands were ice-free during the last ice age for human migrants moving from Asia to the Americas. We found that these islands became ice-free between ~ 15 100 years ago and ~ 16 000 years ago, and thus these islands were not suitable for human habitation during the last ice age.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley
Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021, https://doi.org/10.5194/gchron-3-395-2021, 2021
Short summary
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Joseph P. Tulenko, William Caffee, Avriel D. Schweinsberg, Jason P. Briner, and Eric M. Leonard
Geochronology, 2, 245–255, https://doi.org/10.5194/gchron-2-245-2020, https://doi.org/10.5194/gchron-2-245-2020, 2020
Short summary
Short summary
We investigate the timing and rate of retreat for three alpine glaciers in the southern Rocky Mountains to test whether they followed the pattern of global climate change or were majorly influenced by regional forcing mechanisms. We find that the latter is most likely for these glaciers. Our conclusions are based on a new 10Be chronology of alpine glacier retreat. We quantify retreat rates for each valley using the BACON program in R, which may be of interest for the audience of Geochronology.
Greg Balco
Geochronology, 2, 169–175, https://doi.org/10.5194/gchron-2-169-2020, https://doi.org/10.5194/gchron-2-169-2020, 2020
Short summary
Short summary
Geologic dating methods generally do not directly measure ages. Instead, interpreting a geochemical measurement as an age requires a middle layer of calculations and supporting data, and the fact that this layer continually improves is an obstacle to synoptic analysis of geochronological data. This paper describes a prototype data management and analysis system that addresses this obstacle by making the middle-layer calculations transparent and dynamic to the user.
Keir A. Nichols and Brent M. Goehring
Geochronology, 1, 43–52, https://doi.org/10.5194/gchron-1-43-2019, https://doi.org/10.5194/gchron-1-43-2019, 2019
Short summary
Short summary
We describe observations of anomalously high measurements of C-14 made from geologic material. We undertake a systematic investigation to identify the source of contamination, which we hypothesise is sourced from a commonly used method that is used prior to sample analysis. We find that the method does introduce modern carbon to samples and elevates C-14 measurements. We describe a standard procedure that effectively removes contamination from the aforementioned method.
Greg Balco, Kimberly Blisniuk, and Alan Hidy
Geochronology, 1, 1–16, https://doi.org/10.5194/gchron-1-1-2019, https://doi.org/10.5194/gchron-1-1-2019, 2019
Short summary
Short summary
This article applies a new geochemical dating method to determine the age of sedimentary deposits useful in reconstructing slip rates on a major fault system.
Cited articles
Akçar, N., Ivy-Ochs, S., Alfimov, V., Schlunegger, F., Claude, A., Reber, R., Christl, M., Vockenhuber, C., Dehnert, A., Rahn, M., and Schlüchter, C.: Isochron-burial dating of glaciofluvial deposits: First results from the Swiss Alps, Earth Surf. Process. Landf., 42, 2414–2425, https://doi.org/10.1002/esp.4201, 2017.
Balco, G. and Rovey, C. W.: An isochron method for cosmogenic-nuclide dating
of buried soils and sediments, Am. J. Sci., 308, 1083–1114, https://doi.org/10.2475/10.2008.02, 2008.
Balco, G., Stone, J. O. H., and Mason, J. A.: Numerical ages for
Plio-Pleistocene glacial sediment sequences by 26Al 10Be dating of quartz in buried paleosols, Earth Planet. Sci. Lett., 232, 179–191, https://doi.org/10.1016/j.epsl.2004.12.013, 2005.
Bats, H., Paulissen, E., and Jacobs, P.: De grindgroeve Hermans te As. Een
beschermd landschap, Monumenten en Landschappen, 14, 56–63, 1995.
Beerten, K., De Craen, M., and Wouters, L.: Patterns and estimates of
post-Rupelian burial and erosion in the Campine area, north-eastern Belgium,
Phys. Chem. Earth, 64, 12–20, https://doi.org/10.1016/j.pce.2013.04.003, 2013.
Beerten, K., Heyvaert, V. M. A., Vandenberghe, D., Van Nieuland, J., and
Bogemans, F.: Revising the Gent Formation: a new lithostratigraphy for
Quaternary wind-dominated sand deposits in Belgium, Geol. Belg., 20,
95–102, https://doi.org/10.20341/gb.2017.006, 2017.
Beerten, K., Dreesen, R., Janssen, J., and Van Uyten, D.: The Campine
Plateau, in: Landscapes and Landforms of Belgium and Luxembourg, edited by:
Demoulin, A., Springer, Berlin, Germany, 193–214, https://doi.org/10.1007/978-3-319-58239-9_12, 2018.
Braucher, R., del Castillo, P., Siame, L., Hidy, A. J., and Bourlés,
D. L.: Determination of both exposure time and erosion rate from an in
situ-produced 10Be depth profile: A mathematical proof of uniqueness.
Model sensitivity and applications to natural cases, Quat. Geochronol., 4,
56–67, https://doi.org/10.1016/j.quageo.2008.06.001, 2009.
Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D. L.: Production
of cosmogenic radionuclides at great depth: A multi element approach, Earth
Planet. Sci. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
Bristow, C. S. and Best, J. L.: Braided rivers: perspectives and problems,
in: Braided Rivers, Geological Society Special Publication No. 75, edited
by: Best, J. L. and Bristow, C. S., Cambridge University Press, London, UK,
1-H, https://doi.org/10.1017/S001675680001253X, 1993.
Busschers, F. S., Kasse, C., van Balen, R. T., Vandenberghe, J., Cohen, K. M., Weerts, H. J. T., Wallinga, J., Johns, C., Cleveringa, P., and Bunnik, F. P. M.: Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and
glacio-isostacy, Quat. Sci. Rev., 26, 3216–3248, https://doi.org/10.1016/j.quascirev.2007.07.013, 2007.
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D.:
Determination of the 10Be half-life by multicollector ICP-MS and liquid
scintillation counting, Nucl. Instrum. Methods Phys. Res. B: Beam Interact.
Mater. At., 268, 192–199, https://doi.org/10.1016/j.nimb.2009.09.012, 2010.
Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J.,
Alfimov, V., and Synal, H. A.: The ETH Zurich AMS facilities: Performance
parameters and reference materials, Nucl. Instrum. Methods Phys. Res. B:
Beam Interact. Mater. At., 294, 29–38, https://doi.org/10.1016/J.NIMB.2012.03.004, 2013.
Claude, A., Akçar, N., Ivy-Ochs, S., Schlunegger, F., Kubik, P.,
Dehnert, A., Kuhlemann, J., Rahn, M., and Schlüchter, C.: Timing of
early Quaternary accumulation in the Swiss Alpine Foreland, Geomorphology,
276, 71–85, https://doi.org/10.1016/j.geomorph.2016.10.016, 2017.
Cohen, K. M. and Gibbard, P.: Global chronostratigraphical correlation table for the last 2.7 million years, Subcommission on Quaternary Stratigraphy
(International Commission on Stratigraphy), Cambridge, United Kingdom, https://doi.org/10.17632/dtsn3xn3n6.3,
2019.
Covault, J. A., Craddock, W. H., Romans, B. W., Fildani, A., and Gosai, M.:
Spatial and temporal variations in landscape evolution: Historic and
longer-term sediment flux through global catchments, J. Geol., 121, 35–56,
https://doi.org/10.1086/668680, 2013.
De Brue, H., Poesen, J., and Notebaert, B.: What was the transport mode of
large boulders in the Campine Plateau and the lower Meuse valley during the
mid-Pleistocene?, Geomorphology, 228, 568–578, https://doi.org/10.1016/j.geomorph.2014.10.010, 2015.
Deckers, J., Vernes, R. W., Dabekaussen, W., Den Dulk, M., Doornenbal, J. C., Dusar, M., Hummelman, H. J., Matthijs, J., Menkovic, A., Reindersma, R. N., Walstra, J., Westerhoff, W. E., and Witmans, N.: Geologisch en hydrogeologisch 3D model van het Cenozoïcum van de Roerdalslenk in Zuidoost-Nederland en Vlaanderen (H3O-Roerdalslenk), Studie uitgevoerd door VITO, TNO-Geologische Dienst Nederland en de Belgische Geologische Dienst in opdracht van de Afdeling Land en Bodembescherming, Ondergrond, Natuurlijke Rijkdommen van de Vlaamse overheid, de Afdeling Operationeel Waterbeheer van de Vlaamse Milieumaatschappij, de Nederlandse Provincie Limburg en de Nederlandse Provincie Noord-Brabant, VITO en TNO-Geologische Dienst Nederland, VITO-rapport 2014/ETE/R/1, 205 pp., https://archief.onderzoek.omgeving.vlaanderen.be/Onderzoek-2314144 (last access: 24 February 2022), 2014.
Dehaen, E.: Unraveling the characteristics of the Early and Middle
Pleistocene Meuse River: study of the Zutendaal gravels on the Campine
Plateau, MSc thesis, Faculty of Sciences, UCLouvain, Belgium, 63 pp., http://hdl.handle.net/2078.1/thesis:31824 (last access: 28 February 2022), 2021.
Dehnert, A., Kracht, O., Preusser, F., Akçar, N., Kemna, H. A., Kubik,
P. W., and Schlüchter, C.: Cosmogenic isotope burial dating of fluvial
sediments from the Lower Rhine Embayment, Germany, Quat. Geochronol., 6,
313–325, https://doi.org/10.1016/j.quageo.2011.03.005, 2011.
Derese, C., Vandenberghe, D., Paulissen, E., and Van den haute, P.:
Revisiting a type locality for Late Glacial aeolian sand deposition in NW
Europe: Optical dating of the dune complex at Opgrimbie (NE Belgium),
Geomorphology, 109, 27–35, https://doi.org/10.1016/j.geomorph.2008.08.022, 2009.
Dunai, T. J. (Ed.): Cosmogenic Nuclides, Cambridge University Press, New
York, USA, https://doi.org/10.1017/CBO9780511804519, 2010.
Erlanger, E. D., Granger, D. E., and Gibbon, R. J.: Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces, Geology, 40, 1019–1022, https://doi.org/10.1130/G33172.1, 2012.
GDI-Vlaanderen: Digitaal Hoogtemodel Vlaanderen II, Version 2014.01, https://download.vlaanderen.be/Producten/Detail?id=937&title=Digitaal_Hoogtemodel_Vlaanderen_II_DSM_raster_1_m, last access: 24 February 2022.
Granger, D. E. and Muzikar, P. F.: Dating sediment burial with in
situ-produced cosmogenic nuclides: theory, techniques, and limitations,
Earth Planet. Sci. Lett., 188, 269–281, https://doi.org/10.1016/S0012-821X(01)00309-0, 2001.
Gullentops, F., Janssen, J., and Paulissen, E.: Saalian nivation activity in
the Bosbeek valley, NE Belgium, Geologie en Mijnbouw, 72, 125–130, 1993.
Gullentops, F., Bogemans, F., de Moor, G., Paulissen, E., and Pissart,
A.: Quaternary lithostratigraphic units (Belgium), Geol. Belg., 4,
153–164, https://doi.org/10.20341/gb.2014.051, 2001.
Hancock, G. S., Anderson, R. S., Chadwick, O. A., and Finkel, R. C.: Dating
fluvial terraces with 10Be and 26Al profiles: application to the
Wind River, Wyoming, Geomorphology, 27, 41–60,
https://doi.org/10.1016/S0169-555X(98)00089-0, 1999.
Hidy, A. J., Gosse, J. C., Pederson, J. L., Mattern, J. P., and Finkel, R.
C.: A geologically constrained Monte Carlo approach to modeling exposure
ages from profiles of cosmogenic nuclides: An example from Lees Ferry,
Arizona, Geom. Geophys., 11, Q0AA10, https://doi.org/10.1029/2010GC003084, 2010.
Hidy, A. J., Gosse, J. C., Sanborn, P., and Froese, D. G.: Age-erosion
constraints on an Early Pleistocene paleosol in Yukon, Canada, with profiles
of 10Be and 26Al: Evidence for a significant loess cover effect on
cosmogenic nuclide production rates, Catena, 165, 260–271, https://doi.org/10.1016/j.catena.2018.02.009, 2018.
Knudsen, M. F., Egholm, D. L., and Jansen, J. D.: Time-integrating cosmogenic
nuclide inventories under the influence of variable erosion, exposure, and
sediment mixing, Quat. Geochronol. 51, 110–119, https://doi.org/10.1016/j.quageo.2019.02.005, 2019.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K.,
Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse Von Gostomski,
C., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A.: A new value for
the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid
scintillation counting, Nucl. Instrum. Methods Phys. Res. B: Beam Interact.
Mater. At., 268, 187–191, https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Lachner, J., Christl, M., Müller, A. M., Suter, M., and Synal, H. A.:
10Be and 26Al low-energy AMS using He-stripping and background
suppression via an absorber, Nucl. Instrum. Methods Phys. Res. B: Beam
Interact. Mater. At., 331, 209–214, https://doi.org/10.1016/j.nimb.2013.11.034, 2014.
Laloy, E., Beerten, K., Vanacker, V., Christl, M., Rogiers, B., and Wouters, L.: Bayesian inversion of a CRN depth profile to infer Quaternary erosion of the northwestern Campine Plateau (NE Belgium), Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017, 2017.
Lauer, T., Frechen, M., Hoselmann, C., and Tsukamoto, S.: Fluvial
aggradation phases in the Upper Rhine Graben-new insights by quartz OSL
dating, Proc. Geol. Assoc., 121, 154–161, https://doi.org/10.1016/j.pgeola.2009.10.006, 2010.
Lauer, T., Weiss, M., Bernhardt, W., Heinrich, S., Rappsilber, I.,
Stahlschmidt, M. C., von Suchodoletz, H., and Wansa, S.: The Middle
Pleistocene fluvial sequence at Uichteritz, central Germany: Chronological
framework, paleoenvironmental history and early human presence during MIS 11, Geomorphology, 354, 107016, https://doi.org/10.1016/j.geomorph.2019.107016, 2020.
Le Dortz, K., Meyer, B., Sébrier, M., Braucher, R., Nazari, H.,
Benedetti, L., Fattahi, M., Bourlès, D., Foroutan, M., Siame, L.,
Rashidi, A., and Bateman, M. D.: Dating inset terraces and offset fans along
the Dehshir Fault (Iran) combining cosmogenic and OSL methods,
Geophys. J. Int., 185, 1147–1174, https://doi.org/10.1111/j.1365-246X.2011.05010.x, 2011.
Margreth, A., Gosse, J. C., and Dyke, A. S.: Quantification of subaerial and
episodic subglacial erosion rates on high latitude upland plateaus:
Cumberland Peninsula, Baffin Island, Arctic Canada, Quat. Sci. Rev. 133,
108–129, https://doi.org/10.1016/j.quascirev.2015.12.017, 2016.
Martin, L. C. P., Blard, P. H., Balco, G., Lavé, J., Delunel, R., Lifton,
N., and Laurent, V.: The CREp program and the ICE-D production rate
calibration database: A fully parameterizable and updated online tool to
compute cosmic-ray exposure ages, Quat. Geochronol., 38, 25–49, https://doi.org/10.1016/j.quageo.2016.11.006, 2017.
Miall, A. D. (Ed.): The Geology of fluvial deposits, Springer, Berlin,
Germany, https://doi.org/10.1007/978-3-662-03237-4, 1996.
Mol, J., Vandenberghe, J., and Kasse, C.: River response to variations of
periglacial climate in mid-latitude Europe, Geomorphology, 33,
131–148, https://doi.org/10.1016/S0169-555X(99)00126-9, 2000.
Nichols, K. K., Bierman, P. R., Hooke, R. L., Clapp, E. M., and Caffee, M.:
Quantifying sediment transport on desert piedmonts using 10Be and
26Al, Geomorphology, 45, 105–125, 2002.
Nichols, K. K., Bierman, P. R., Eppes, M. C., Caffee, M., Finkel, R., and
Larsen, J.: Late Quaternary history of the Chemehuevi Mountain Piedmont,
Mojave Desert, deciphered using 10Be and 26Al, Am. J. Sci., 305, 345–368, https://doi.org/10.2475/ajs.305.5.345, 2005.
Nishiizumi, K.: Cosmic ray production rates of 10Be and 26Al in
quartz from glacially polished rocks, J. Geophys. Res.-Sol. Ea., 94,
17907–17915, https://doi.org/10.1029/jb094ib12p17907, 1989.
Nishiizumi, K.: Preparation of 26Al AMS standards, J Nucl. Instrum.
Methods Phys. Res. B: Beam Interact. Mater. At., 223–224, 388–392, https://doi.org/10.1016/j.nimb.2004.04.075, 2004.
Pannekoek, A. J.: Einigen Notizen über die Terrassen in Mittel- und
Nord-Limburg, Natuurhistorisch Maandblad, 13, 89–92, 1924.
Paulissen, E.: De Morfologie en de Kwartairstratigrafie van de Maasvallei in
Belgisch Limburg, Verhandelingen van de koninklijke Vlaamse academie
voorwetenschappen, letteren en schone kunsten van België, Klasse der
Wetenschappen, 127, 1–266, 1973.
Paulissen, E.: Les nappes alluviales et les failles Quaternaires du Plateau
de Campine, in: Guides Géologiques Régionaux – Belgique, edited
by: Robaszynski, F. and Dupuis, C., Masson, Paris, France, 167–170, ISBN10 2225753946, ISBN13 9782225753947,
1983.
Portenga, E. W. and Bierman, P. R.: Understanding earth's eroding surface
with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Rixhon, G., Braucher, R., Bourlès, D., Siame, L., Bovy, B., and
Demoulin, A.: Quaternary river incision in NE Ardennes (Belgium) – Insights
from 10Be 26Al dating of river terraces, Quat. Geochronol., 6, 273–284, https://doi.org/10.1016/j.quageo.2010.11.001, 2011.
Rixhon, G., Bourlès, D. L., Braucher, R., Siame, L., Cordy, J. M., and
Demoulin, A.: 10Be dating of the Main Terrace level in the Amblève
valley (Ardennes, Belgium): New age constraint on the archaeological and
palaeontological filling of the Belle-Roche palaeokarst, Boreas, 43,
528–542, https://doi.org/10.1111/bor.12066, 2014.
Rizza, M., Abdrakhmatov, K., Walker, R., Braucher, R., Guillou, V., Carr,
A. S., Campbell, G., McKenzie, D., Jackson, J., Aumaître, G.,
Bourlès, D. L., and Keddadouche, K.: Rate of slip from multiple
Quaternary dating methods and paleoseismic investigations along the
Talas-Fergana Fault: tectonic implications for the Tien Shan Range,
Tectonics, 38, 2477–2505, https://doi.org/10.1029/2018TC005188, 2019.
Rodés, A., Pallàs, R., Braucher, R., Moreno, X., Masana, E., and
Bourlès, D.: Effect of density uncertainties in cosmogenic 10Be
depth-profiles: Dating a cemented Pleistocene alluvial fan (Carboneras
Fault, SE Iberia), Quat. Geochronol., 6, 186–194,
https://doi.org/10.1016/j.quageo.2010.10.004, 2011.
Schaller, M., von Blanckenburg, F., Hovius, N., and Kubik, P. W.: Large-scale
erosion rates from in situ-produced cosmogenic nuclides in European river
sediments, Earth Planet. Sci. Lett., 188, 441–458,
https://doi.org/10.1016/S0012-821X(01)00320-X, 2001.
Schaller, M., Ehlers, T. A., Blum, J. D., and Kallenberg, M. A.: Quantifying
glacial moraine age, denudation, and soil mixing with cosmogenic nuclide
depth profiles, J. Geophys. Res. 114, F01012, https://doi.org/10.1029/2007JF000921, 2009.
Schoonejans, J., Vanacker, V., Opfergelt, S., Granet, M., and Chabaux, F.:
Coupling uranium series and 10Be cosmogenic radionuclides to evaluate
steady-state soil thickness in the Betic Cordillera, Chem. Geol., 446,
99–109, https://doi.org/10.1016/J.CHEMGEO.2016.03.030, 2016.
Siame, L., Bellier, O., Braucher, R., Sébrier, M., Cushing, M.,
Bourlès, D., Hamelin, B., Baroux, E., de Voogd, B., Raisbeck, G., and
Yiou, F.: Local erosion rates versus active tectonics: Cosmic ray exposure
modelling in Provence (south-east France), Earth Planet. Sci. Lett., 220,
345–364, https://doi.org/10.1016/S0012-821X(04)00061-5, 2004.
Sougnez, N. and Vanacker, V.: The topographic signature of Quaternary tectonic uplift in the Ardennes massif (Western Europe), Hydrol. Earth Syst. Sci., 15, 1095–1107, https://doi.org/10.5194/hess-15-1095-2011, 2011.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys.
Res.-Sol. Ea., 105, 23753–23759, https://doi.org/10.1029/2000jb900181, 2000.
Taylor, J. R. (Ed.): An introduction to error analysis, University science
books, Sausalito, California, USA, ISBN10 9780935702750, ISBN13 978-0935702750, 1997.
U.S. Geological Survey's EROS Data Center: Global 30 Arc-Second Elevation (GTOPO30), https://doi.org/10.5066/F7DF6PQS, 1996.
Vanacker, V., von Blanckenburg, F., Hewawasam, T., and Kubik, P. W.:
Constraining landscape development of the Sri Lankan escarpment with
cosmogenic nuclides in river sediment, Earth Planet. Sci. Lett., 253,
402–414, https://doi.org/10.1016/j.epsl.2006.11.003, 2007.
Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Campforts, B., and Kubik, P. W.: Transient river response, captured by channel steepness and its concavity, Geomorphology, 228, 234–243, https://doi.org/10.1016/j.geomorph.2014.09.013, 2015.
Van Balen, R. T., Houtgast, R. F., van der Wateren, F. M., Vandenberghe, J.,
and Bogaart, P. W.: Sediment budget and tectonic evolution of the Meuse
catchment in the Ardennes and the Roer Valley Rift System, Glob. Planet Change, 27, 113–129, https://doi.org/10.1016/S0921-8181(01)00062-5, 2000.
van den Berg, M.: Fluvial sequences of the Meuse – a 10 Ma record of
neotectonics and climate change at various time-scales, PhD thesis,
Wageningen University, 181 pp., https://library.wur.nl/WebQuery/wurpubs/fulltext/210510 (last access: 6 March 2022), 1996.
Vandenberghe, D., Vanneste, K., Verbeeck, K., Paulissen, E., Buylaert,
J.-P., De Corte, F., and Van den haute, P.: Late Weichselian and Holocene
earthquake events along the Geleen fault in NE Belgium: OSL age constraints,
Quat. Int., 199, 56–74, https://doi.org/10.1016/j.quaint.2007.11.017, 2009.
Vandenberghe, J.: Timescale, Climate and River Development, Quat. Sci. Rev.,
14, 631–639, https://doi.org/10.1016/0277-3791(95)00043-O, 1995.
Vandenberghe, J.: A typology of Pleistocene cold-based rivers, Quat. Int.,
79, 111–121, https://doi.org/10.1016/S1040-6182(00)00127-0, 2001.
Vandermaelen, N., Vanacker, V., Clapuyt, F., Christl, M., and Beerten, K.:
Reconstructing the depositional history of Pleistocene fluvial deposits based on grain size, elemental geochemistry and in situ 10Be data, Geomorphology, 402, 108127, https://doi.org/10.1016/j.geomorph.2022.108127, 2022a.
Vandermaelen, N., Clapuyt, F., and Vanacker, V.: Repository hosting resources for numerical modelling of complex CRN accumulation history, Github [code], available at: https://github.com/geo-team-vv/crn_depth_profiles, last access: 8 December 2022b.
Vandermaelen, N., Beerten, K., Clapuyt, F., Christl, M., and Vanacker, V.: CRN Datasets and numerical modeling tools for geochronological study at geosite Hermans on the Campine Plateau, UCLouvain DataVerse [data set], https://doi.org/10.14428/DVN/GGRVT0, last access: 8 December 2022c.
Vanneste, K., Verbeeck, K., Camelbeeck, T., Paulissen, E., Meghraoui, M.,
Renardy, F., Jongmans, D., and Frechen, M.: Surface-rupturing history of the
Bree fault scarp,Roer Valley graben: Evidence for six events since the late
Pleistocene, J. Seismol., 5, 329–359, 2001.
von Blanckenburg, F., Belshaw, N. S., and O'Nions, R. K.: Separation of
9Be and cosmogenic 10Be from environmental materials and SIMS
isotope dilution analysis, Chem. Geol., 129, 93–99, https://doi.org/10.1016/0009-2541(95)00157-3, 1996.
Westerhoff, W. E., Kemna, H. A., and Boenigk, W.: The confluence area of
Rhine, Meuse, and Belgian rivers: Late Pliocene and Early Pleistocene
fluvial history of the northern Lower Rhine Embayment, Neth. J. Geosci., 87,
107–125, https://doi.org/10.1017/S0016774600024070, 2008.
Xu, L., Ran, Y., Liu, H., and Li, A.: 10Be-derived sub-Milankovitch
chronology of Late Pleistocene alluvial terraces along the piedmont of SW
Tian Shan, Geomorphology, 328, 173–182, https://doi.org/10.1016/j.geomorph.2018.12.009, 2019.
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with...