Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-713-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-713-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constraining the aggradation mode of Pleistocene river deposits based on cosmogenic radionuclide depth profiling and numerical modelling
Nathan Vandermaelen
CORRESPONDING AUTHOR
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
Koen Beerten
Engineered and Geosystems Analysis, Waste and Disposal, Belgian
Nuclear Research Centre SCK CEN, Boeretang 200, 2400 Mol, Belgium
François Clapuyt
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
Fonds de la Recherche Scientifique FRS-FNRS, Brussels, Belgium
Marcus Christl
Laboratory of Ion Beam Physics, Department of Physics, ETH Zurich,
Zurich, Switzerland
Veerle Vanacker
CORRESPONDING AUTHOR
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
Related authors
No articles found.
Niklas Kappelt, Eric Wolff, Marcus Christl, Christof Vockenhuber, Philip Gautschi, and Raimund Muscheler
Clim. Past, 21, 1585–1594, https://doi.org/10.5194/cp-21-1585-2025, https://doi.org/10.5194/cp-21-1585-2025, 2025
Short summary
Short summary
By measuring the radioactive decay of atmospherically produced 36Cl and 10Be in an ice core drilled in West Antarctica, we were able to determine the age of the deepest sample close to bedrock to be about 550 thousand years old. This means that the ice in this location, known as Skytrain Ice Rise, has survived several warm periods in the past, at least since marine isotope stage 11.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Anne-Marie Wefing, Annabel Payne, Marcel Scheiwiller, Christof Vockenhuber, Marcus Christl, Toste Tanhua, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-1322, https://doi.org/10.5194/egusphere-2025-1322, 2025
Short summary
Short summary
Here we used the anthropogenic radionuclides I-129 and U-236 as tracers for Atlantic Water circulation in the Arctic Ocean. New data collected in 2021 allowed to assess the distribution of Atlantic Water and mixing with Pacific-origin water in the surface layer in that year. By using historical tracer data from 2011 to 2021, we looked into temporal changes of the circulation and found slightly older waters in the central Arctic Ocean in 2021 compared to 2015.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Preprint withdrawn
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Alberto Casillas-Trasvina, Bart Rogiers, Koen Beerten, Laurent Wouters, and Kristine Walraevens
Hydrol. Earth Syst. Sci., 26, 5577–5604, https://doi.org/10.5194/hess-26-5577-2022, https://doi.org/10.5194/hess-26-5577-2022, 2022
Short summary
Short summary
Heat in the subsurface can be used to characterize aquifer flow behaviour. The temperature data obtained can be useful for understanding the groundwater flow, which is of particular importance in waste disposal studies. Satellite images of surface temperature and a temperature–time curve were implemented in a heat transport model. Results indicate that conduction plays a major role in the aquifer and support the usefulness of temperature measurements.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Min Lu, Bart Rogiers, Koen Beerten, Matej Gedeon, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 26, 3629–3649, https://doi.org/10.5194/hess-26-3629-2022, https://doi.org/10.5194/hess-26-3629-2022, 2022
Short summary
Short summary
Lowland rivers and shallow aquifers are closely coupled. We study their interactions here using a combination of impulse response modeling and hydrological data analysis. The results show that the lowland catchments are groundwater dominated and that the hydrological system from precipitation impulse to groundwater inflow response is a very fast response regime. This study also provides an alternative method to estimate groundwater inflow to rivers from the perspective of groundwater level.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Marius L. Huber, Maarten Lupker, Sean F. Gallen, Marcus Christl, and Ananta P. Gajurel
Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, https://doi.org/10.5194/esurf-8-769-2020, 2020
Short summary
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
Cited articles
Akçar, N., Ivy-Ochs, S., Alfimov, V., Schlunegger, F., Claude, A., Reber, R., Christl, M., Vockenhuber, C., Dehnert, A., Rahn, M., and Schlüchter, C.: Isochron-burial dating of glaciofluvial deposits: First results from the Swiss Alps, Earth Surf. Process. Landf., 42, 2414–2425, https://doi.org/10.1002/esp.4201, 2017.
Balco, G. and Rovey, C. W.: An isochron method for cosmogenic-nuclide dating
of buried soils and sediments, Am. J. Sci., 308, 1083–1114, https://doi.org/10.2475/10.2008.02, 2008.
Balco, G., Stone, J. O. H., and Mason, J. A.: Numerical ages for
Plio-Pleistocene glacial sediment sequences by 26Al 10Be dating of quartz in buried paleosols, Earth Planet. Sci. Lett., 232, 179–191, https://doi.org/10.1016/j.epsl.2004.12.013, 2005.
Bats, H., Paulissen, E., and Jacobs, P.: De grindgroeve Hermans te As. Een
beschermd landschap, Monumenten en Landschappen, 14, 56–63, 1995.
Beerten, K., De Craen, M., and Wouters, L.: Patterns and estimates of
post-Rupelian burial and erosion in the Campine area, north-eastern Belgium,
Phys. Chem. Earth, 64, 12–20, https://doi.org/10.1016/j.pce.2013.04.003, 2013.
Beerten, K., Heyvaert, V. M. A., Vandenberghe, D., Van Nieuland, J., and
Bogemans, F.: Revising the Gent Formation: a new lithostratigraphy for
Quaternary wind-dominated sand deposits in Belgium, Geol. Belg., 20,
95–102, https://doi.org/10.20341/gb.2017.006, 2017.
Beerten, K., Dreesen, R., Janssen, J., and Van Uyten, D.: The Campine
Plateau, in: Landscapes and Landforms of Belgium and Luxembourg, edited by:
Demoulin, A., Springer, Berlin, Germany, 193–214, https://doi.org/10.1007/978-3-319-58239-9_12, 2018.
Braucher, R., del Castillo, P., Siame, L., Hidy, A. J., and Bourlés,
D. L.: Determination of both exposure time and erosion rate from an in
situ-produced 10Be depth profile: A mathematical proof of uniqueness.
Model sensitivity and applications to natural cases, Quat. Geochronol., 4,
56–67, https://doi.org/10.1016/j.quageo.2008.06.001, 2009.
Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D. L.: Production
of cosmogenic radionuclides at great depth: A multi element approach, Earth
Planet. Sci. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
Bristow, C. S. and Best, J. L.: Braided rivers: perspectives and problems,
in: Braided Rivers, Geological Society Special Publication No. 75, edited
by: Best, J. L. and Bristow, C. S., Cambridge University Press, London, UK,
1-H, https://doi.org/10.1017/S001675680001253X, 1993.
Busschers, F. S., Kasse, C., van Balen, R. T., Vandenberghe, J., Cohen, K. M., Weerts, H. J. T., Wallinga, J., Johns, C., Cleveringa, P., and Bunnik, F. P. M.: Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and
glacio-isostacy, Quat. Sci. Rev., 26, 3216–3248, https://doi.org/10.1016/j.quascirev.2007.07.013, 2007.
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D.:
Determination of the 10Be half-life by multicollector ICP-MS and liquid
scintillation counting, Nucl. Instrum. Methods Phys. Res. B: Beam Interact.
Mater. At., 268, 192–199, https://doi.org/10.1016/j.nimb.2009.09.012, 2010.
Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J.,
Alfimov, V., and Synal, H. A.: The ETH Zurich AMS facilities: Performance
parameters and reference materials, Nucl. Instrum. Methods Phys. Res. B:
Beam Interact. Mater. At., 294, 29–38, https://doi.org/10.1016/J.NIMB.2012.03.004, 2013.
Claude, A., Akçar, N., Ivy-Ochs, S., Schlunegger, F., Kubik, P.,
Dehnert, A., Kuhlemann, J., Rahn, M., and Schlüchter, C.: Timing of
early Quaternary accumulation in the Swiss Alpine Foreland, Geomorphology,
276, 71–85, https://doi.org/10.1016/j.geomorph.2016.10.016, 2017.
Cohen, K. M. and Gibbard, P.: Global chronostratigraphical correlation table for the last 2.7 million years, Subcommission on Quaternary Stratigraphy
(International Commission on Stratigraphy), Cambridge, United Kingdom, https://doi.org/10.17632/dtsn3xn3n6.3,
2019.
Covault, J. A., Craddock, W. H., Romans, B. W., Fildani, A., and Gosai, M.:
Spatial and temporal variations in landscape evolution: Historic and
longer-term sediment flux through global catchments, J. Geol., 121, 35–56,
https://doi.org/10.1086/668680, 2013.
De Brue, H., Poesen, J., and Notebaert, B.: What was the transport mode of
large boulders in the Campine Plateau and the lower Meuse valley during the
mid-Pleistocene?, Geomorphology, 228, 568–578, https://doi.org/10.1016/j.geomorph.2014.10.010, 2015.
Deckers, J., Vernes, R. W., Dabekaussen, W., Den Dulk, M., Doornenbal, J. C., Dusar, M., Hummelman, H. J., Matthijs, J., Menkovic, A., Reindersma, R. N., Walstra, J., Westerhoff, W. E., and Witmans, N.: Geologisch en hydrogeologisch 3D model van het Cenozoïcum van de Roerdalslenk in Zuidoost-Nederland en Vlaanderen (H3O-Roerdalslenk), Studie uitgevoerd door VITO, TNO-Geologische Dienst Nederland en de Belgische Geologische Dienst in opdracht van de Afdeling Land en Bodembescherming, Ondergrond, Natuurlijke Rijkdommen van de Vlaamse overheid, de Afdeling Operationeel Waterbeheer van de Vlaamse Milieumaatschappij, de Nederlandse Provincie Limburg en de Nederlandse Provincie Noord-Brabant, VITO en TNO-Geologische Dienst Nederland, VITO-rapport 2014/ETE/R/1, 205 pp., https://archief.onderzoek.omgeving.vlaanderen.be/Onderzoek-2314144 (last access: 24 February 2022), 2014.
Dehaen, E.: Unraveling the characteristics of the Early and Middle
Pleistocene Meuse River: study of the Zutendaal gravels on the Campine
Plateau, MSc thesis, Faculty of Sciences, UCLouvain, Belgium, 63 pp., http://hdl.handle.net/2078.1/thesis:31824 (last access: 28 February 2022), 2021.
Dehnert, A., Kracht, O., Preusser, F., Akçar, N., Kemna, H. A., Kubik,
P. W., and Schlüchter, C.: Cosmogenic isotope burial dating of fluvial
sediments from the Lower Rhine Embayment, Germany, Quat. Geochronol., 6,
313–325, https://doi.org/10.1016/j.quageo.2011.03.005, 2011.
Derese, C., Vandenberghe, D., Paulissen, E., and Van den haute, P.:
Revisiting a type locality for Late Glacial aeolian sand deposition in NW
Europe: Optical dating of the dune complex at Opgrimbie (NE Belgium),
Geomorphology, 109, 27–35, https://doi.org/10.1016/j.geomorph.2008.08.022, 2009.
Dunai, T. J. (Ed.): Cosmogenic Nuclides, Cambridge University Press, New
York, USA, https://doi.org/10.1017/CBO9780511804519, 2010.
Erlanger, E. D., Granger, D. E., and Gibbon, R. J.: Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces, Geology, 40, 1019–1022, https://doi.org/10.1130/G33172.1, 2012.
GDI-Vlaanderen: Digitaal Hoogtemodel Vlaanderen II, Version 2014.01, https://download.vlaanderen.be/Producten/Detail?id=937&title=Digitaal_Hoogtemodel_Vlaanderen_II_DSM_raster_1_m, last access: 24 February 2022.
Granger, D. E. and Muzikar, P. F.: Dating sediment burial with in
situ-produced cosmogenic nuclides: theory, techniques, and limitations,
Earth Planet. Sci. Lett., 188, 269–281, https://doi.org/10.1016/S0012-821X(01)00309-0, 2001.
Gullentops, F., Janssen, J., and Paulissen, E.: Saalian nivation activity in
the Bosbeek valley, NE Belgium, Geologie en Mijnbouw, 72, 125–130, 1993.
Gullentops, F., Bogemans, F., de Moor, G., Paulissen, E., and Pissart,
A.: Quaternary lithostratigraphic units (Belgium), Geol. Belg., 4,
153–164, https://doi.org/10.20341/gb.2014.051, 2001.
Hancock, G. S., Anderson, R. S., Chadwick, O. A., and Finkel, R. C.: Dating
fluvial terraces with 10Be and 26Al profiles: application to the
Wind River, Wyoming, Geomorphology, 27, 41–60,
https://doi.org/10.1016/S0169-555X(98)00089-0, 1999.
Hidy, A. J., Gosse, J. C., Pederson, J. L., Mattern, J. P., and Finkel, R.
C.: A geologically constrained Monte Carlo approach to modeling exposure
ages from profiles of cosmogenic nuclides: An example from Lees Ferry,
Arizona, Geom. Geophys., 11, Q0AA10, https://doi.org/10.1029/2010GC003084, 2010.
Hidy, A. J., Gosse, J. C., Sanborn, P., and Froese, D. G.: Age-erosion
constraints on an Early Pleistocene paleosol in Yukon, Canada, with profiles
of 10Be and 26Al: Evidence for a significant loess cover effect on
cosmogenic nuclide production rates, Catena, 165, 260–271, https://doi.org/10.1016/j.catena.2018.02.009, 2018.
Knudsen, M. F., Egholm, D. L., and Jansen, J. D.: Time-integrating cosmogenic
nuclide inventories under the influence of variable erosion, exposure, and
sediment mixing, Quat. Geochronol. 51, 110–119, https://doi.org/10.1016/j.quageo.2019.02.005, 2019.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K.,
Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse Von Gostomski,
C., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A.: A new value for
the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid
scintillation counting, Nucl. Instrum. Methods Phys. Res. B: Beam Interact.
Mater. At., 268, 187–191, https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Lachner, J., Christl, M., Müller, A. M., Suter, M., and Synal, H. A.:
10Be and 26Al low-energy AMS using He-stripping and background
suppression via an absorber, Nucl. Instrum. Methods Phys. Res. B: Beam
Interact. Mater. At., 331, 209–214, https://doi.org/10.1016/j.nimb.2013.11.034, 2014.
Laloy, E., Beerten, K., Vanacker, V., Christl, M., Rogiers, B., and Wouters, L.: Bayesian inversion of a CRN depth profile to infer Quaternary erosion of the northwestern Campine Plateau (NE Belgium), Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017, 2017.
Lauer, T., Frechen, M., Hoselmann, C., and Tsukamoto, S.: Fluvial
aggradation phases in the Upper Rhine Graben-new insights by quartz OSL
dating, Proc. Geol. Assoc., 121, 154–161, https://doi.org/10.1016/j.pgeola.2009.10.006, 2010.
Lauer, T., Weiss, M., Bernhardt, W., Heinrich, S., Rappsilber, I.,
Stahlschmidt, M. C., von Suchodoletz, H., and Wansa, S.: The Middle
Pleistocene fluvial sequence at Uichteritz, central Germany: Chronological
framework, paleoenvironmental history and early human presence during MIS 11, Geomorphology, 354, 107016, https://doi.org/10.1016/j.geomorph.2019.107016, 2020.
Le Dortz, K., Meyer, B., Sébrier, M., Braucher, R., Nazari, H.,
Benedetti, L., Fattahi, M., Bourlès, D., Foroutan, M., Siame, L.,
Rashidi, A., and Bateman, M. D.: Dating inset terraces and offset fans along
the Dehshir Fault (Iran) combining cosmogenic and OSL methods,
Geophys. J. Int., 185, 1147–1174, https://doi.org/10.1111/j.1365-246X.2011.05010.x, 2011.
Margreth, A., Gosse, J. C., and Dyke, A. S.: Quantification of subaerial and
episodic subglacial erosion rates on high latitude upland plateaus:
Cumberland Peninsula, Baffin Island, Arctic Canada, Quat. Sci. Rev. 133,
108–129, https://doi.org/10.1016/j.quascirev.2015.12.017, 2016.
Martin, L. C. P., Blard, P. H., Balco, G., Lavé, J., Delunel, R., Lifton,
N., and Laurent, V.: The CREp program and the ICE-D production rate
calibration database: A fully parameterizable and updated online tool to
compute cosmic-ray exposure ages, Quat. Geochronol., 38, 25–49, https://doi.org/10.1016/j.quageo.2016.11.006, 2017.
Miall, A. D. (Ed.): The Geology of fluvial deposits, Springer, Berlin,
Germany, https://doi.org/10.1007/978-3-662-03237-4, 1996.
Mol, J., Vandenberghe, J., and Kasse, C.: River response to variations of
periglacial climate in mid-latitude Europe, Geomorphology, 33,
131–148, https://doi.org/10.1016/S0169-555X(99)00126-9, 2000.
Nichols, K. K., Bierman, P. R., Hooke, R. L., Clapp, E. M., and Caffee, M.:
Quantifying sediment transport on desert piedmonts using 10Be and
26Al, Geomorphology, 45, 105–125, 2002.
Nichols, K. K., Bierman, P. R., Eppes, M. C., Caffee, M., Finkel, R., and
Larsen, J.: Late Quaternary history of the Chemehuevi Mountain Piedmont,
Mojave Desert, deciphered using 10Be and 26Al, Am. J. Sci., 305, 345–368, https://doi.org/10.2475/ajs.305.5.345, 2005.
Nishiizumi, K.: Cosmic ray production rates of 10Be and 26Al in
quartz from glacially polished rocks, J. Geophys. Res.-Sol. Ea., 94,
17907–17915, https://doi.org/10.1029/jb094ib12p17907, 1989.
Nishiizumi, K.: Preparation of 26Al AMS standards, J Nucl. Instrum.
Methods Phys. Res. B: Beam Interact. Mater. At., 223–224, 388–392, https://doi.org/10.1016/j.nimb.2004.04.075, 2004.
Pannekoek, A. J.: Einigen Notizen über die Terrassen in Mittel- und
Nord-Limburg, Natuurhistorisch Maandblad, 13, 89–92, 1924.
Paulissen, E.: De Morfologie en de Kwartairstratigrafie van de Maasvallei in
Belgisch Limburg, Verhandelingen van de koninklijke Vlaamse academie
voorwetenschappen, letteren en schone kunsten van België, Klasse der
Wetenschappen, 127, 1–266, 1973.
Paulissen, E.: Les nappes alluviales et les failles Quaternaires du Plateau
de Campine, in: Guides Géologiques Régionaux – Belgique, edited
by: Robaszynski, F. and Dupuis, C., Masson, Paris, France, 167–170, ISBN10 2225753946, ISBN13 9782225753947,
1983.
Portenga, E. W. and Bierman, P. R.: Understanding earth's eroding surface
with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Rixhon, G., Braucher, R., Bourlès, D., Siame, L., Bovy, B., and
Demoulin, A.: Quaternary river incision in NE Ardennes (Belgium) – Insights
from 10Be 26Al dating of river terraces, Quat. Geochronol., 6, 273–284, https://doi.org/10.1016/j.quageo.2010.11.001, 2011.
Rixhon, G., Bourlès, D. L., Braucher, R., Siame, L., Cordy, J. M., and
Demoulin, A.: 10Be dating of the Main Terrace level in the Amblève
valley (Ardennes, Belgium): New age constraint on the archaeological and
palaeontological filling of the Belle-Roche palaeokarst, Boreas, 43,
528–542, https://doi.org/10.1111/bor.12066, 2014.
Rizza, M., Abdrakhmatov, K., Walker, R., Braucher, R., Guillou, V., Carr,
A. S., Campbell, G., McKenzie, D., Jackson, J., Aumaître, G.,
Bourlès, D. L., and Keddadouche, K.: Rate of slip from multiple
Quaternary dating methods and paleoseismic investigations along the
Talas-Fergana Fault: tectonic implications for the Tien Shan Range,
Tectonics, 38, 2477–2505, https://doi.org/10.1029/2018TC005188, 2019.
Rodés, A., Pallàs, R., Braucher, R., Moreno, X., Masana, E., and
Bourlès, D.: Effect of density uncertainties in cosmogenic 10Be
depth-profiles: Dating a cemented Pleistocene alluvial fan (Carboneras
Fault, SE Iberia), Quat. Geochronol., 6, 186–194,
https://doi.org/10.1016/j.quageo.2010.10.004, 2011.
Schaller, M., von Blanckenburg, F., Hovius, N., and Kubik, P. W.: Large-scale
erosion rates from in situ-produced cosmogenic nuclides in European river
sediments, Earth Planet. Sci. Lett., 188, 441–458,
https://doi.org/10.1016/S0012-821X(01)00320-X, 2001.
Schaller, M., Ehlers, T. A., Blum, J. D., and Kallenberg, M. A.: Quantifying
glacial moraine age, denudation, and soil mixing with cosmogenic nuclide
depth profiles, J. Geophys. Res. 114, F01012, https://doi.org/10.1029/2007JF000921, 2009.
Schoonejans, J., Vanacker, V., Opfergelt, S., Granet, M., and Chabaux, F.:
Coupling uranium series and 10Be cosmogenic radionuclides to evaluate
steady-state soil thickness in the Betic Cordillera, Chem. Geol., 446,
99–109, https://doi.org/10.1016/J.CHEMGEO.2016.03.030, 2016.
Siame, L., Bellier, O., Braucher, R., Sébrier, M., Cushing, M.,
Bourlès, D., Hamelin, B., Baroux, E., de Voogd, B., Raisbeck, G., and
Yiou, F.: Local erosion rates versus active tectonics: Cosmic ray exposure
modelling in Provence (south-east France), Earth Planet. Sci. Lett., 220,
345–364, https://doi.org/10.1016/S0012-821X(04)00061-5, 2004.
Sougnez, N. and Vanacker, V.: The topographic signature of Quaternary tectonic uplift in the Ardennes massif (Western Europe), Hydrol. Earth Syst. Sci., 15, 1095–1107, https://doi.org/10.5194/hess-15-1095-2011, 2011.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys.
Res.-Sol. Ea., 105, 23753–23759, https://doi.org/10.1029/2000jb900181, 2000.
Taylor, J. R. (Ed.): An introduction to error analysis, University science
books, Sausalito, California, USA, ISBN10 9780935702750, ISBN13 978-0935702750, 1997.
U.S. Geological Survey's EROS Data Center: Global 30 Arc-Second Elevation (GTOPO30), https://doi.org/10.5066/F7DF6PQS, 1996.
Vanacker, V., von Blanckenburg, F., Hewawasam, T., and Kubik, P. W.:
Constraining landscape development of the Sri Lankan escarpment with
cosmogenic nuclides in river sediment, Earth Planet. Sci. Lett., 253,
402–414, https://doi.org/10.1016/j.epsl.2006.11.003, 2007.
Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Campforts, B., and Kubik, P. W.: Transient river response, captured by channel steepness and its concavity, Geomorphology, 228, 234–243, https://doi.org/10.1016/j.geomorph.2014.09.013, 2015.
Van Balen, R. T., Houtgast, R. F., van der Wateren, F. M., Vandenberghe, J.,
and Bogaart, P. W.: Sediment budget and tectonic evolution of the Meuse
catchment in the Ardennes and the Roer Valley Rift System, Glob. Planet Change, 27, 113–129, https://doi.org/10.1016/S0921-8181(01)00062-5, 2000.
van den Berg, M.: Fluvial sequences of the Meuse – a 10 Ma record of
neotectonics and climate change at various time-scales, PhD thesis,
Wageningen University, 181 pp., https://library.wur.nl/WebQuery/wurpubs/fulltext/210510 (last access: 6 March 2022), 1996.
Vandenberghe, D., Vanneste, K., Verbeeck, K., Paulissen, E., Buylaert,
J.-P., De Corte, F., and Van den haute, P.: Late Weichselian and Holocene
earthquake events along the Geleen fault in NE Belgium: OSL age constraints,
Quat. Int., 199, 56–74, https://doi.org/10.1016/j.quaint.2007.11.017, 2009.
Vandenberghe, J.: Timescale, Climate and River Development, Quat. Sci. Rev.,
14, 631–639, https://doi.org/10.1016/0277-3791(95)00043-O, 1995.
Vandenberghe, J.: A typology of Pleistocene cold-based rivers, Quat. Int.,
79, 111–121, https://doi.org/10.1016/S1040-6182(00)00127-0, 2001.
Vandermaelen, N., Vanacker, V., Clapuyt, F., Christl, M., and Beerten, K.:
Reconstructing the depositional history of Pleistocene fluvial deposits based on grain size, elemental geochemistry and in situ 10Be data, Geomorphology, 402, 108127, https://doi.org/10.1016/j.geomorph.2022.108127, 2022a.
Vandermaelen, N., Clapuyt, F., and Vanacker, V.: Repository hosting resources for numerical modelling of complex CRN accumulation history, Github [code], available at: https://github.com/geo-team-vv/crn_depth_profiles, last access: 8 December 2022b.
Vandermaelen, N., Beerten, K., Clapuyt, F., Christl, M., and Vanacker, V.: CRN Datasets and numerical modeling tools for geochronological study at geosite Hermans on the Campine Plateau, UCLouvain DataVerse [data set], https://doi.org/10.14428/DVN/GGRVT0, last access: 8 December 2022c.
Vanneste, K., Verbeeck, K., Camelbeeck, T., Paulissen, E., Meghraoui, M.,
Renardy, F., Jongmans, D., and Frechen, M.: Surface-rupturing history of the
Bree fault scarp,Roer Valley graben: Evidence for six events since the late
Pleistocene, J. Seismol., 5, 329–359, 2001.
von Blanckenburg, F., Belshaw, N. S., and O'Nions, R. K.: Separation of
9Be and cosmogenic 10Be from environmental materials and SIMS
isotope dilution analysis, Chem. Geol., 129, 93–99, https://doi.org/10.1016/0009-2541(95)00157-3, 1996.
Westerhoff, W. E., Kemna, H. A., and Boenigk, W.: The confluence area of
Rhine, Meuse, and Belgian rivers: Late Pliocene and Early Pleistocene
fluvial history of the northern Lower Rhine Embayment, Neth. J. Geosci., 87,
107–125, https://doi.org/10.1017/S0016774600024070, 2008.
Xu, L., Ran, Y., Liu, H., and Li, A.: 10Be-derived sub-Milankovitch
chronology of Late Pleistocene alluvial terraces along the piedmont of SW
Tian Shan, Geomorphology, 328, 173–182, https://doi.org/10.1016/j.geomorph.2018.12.009, 2019.
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with...