Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-87-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-87-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 62 kyr geomagnetic palaeointensity record from the Taymyr Peninsula, Russian Arctic
Stephanie Scheidt
CORRESPONDING AUTHOR
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Matthias Lenz
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Ramon Egli
Central Institute for Meteorology and Geo-dynamics (ZAMG), Vienna,
1190, Austria
Dominik Brill
Institute of Geography, University of Cologne, Cologne, 50674, Germany
Martin Klug
Geological Survey of Norway (NGU), Trondheim, 7040, Norway
Karl Fabian
Geological Survey of Norway (NGU), Trondheim, 7040, Norway
Department of Geoscience and Petroleum, Norwegian University of
Science and Technology, Trondheim, 7040, Norway
Marlene M. Lenz
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Raphael Gromig
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Janet Rethemeyer
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Bernd Wagner
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Grigory Federov
Institute of Earth Sciences, St. Petersburg State University, St.
Petersburg, 199034, Russia
Arctic and Antarctic Research Institute, St. Petersburg, 199397,
Russia
Martin Melles
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Related authors
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Katharina Seeger, Philip S. J. Minderhoud, Andreas Peffeköver, Anissa Vogel, Helmut Brückner, Frauke Kraas, Nay Win Oo, and Dominik Brill
Hydrol. Earth Syst. Sci., 27, 2257–2281, https://doi.org/10.5194/hess-27-2257-2023, https://doi.org/10.5194/hess-27-2257-2023, 2023
Short summary
Short summary
Accurate elevation data is essential for flood risk assessment. We assess land elevation to local mean sea level of the Ayeyarwady Delta with a new, local DEM based on geodetic data and evaluate the performance of 10 global DEMs in an SLR impact assessment. Our study reveals major differences in performance between global DEMs and consequentially introduced uncertainty in SLR impact assessments, indicating potential similar uncertainties for other data-poor coastal lowlands around the world.
Stephan Pötter, Katharina Seeger, Christiane Richter, Dominik Brill, Mathias Knaak, Frank Lehmkuhl, and Philipp Schulte
E&G Quaternary Sci. J., 72, 77–94, https://doi.org/10.5194/egqsj-72-77-2023, https://doi.org/10.5194/egqsj-72-77-2023, 2023
Short summary
Short summary
We reconstructed a wetland environment for a late Middle to Upper Pleniglacial (approx. 30–20 ka) loess sequence in western Germany. Typically, these sequences reveal terrestrial conditions with soil formation processes during this time frame. The here-investigated section, however, was influenced by periodical flooding, leading to marshy conditions and a stressed ecosystem. Our results show that the landscape of the study area was much more fragmented during this time than previously thought.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Patrick Wordell-Dietrich, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, Christoph Leuschner, and Axel Don
Biogeosciences, 17, 6341–6356, https://doi.org/10.5194/bg-17-6341-2020, https://doi.org/10.5194/bg-17-6341-2020, 2020
Short summary
Short summary
The release of CO2 from soils, known as soil respiration, plays a major role in the global carbon cycle. However, the contributions of different soil depths or the sources of soil CO2 have hardly been studied. We quantified the CO2 production for different soil layers (up to 1.5 m) in three soil profiles for 2 years. We found that 90 % of CO2 production occurs in the first 30 cm of the soil profile, and that the CO2 originated from young carbon sources, as revealed by radiocarbon measurements.
Max Engel, Stefanie Rückmann, Philipp Drechsler, Dominik Brill, Stephan Opitz, Jörg W. Fassbinder, Anna Pint, Kim Peis, Dennis Wolf, Christoph Gerber, Kristina Pfeiffer, Ricardo Eichmann, and Helmut Brückner
E&G Quaternary Sci. J., 68, 215–236, https://doi.org/10.5194/egqsj-68-215-2020, https://doi.org/10.5194/egqsj-68-215-2020, 2020
Gaia Sinopoli, Odile Peyron, Alessia Masi, Jens Holtvoeth, Alexander Francke, Bernd Wagner, and Laura Sadori
Clim. Past, 15, 53–71, https://doi.org/10.5194/cp-15-53-2019, https://doi.org/10.5194/cp-15-53-2019, 2019
Short summary
Short summary
Climate changes occur today as they occurred in the past. This study deals with climate changes reconstructed at Lake Ohrid (Albania and FYROM) between 160 000 and 70 000 years ago. Climate reconstruction, based on a high-resolution pollen study, provides quantitative estimates of past temperature and precipitation. Our data show an alternation of cold/dry and warm/wet periods. The last interglacial appears to be characterized by temperatures higher than nowadays.
Alessia Masi, Alexander Francke, Caterina Pepe, Matthias Thienemann, Bernd Wagner, and Laura Sadori
Clim. Past, 14, 351–367, https://doi.org/10.5194/cp-14-351-2018, https://doi.org/10.5194/cp-14-351-2018, 2018
Short summary
Short summary
The first high-resolution Lake Dojran pollen record for the last 12 500 years is presented. The ecological succession shows Late Glacial steppe vegetation gradually replaced, since 11 500 yr BP, by Holocene mesophilous forests. The first human traces are recorded around 5000 yr BP and increased considerably since the Bronze Age. Pollen data and sedimentological, biomarker and diatom data available from the same core contribute to an understanding of the environmental history of the Balkans.
Rachel L. Bailey, Thomas S. Halbedl, Ingrid Schattauer, Alexander Römer, Georg Achleitner, Ciaran D. Beggan, Viktor Wesztergom, Ramon Egli, and Roman Leonhardt
Ann. Geophys., 35, 751–761, https://doi.org/10.5194/angeo-35-751-2017, https://doi.org/10.5194/angeo-35-751-2017, 2017
Short summary
Short summary
This paper describes the study of the effects of solar wind and solar storms on the national electrical power transmission grid in Austria. These storms result in currents in the ground that can cause damage to power grids, particularly those at high latitudes. Results show that very strong solar storms could result in problems in Austria as well, and this information is important to the grid operators to properly implement mitigation strategies in the future.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Lutz Schirrmeister, Georg Schwamborn, Pier Paul Overduin, Jens Strauss, Margret C. Fuchs, Mikhail Grigoriev, Irina Yakshina, Janet Rethemeyer, Elisabeth Dietze, and Sebastian Wetterich
Biogeosciences, 14, 1261–1283, https://doi.org/10.5194/bg-14-1261-2017, https://doi.org/10.5194/bg-14-1261-2017, 2017
Short summary
Short summary
We investigate late Pleistocene permafrost at the Buor Khaya Peninsula (Laptev Sea, Siberia) for cryolithological, geochemical, and geochronological parameters. The sequences were composed of ice-oversaturated silts and fine-grained sands with 0.2 to 24 wt% of organic matter. The deposition was between 54.1 and 9.7 kyr BP. Due to coastal erosion, the biogeochemical signature of the deposits represents the terrestrial end-member, and is related to organic matter deposited in the marine realm.
Dominik Brill, Simon Matthias May, Max Engel, Michelle Reyes, Anna Pint, Stephan Opitz, Manuel Dierick, Lia Anne Gonzalo, Sascha Esser, and Helmut Brückner
Nat. Hazards Earth Syst. Sci., 16, 2799–2822, https://doi.org/10.5194/nhess-16-2799-2016, https://doi.org/10.5194/nhess-16-2799-2016, 2016
Short summary
Short summary
Sediments and landforms related to Typhoon Haiyan were documented for coastal settings on the Philippines. Sand sheets are restricted to coasts with strong inundation, while washover fans due to overtopping waves were more abundant. Wave-generated coral ridges are reported from an intertidal reef platform. As generated by an exceptional storm, documented signatures like the limited landward extent of sand sheets may potentially help to distinguish storm and tsunami in the geological record.
James M. Russell, Satria Bijaksana, Hendrik Vogel, Martin Melles, Jens Kallmeyer, Daniel Ariztegui, Sean Crowe, Silvia Fajar, Abdul Hafidz, Doug Haffner, Ascelina Hasberg, Sarah Ivory, Christopher Kelly, John King, Kartika Kirana, Marina Morlock, Anders Noren, Ryan O'Grady, Luis Ordonez, Janelle Stevenson, Thomas von Rintelen, Aurele Vuillemin, Ian Watkinson, Nigel Wattrus, Satrio Wicaksono, Thomas Wonik, Kohen Bauer, Alan Deino, André Friese, Cynthia Henny, Imran, Ristiyanti Marwoto, La Ode Ngkoimani, Sulung Nomosatryo, La Ode Safiuddin, Rachel Simister, and Gerald Tamuntuan
Sci. Dril., 21, 29–40, https://doi.org/10.5194/sd-21-29-2016, https://doi.org/10.5194/sd-21-29-2016, 2016
Short summary
Short summary
The Towuti Drilling Project seeks to understand the long-term environmental and climatic history of the tropical western Pacific and to discover the unique microbes that live in metal-rich sediments. To accomplish these goals, in 2015 we carried out a scientific drilling project on Lake Towuti, located in central Indonesia. We recovered over 1000 m of core, and our deepest core extended 175 m below the lake floor and gives us a complete record of the lake.
Aleksandra Cvetkoska, Elena Jovanovska, Alexander Francke, Slavica Tofilovska, Hendrik Vogel, Zlatko Levkov, Timme H. Donders, Bernd Wagner, and Friederike Wagner-Cremer
Biogeosciences, 13, 3147–3162, https://doi.org/10.5194/bg-13-3147-2016, https://doi.org/10.5194/bg-13-3147-2016, 2016
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Janna Just, Norbert R. Nowaczyk, Leonardo Sagnotti, Alexander Francke, Hendrik Vogel, Jack H. Lacey, and Bernd Wagner
Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, https://doi.org/10.5194/bg-13-2093-2016, 2016
Short summary
Short summary
The magnetic record from Lake Ohrid reflects a strong change in geochemical conditions in the lake. Before 320 ka glacial sediments contain iron sulfides, while later glacials are dominated by siderite. Superimposed on this large-scale pattern are climatic induced changes in the magnetic mineralogy. Glacial and stadial sediments are characterized by relative increases of high- vs. low-coercivity minerals which relate to enhanced erosion in the catchment, possibly due to a sparse vegetation.
Jack H. Lacey, Melanie J. Leng, Alexander Francke, Hilary J. Sloane, Antoni Milodowski, Hendrik Vogel, Henrike Baumgarten, Giovanni Zanchetta, and Bernd Wagner
Biogeosciences, 13, 1801–1820, https://doi.org/10.5194/bg-13-1801-2016, https://doi.org/10.5194/bg-13-1801-2016, 2016
Short summary
Short summary
We use stable isotope data from carbonates to provide a palaeoenvironmental reconstruction covering the last 637 kyr at Lake Ohrid (FYROM/Albania). Our results indicate a relatively stable climate until 450 ka, wetter climate conditions at 400–250 ka, and a transition to a drier climate after 250 ka. This work emphasises the importance of Lake Ohrid as a valuable archive of climate change in the northern Mediterranean region.
Laura Sadori, Andreas Koutsodendris, Konstantinos Panagiotopoulos, Alessia Masi, Adele Bertini, Nathalie Combourieu-Nebout, Alexander Francke, Katerina Kouli, Sébastien Joannin, Anna Maria Mercuri, Odile Peyron, Paola Torri, Bernd Wagner, Giovanni Zanchetta, Gaia Sinopoli, and Timme H. Donders
Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, https://doi.org/10.5194/bg-13-1423-2016, 2016
Short summary
Short summary
Lake Ohrid (FYROM/Albania) is the deepest, largest and oldest lake in Europe. To understand the climatic and environmental evolution of its area, a palynological study was undertaken for the last 500 ka. We found a correspondence between forested/non-forested periods and glacial-interglacial cycles of marine isotope stratigraphy. Our record shows a progressive change from cooler and wetter to warmer and dryer interglacial conditions. This shift is also visible in glacial vegetation.
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Alexander Francke, Bernd Wagner, Janna Just, Niklas Leicher, Raphael Gromig, Henrike Baumgarten, Hendrik Vogel, Jack H. Lacey, Laura Sadori, Thomas Wonik, Melanie J. Leng, Giovanni Zanchetta, Roberto Sulpizio, and Biagio Giaccio
Biogeosciences, 13, 1179–1196, https://doi.org/10.5194/bg-13-1179-2016, https://doi.org/10.5194/bg-13-1179-2016, 2016
Short summary
Short summary
Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old. To recover a long paleoclimate record for the Mediterranean region, a deep drilling was carried out in 2013 within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site record.
Elena Jovanovska, Aleksandra Cvetkoska, Torsten Hauffe, Zlatko Levkov, Bernd Wagner, Roberto Sulpizio, Alexander Francke, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, https://doi.org/10.5194/bg-13-1149-2016, 2016
A. Cohen, C. Campisano, R. Arrowsmith, A. Asrat, A. K. Behrensmeyer, A. Deino, C. Feibel, A. Hill, R. Johnson, J. Kingston, H. Lamb, T. Lowenstein, A. Noren, D. Olago, R. B. Owen, R. Potts, K. Reed, R. Renaut, F. Schäbitz, J.-J. Tiercelin, M. H. Trauth, J. Wynn, S. Ivory, K. Brady, R. O'Grady, J. Rodysill, J. Githiri, J. Russell, V. Foerster, R. Dommain, S. Rucina, D. Deocampo, J. Russell, A. Billingsley, C. Beck, G. Dorenbeck, L. Dullo, D. Feary, D. Garello, R. Gromig, T. Johnson, A. Junginger, M. Karanja, E. Kimburi, A. Mbuthia, T. McCartney, E. McNulty, V. Muiruri, E. Nambiro, E. W. Negash, D. Njagi, J. N. Wilson, N. Rabideaux, T. Raub, M. J. Sier, P. Smith, J. Urban, M. Warren, M. Yadeta, C. Yost, and B. Zinaye
Sci. Dril., 21, 1–16, https://doi.org/10.5194/sd-21-1-2016, https://doi.org/10.5194/sd-21-1-2016, 2016
Short summary
Short summary
An initial description of the scientific rationale, drilling and core handling, and initial core description activities of the Hominin Sites and Paleolakes Drilling Project (HSPDP). HSPDP is a large international consortium whose objective is to collect cores from lakebeds in proximity to important fossil early human fossil sites in eastern Africa, to better understand the environmental and climatic context of human evolution.
Stephan John, Gerrit Angst, Kristina Kirfel, Sebastian Preusser, Carsten W. Mueller, Christoph Leuschner, Ellen Kandeler, and Janet Rethemeyer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-11, https://doi.org/10.5194/bg-2016-11, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this manuscript we investigate chemical, biological and physical soil parameters and their influence on 14C contents and distribution in three nearby soil profiles under beech forest. We found a large heterogeneity in 14C contents in the profiles, mainly caused by the abundance of roots. Our results indicate that 14C analysis of individual soil profiles – as it is done in most studies – may lead to misleading assumptions of SOM turnover in soils when extrapolated on larger areas.
H. Baumgarten, T. Wonik, D. C. Tanner, A. Francke, B. Wagner, G. Zanchetta, R. Sulpizio, B. Giaccio, and S. Nomade
Biogeosciences, 12, 7453–7465, https://doi.org/10.5194/bg-12-7453-2015, https://doi.org/10.5194/bg-12-7453-2015, 2015
Short summary
Short summary
Gamma ray (GR) fluctuations and K values from downhole logging data obtained in the sediments of Lake Ohrid correlate with the global climate reference record (LR04 stack from δ18O) (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles and document warm, humid and cold, drier periods. A robust age model for the downhole logging data over the past 630kyr was established and will play a crucial role for other working groups.
B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli, G. Mannella, E. Niespolo, E. Peronace, P. R. Renne, S. Nomade, G. P. Cavinato, P. Messina, A. Sposato, C. Boschi, F. Florindo, F. Marra, and L. Sadori
Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, https://doi.org/10.5194/sd-20-13-2015, 2015
Short summary
Short summary
As a pilot study for a possible depth-drilling project, an 82m long sedimentary succession was retrieved from the Fucino Basin, central Apennines, which hosts ca. 900m of lacustrine sediments. The acquired paleoclimatic record, from the retrieved core, spans the last 180ka and reveals noticeable variations related to the last two glacial-interglacial cycles. In light of these results, the Fucino sediments are likely to provide one of the longest continuous record for the last 2Ma.
S. M. May, M. Engel, D. Brill, C. Cuadra, A. M. F. Lagmay, J. Santiago, J. K. Suarez, M. Reyes, and H. Brückner
Earth Surf. Dynam., 3, 543–558, https://doi.org/10.5194/esurf-3-543-2015, https://doi.org/10.5194/esurf-3-543-2015, 2015
Short summary
Short summary
Block and boulder fields record catastrophic coastal flooding events and play a pivotal role in coastal hazard assessment. After Supertyphoon Haiyan on 8 Nov 2013 the transport of extremely large blocks of up to 180 t in E Samar (Philippines) was documented, indicating that hydrodynamic conditions induced by tropical cyclones, including infragravity waves, and resulting coarse-clast transport patterns may be comparable to tsunamis.
A. J. Coletti, R. M. DeConto, J. Brigham-Grette, and M. Melles
Clim. Past, 11, 979–989, https://doi.org/10.5194/cp-11-979-2015, https://doi.org/10.5194/cp-11-979-2015, 2015
Short summary
Short summary
Evidence from Pleistocene sediments suggest that the Arctic's climate went through multiple sudden transitions, warming by 2-4 °C (compared to preindustrial times), and stayed warm for hundreds to thousands of years. A climate modelling study of these events suggests that the Arctic's climate and landscape drastically changed, transforming a cold and barren landscape as we know today to a warm, lush, evergreen and boreal forest landscape only seen in the modern midlatitudes.
H. A. Dugan, P. T. Doran, B. Wagner, F. Kenig, C. H. Fritsen, S. A. Arcone, E. Kuhn, N. E. Ostrom, J. P. Warnock, and A. E. Murray
The Cryosphere, 9, 439–450, https://doi.org/10.5194/tc-9-439-2015, https://doi.org/10.5194/tc-9-439-2015, 2015
Short summary
Short summary
Lake Vida is one of the largest lakes in the McMurdo dry valleys, Antarctica, and has the thickest known ice cover of any lake on Earth. For the first time, Lake Vida was drilled to a depth of 27m. With depth the ice cover changes from freshwater ice to salty ice interspersed with thick sediment layers. It is hypothesized that the repetition of sediment layers in the ice will reveal climatic and hydrologic variability in the region over the last 1000--3000 years.
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
G. Schwamborn, H. Meyer, L. Schirrmeister, and G. Fedorov
Clim. Past, 10, 1109–1123, https://doi.org/10.5194/cp-10-1109-2014, https://doi.org/10.5194/cp-10-1109-2014, 2014
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014, https://doi.org/10.5194/cp-10-1017-2014, 2014
B. Wagner, T. Wilke, S. Krastel, G. Zanchetta, R. Sulpizio, K. Reicherter, M. J. Leng, A. Grazhdani, S. Trajanovski, A. Francke, K. Lindhorst, Z. Levkov, A. Cvetkoska, J. M. Reed, X. Zhang, J. H. Lacey, T. Wonik, H. Baumgarten, and H. Vogel
Sci. Dril., 17, 19–29, https://doi.org/10.5194/sd-17-19-2014, https://doi.org/10.5194/sd-17-19-2014, 2014
K. Panagiotopoulos, A. Böhm, M. J. Leng, B. Wagner, and F. Schäbitz
Clim. Past, 10, 643–660, https://doi.org/10.5194/cp-10-643-2014, https://doi.org/10.5194/cp-10-643-2014, 2014
V. Foerster, A. Junginger, A. Asrat, H. F. Lamb, M. Weber, J. Rethemeyer, U. Frank, M. C. Brown, M. H. Trauth, and F. Schaebitz
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-977-2014, https://doi.org/10.5194/cpd-10-977-2014, 2014
Revised manuscript not accepted
B. Wagner, M. J. Leng, T. Wilke, A. Böhm, K. Panagiotopoulos, H. Vogel, J. H. Lacey, G. Zanchetta, and R. Sulpizio
Clim. Past, 10, 261–267, https://doi.org/10.5194/cp-10-261-2014, https://doi.org/10.5194/cp-10-261-2014, 2014
C. Meyer-Jacob, H. Vogel, A. C. Gebhardt, V. Wennrich, M. Melles, and P. Rosén
Clim. Past, 10, 209–220, https://doi.org/10.5194/cp-10-209-2014, https://doi.org/10.5194/cp-10-209-2014, 2014
P. E. Tarasov, A. A. Andreev, P. M. Anderson, A. V. Lozhkin, C. Leipe, E. Haltia, N. R. Nowaczyk, V. Wennrich, J. Brigham-Grette, and M. Melles
Clim. Past, 9, 2759–2775, https://doi.org/10.5194/cp-9-2759-2013, https://doi.org/10.5194/cp-9-2759-2013, 2013
A. Francke, V. Wennrich, M. Sauerbrey, O. Juschus, M. Melles, and J. Brigham-Grette
Clim. Past, 9, 2459–2470, https://doi.org/10.5194/cp-9-2459-2013, https://doi.org/10.5194/cp-9-2459-2013, 2013
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
A. C. Gebhardt, A. Francke, J. Kück, M. Sauerbrey, F. Niessen, V. Wennrich, and M. Melles
Clim. Past, 9, 1933–1947, https://doi.org/10.5194/cp-9-1933-2013, https://doi.org/10.5194/cp-9-1933-2013, 2013
M. A. Sauerbrey, O. Juschus, A. C. Gebhardt, V. Wennrich, N. R. Nowaczyk, and M. Melles
Clim. Past, 9, 1949–1967, https://doi.org/10.5194/cp-9-1949-2013, https://doi.org/10.5194/cp-9-1949-2013, 2013
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
G. Fedorov, M. Nolan, J. Brigham-Grette, D. Bolshiyanov, G. Schwamborn, and O. Juschus
Clim. Past, 9, 1455–1465, https://doi.org/10.5194/cp-9-1455-2013, https://doi.org/10.5194/cp-9-1455-2013, 2013
H. Vogel, C. Meyer-Jacob, M. Melles, J. Brigham-Grette, A. A. Andreev, V. Wennrich, P. E. Tarasov, and P. Rosén
Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, https://doi.org/10.5194/cp-9-1467-2013, 2013
S. Höfle, J. Rethemeyer, C. W. Mueller, and S. John
Biogeosciences, 10, 3145–3158, https://doi.org/10.5194/bg-10-3145-2013, https://doi.org/10.5194/bg-10-3145-2013, 2013
A. Francke, B. Wagner, M. J. Leng, and J. Rethemeyer
Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, https://doi.org/10.5194/cp-9-481-2013, 2013
M. Damaschke, R. Sulpizio, G. Zanchetta, B. Wagner, A. Böhm, N. Nowaczyk, J. Rethemeyer, and A. Hilgers
Clim. Past, 9, 267–287, https://doi.org/10.5194/cp-9-267-2013, https://doi.org/10.5194/cp-9-267-2013, 2013
V. Wennrich, A. Francke, A. Dehnert, O. Juschus, T. Leipe, C. Vogt, J. Brigham-Grette, P. S. Minyuk, M. Melles, and El'gygytgyn Science Party
Clim. Past, 9, 135–148, https://doi.org/10.5194/cp-9-135-2013, https://doi.org/10.5194/cp-9-135-2013, 2013
B. Wagner, A. Francke, R. Sulpizio, G. Zanchetta, K. Lindhorst, S. Krastel, H. Vogel, J. Rethemeyer, G. Daut, A. Grazhdani, B. Lushaj, and S. Trajanovski
Clim. Past, 8, 2069–2078, https://doi.org/10.5194/cp-8-2069-2012, https://doi.org/10.5194/cp-8-2069-2012, 2012
Related subject area
Other
Krypton-85 chronometry of spent nuclear fuel
Comparison of basin-scale in situ and meteoric 10Be erosion and denudation rates in felsic lithologies across an elevation gradient at the George River, northeast Tasmania, Australia
Atmospherically produced beryllium-10 in annually laminated late-glacial sediments of the North American Varve Chronology
Greg Balco, Andrew J. Conant, Dallas D. Reilly, Dallin Barton, Chelsea D. Willett, and Brett H. Isselhardt
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-9, https://doi.org/10.5194/gchron-2024-9, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
This paper describes how krypton isotopes produced by nuclear fission can be used to determine the age of microscopic particles of used nuclear fuel. This is potentially useful for international safeguards applications aimed at tracking and identifying nuclear materials, as well as geoscience applications involving dating post-1950's sediments or understanding environmental transport of nuclear materials.
Leah A. VanLandingham, Eric W. Portenga, Edward C. Lefroy, Amanda H. Schmidt, Paul R. Bierman, and Alan J. Hidy
Geochronology, 4, 153–176, https://doi.org/10.5194/gchron-4-153-2022, https://doi.org/10.5194/gchron-4-153-2022, 2022
Short summary
Short summary
This study presents erosion rates of the George River and seven of its tributaries in northeast Tasmania, Australia. These erosion rates are the first measures of landscape change over millennial timescales for Tasmania. We demonstrate that erosion is closely linked to a topographic rainfall gradient across George River. Our findings may be useful for efforts to restore ecological health to Georges Bay by determining a pre-disturbance level of erosion and sediment delivery to this estuary.
Greg Balco, Benjamin D. DeJong, John C. Ridge, Paul R. Bierman, and Dylan H. Rood
Geochronology, 3, 1–33, https://doi.org/10.5194/gchron-3-1-2021, https://doi.org/10.5194/gchron-3-1-2021, 2021
Short summary
Short summary
The North American Varve Chronology (NAVC) is a sequence of 5659 annual sedimentary layers that were deposited in proglacial lakes adjacent to the retreating Laurentide Ice Sheet ca. 12 500–18 200 years ago. We attempt to synchronize this record with Greenland ice core and other climate records that cover the same time period by detecting variations in global fallout of atmospherically produced beryllium-10 in NAVC sediments.
Cited articles
Alexanderson, H., Backman, J., Cronin, T. M., Funder, S., Ingólfsson,
Ó., Jakobsson, M., Landvik, J. Y., Löwemark, L., Mangerud, J.,
März, C., Möller, P., O'Regan, M., and Spielhagen, R. F.: An Arctic
perspective on dating Mid-Late Pleistocene environmental history, Quaternary
Sci. Rev., 92, 9–31, https://doi.org/10.1016/j.quascirev.2013.09.023, 2014.
Andreev, A. A., Tarasov, P. E., Siegert, C., Ebel, T., Klimanov, V. A.,
Melles, M., Bobrov, A. A., Dereviagin, A. Y., Lubinski, D. J., and
Hubberten, H.-W.: Late Pleistocene and Holocene vegetation and climate on
the northern Taymyr Peninsula, Arctic Russia, Boreas, 32, 484–505,
https://doi.org/10.1111/j.1502-3885.2003.tb01230.x, 2003.
Anisimov, M., and Pospelov, I.: The landscape and geobotanical characteristics of the Levinson-Lessing Lake basin, Byrranga Mountains, central Taimyr, in: Land-Ocean Systems in the Siberian Arctic, edited by: Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L. A., Springer, 307–327, https://doi.org/10.1007/978-3-642-60134-7_27, 1999.
Banerjee, S. K. and Mellema, J. P.: A new method for the determination of
paleointensity from the A.R.M. properties of rocks, Earth Planet.
Sc. Lett., 23, 177–184, https://doi.org/10.1016/0012-821X(74)90190-3,
1974.
Bolshiyanov, D. Y. and Anisimov, M.: Investigations in the Levinson-Lessing
Lake area. Geomorphological studies and landscape mapping. Russian–German
cooperation: the expedition Taymyr 1994, Berichte zur Polarforschung, 175,
9–13, 1995.
Buylaert, J. P., Murray, A. S., Gebhardt, A. C., Sohbati, R., Ohlendorf, C.,
Thiel, C., Wastegård, S., and Zolitschka, B.: Luminescence dating of the
PASADO core 5022-1D from Laguna Potrok Aike (Argentina) using IRSL signals
from feldspar, Quaternary Sci. Rev., 71, 70–80,
https://doi.org/10.1016/j.quascirev.2013.03.018, 2013.
Caricchi, C., Lucchi, R. G., Sagnotti, L., Macrì, P., Di Roberto, A.,
Del Carlo, P., Husum, K., Laberg, J. S., and Morigi, C.: A High-Resolution
Geomagnetic Relative Paleointensity Record From the Arctic Ocean Deep-Water
Gateway Deposits During the Last 60 kyr, Geochem. Geophy.
Geosy., 20, 2355–2377, https://doi.org/10.1029/2018GC007955, 2019.
Caricchi, C., Sagnotti, L., Campuzano, S. A., Lucchi, R. G., Macrì, P.,
Rebesco, M., and Camerlenghi, A.: A refined age calibrated paleosecular
variation and relative paleointensity stack for the NW Barents Sea:
Implication for geomagnetic field behavior during the Holocene, Quaternary
Sci. Rev., 229, 106133, https://doi.org/10.1016/j.quascirev.2019.106133, 2020.
Chadima, M. and Hrouda, F.: Remasoft 3.0 a user-friendly paleomagnetic data
browser and analyzer, Travaux Géophysiques, 27, 20–21, 2006.
Channell, J. E.: Geomagnetic paleointensity and directional secular
variation at Ocean Drilling Program (ODP) site 984 (Bjorn Drift) since 500
ka: comparisons with ODP site 983 (Gardar drift), J. Geophys.
Res.-Sol. Ea., 104, 22937–922951, 1999.
Channell, J. E. T., Hodell, D. A., Xuan, C., Mazaud, A., and Stoner, J. S.:
Age calibrated relative paleointensity for the last 1.5 Myr at IODP Site
U1308 (North Atlantic), Earth Planet. Sc. Lett., 274, 59–71,
https://doi.org/10.1016/j.epsl.2008.07.005, 2008.
Chave, A. and Filloux, J. H.: Observation and interpretation of the
seafloor vertical electric field in the Eastern North Pacific, Geophys.
Res. Lett., 12, 793–796, 1985.
Christensen, J. H., Kanikicharla, K. K., Aldrian, E., An, S. I., Cavalcanti,
I. F. A., de Castro, M., Dong, W., Goswami, P., Hall, A., and Kanyanga, J.
K.: Climate phenomena and their relevance for future regional climate
change, in: Climate Change 2013 the Physical Science Basis: Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, 1217–1308, 2013.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The
Last Glacial Maximum, Science, 325, 710, https://doi.org/10.1126/science.1172873, 2009.
Durcan, J. A., King, G. E., and Duller, G. A.: DRAC: Dose Rate and Age
Calculator for trapped charge dating, Quat. Geochronol., 28, 54–61,
2015.
Ebel, T., Melles, M., and Niessen, F.: Laminated Sediments from
Levinson-Lessing Lake, Northern Central Siberia-A 30,000 Year Record of
Environmental History?, in: Land-Ocean Systems in the Siberian Arctic,
Springer, Berlin, Heidelberg, 425–435, 1999.
Egli, R. and Zhao, X.: Natural remanent magnetization acquisition in
bioturbated sediment: General theory and implications for relative
paleointensity reconstructions, Geochem. Geophy. Geosy., 16,
995–1016, 2015.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley,
J. M.: Optical Dating of single and multiple Grains of Quarth from Jinmium
Rock Shelter, Northern Australia: Part I, experimental Design and
statistical Models, Archaeometry, 41, 339–364,
https://doi.org/10.1111/j.1475-4754.1999.tb00987.x, 1999.
Gromov, P., Proskurinin, V., and Schneider, G.: Geological Map of the Taymyr Peninsula, available at: http://webmapget.vsegei.ru/index.html (last access: 1 December 2020), 2014.
Grootes, P. M. and Stuiver, M.: GISP2 Oxygen Isotope Data, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.56094, 1999.
Haflidason, H., Zweidorff, J. L., Baumer, M., Gyllencreutz, R., Svendsen, J.
I., Gladysh, V., and Logvina, E.: The Lastglacial and Holocene
seismostratigraphy and sediment distribution of Lake Bolshoye Shchuchye,
Polar Ural Mountains, Arctic Russia, Boreas, 48, 452–469,
https://doi.org/10.1111/bor.12387, 2019.
Hahne, J. and Melles, M.: Climate and Vegetation History of the Taymyr
Peninsula since Middle Weichselian Time – Palynological Evidence from Lake
Sediments, in: Land-Ocean Systems in the Siberian Arctic: Dynamics and
History, edited by: Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eicken, H.,
Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L. A., Springer
Berlin Heidelberg, Berlin, Heidelberg, 407–423, 1999.
Jiabo, L., Nowaczyk, N., Frank, U., and Arz, H.: Geomagnetic paleosecular
variation record spanning from 40 to 20 ka-implications for the Mono Lake
excursion from Black Sea sediments, Earth Planet. Sc. Lett.,
509, 114–124, 2019.
King, J. W., Banerjee, S. K., and Marvin, J.: A new rock-magnetic approach
to selecting sediments for geomagnetic paleointensity studies; application
to paleointensity for the last 4000 years, J. Geophys. Res.,
88, 5911–5921, 1983.
Kirschvink, J. L.: The least-squares line and plane and the analysis of
palaeomagnetic data, Geophys. J., 62,
699–718, 1980.
Korte, M., Brown, M. C., Panovska, S., and Wardinski, I.: Robust
Characteristics of the Laschamp and Mono Lake Geomagnetic Excursions:
Results From Global Field Models, Front. Earth Sci., 7, 68, https://doi.org/10.3389/feart.2019.00086, 2019.
Laj, C. and Kissel, C.: An impending geomagnetic transition? Hints from the
past, Front. Earth Sci., 3, 61, https://doi.org/10.3389/feart.2015.00061, 2015.
Laj, C., Kissel, C., Mazaud, A., Channell, J. E., and Beer, J.: North
Atlantic paaeointensity stack since 75 ka (NAPIS-75) and the duratin of the
Laschamp event, Philos. T. R. Soc. Lond. A., 358, 1009–1025, 2000.
Laj, C., Kissel, C., and Beer, J.: High resolution paleointensity stack
since 75 kyr (GLOPIS-75) calibrated to absolute values, Geophys.
Monogr. Ser., 145, 255–265, https://doi.org/10.1029/145GM19, 2004.
Laj, C., Guillou, H., and Kissel, C.: Dynamics of the earth magnetic field
in the 10–75 kyr period comprising the Laschamp and Mono Lake excursions:
New results from the French Chaîne des Puys in a global perspective,
Earth Planet. Sc. Lett., 387, 184–197,
https://doi.org/10.1016/j.epsl.2013.11.031, 2014.
Lang, A. and Zolitschka, B.: Optical dating of annually laminated lake
sediments A test case from Holzmaar/Germany, Quaternary Sci. Rev., 20,
737–742, https://doi.org/10.1016/S0277-3791(00)00067-6, 2001.
Lebas, E., Krastel, S., Wagner, B., Gromig, R., Fedorov, G., Baumer, M.,
Kostromina, N., and Haflidason, H.: Seismic stratigraphical record of Lake
Levinson-Lessing, Taymyr Peninsula: evidence for ice-sheet dynamics and
lake-level fluctuations since the Early Weichselian, Boreas, 48, 470–487,
https://doi.org/10.1111/bor.12381, 2019.
Lenz, M., Lenz, M. M., Andreev, A., Scheidt, S., Gromig, R., Lebas, E.,
Fedorov, G., Krastel, S., Melles, M., and Wagner, B.: Climate and
environmental history at Lake Levinson-Lessing, Taymyr Peninsula, during the
last 62 kyr, J. Quaternary Sci., https://doi.org/10.1002/jqs.3384, online first, 2022.
Levi, S. and Banerjee, S. K.: On the possibility of obtaining relative
paleointensities from lake sediments, Earth Planet. Sc. Lett.,
29, 219–226, 1976.
Lund, S., Keigwin, L., and Darby, D.: Character of Holocene paleomagnetic
secular variation in the tangent cylinder: Evidence from the Chukchi Sea,
Phys. Earth Pl. In., 256, 49–58,
https://doi.org/10.1016/j.pepi.2016.03.005, 2016.
Lund, S., Benson, L., Negrini, R., Liddicoat, J., and Mensing, S.: A
full-vector paleomagnetic secular variation record (PSV) from Pyramid Lake
(Nevada) from 47–17 ka: Evidence for the successive Mono Lake and Laschamp
Excursions, Earth Planet. Sc. Lett., 458, 120–129, 2017.
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C., and
Shackleton, N. J.: Age Dating and the Orbital Theory of the Ice Ages:
Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy,
Quaternary Res., 27, 1–29, https://doi.org/10.1016/0033-5894(87)90046-9, 1987.
Mellström, A., Nilsson, A., Stanton, T., Muscheler, R., Snowball, I.,
and Suttie, N.: Post-depositional remanent magnetization lock-in depth in
precisely dated varved sediments assessed by archaeomagnetic field models,
Earth Planet. Sc. Lett., 410, 186–196,
https://doi.org/10.1016/j.epsl.2014.11.016, 2015.
Minyuk, P. and Subbotnikova, T.: Rock magnetic properties of Grand Lake
sediments as evidence of environmental changes during the last 60 000 years
in North-East Russia, Boreas, 50, 1027–1042, https://doi.org/10.1111/bor.12546, 2021.
Moritz, H.: Least-squares collocation, Rev. Geophys. Space
Phys., 16, 421–430, 1978.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose
protocol: potential for improvements in reliability, Radiat. Meas.,
37, 377–381, https://doi.org/10.1016/S1350-4487(03)00053-2, 2003.
Niessen, F., Ebel, T., Kopsch, C., and Fedorov, G. B.: High-Resolution
Seismic Stratigraphy of Lake Sediments on the Taymyr Peninsula, Central
Siberia, in: Land-Ocean Systems in the Siberian Arctic: Dynamics and
History, edited by: Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eicken, H.,
Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L. A., Springer
Berlin Heidelberg, Berlin, Heidelberg, 437–456, 1999.
Nilsson, A., Suttie, N., and Hill, M. J.: Short-Term Magnetic Field
Variations From the Post-depositional Remanence of Lake Sediments, Front.
Earth Sci., 6, 39, https://doi.org/10.3389/feart.2018.00039, 2018.
NOAA: Magnetic Field Calculators:
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml, last access:
2 February 2021.
Nowaczyk, N. R. and Knies, J.: Magnetostratigraphic results from the
eastern Arctic Ocean: AMS 14C ages and relative palaeointensity data of
the Mono Lake and Laschamp geomagnetic reversal excursions, Geophys.
J. Int., 140, 185–197, 2000.
Nowaczyk, N. R., Antonow, M., Knies, J., and Spielhagen, R. F.: Further rock
magnetic and chronostratigraphic results on reversal excursions during the
last 50 ka as derived from northern high latitudes and discrepancies in
precise AMS 14C dating, Geophys. J. Int., 155,
1065–1080, 2003.
O'Regan, M., King, J., Backman, J., Jakobsson, M., Pälike, H., Moran,
K., Heil, C., Sakamoto, T., Cronin, T. M., and Jordan, R. W.: Constraints on
the Pleistocene chronology of sediments from the Lomonosov Ridge,
Paleoceanography, 23, PA1S19, https://doi.org/10.1029/2007PA001551, 2008.
Panovska, S., Constable, C. G., and Korte, M.: Extending Global Continuous
Geomagnetic Field Reconstructions on Timescales Beyond Human Civilization,
Geochem. Geophy. Geosy., 19, 4757–4772,
https://doi.org/10.1029/2018GC007966, 2018.
Park, J., Lindberg, C. R., and Vernon III, F. L.: Multitaper spectral analysis
of high-frequency seismograms, J. Geophys. Res., 92,
12675–12684, 1987.
Pavón-Carrasco, F. J., Osete, M. L., Torta, J. M., and De Santis, A.: A
geomagnetic field model for the Holocene based on archaeomagnetic and lava
flow data, Earth Planet. Sc. Lett., 388, 98–109,
https://doi.org/10.1016/j.epsl.2013.11.046, 2014.
Peck, J. A., King, J. W., Colman, S. M., and Kravchinsky, V. A.: An 84-kyr
paleomagnetic record from the sediments of Lake Baikal, Siberia, J.
Geophys. Res.-Sol. Ea., 101, 11365–11385, https://doi.org/10.1029/96JB00328,
1996.
Polyak, L., Bischof, J., Ortiz, J. D., Darby, D. A., Channell, J. E., Xuan,
C., Kaufman, D. S., Løvlie, R., Schneider, D. A., and Eberl, D. D.: Late
Quaternary stratigraphy and sedimentation patterns in the western Arctic
Ocean, Global Planet. Change, 68, 5–17,
https://doi.org/10.1016/j.gloplacha.2009.03.014, 2009.
Porter, C., Morin, P., Howat, I., Noh, M-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington Jr., M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker,
P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.:
“ArcticDEM”, V1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon
Age Calibration Curve (0–55 CAL kBP), Radiocarbon, 62, 1–33,
https://https://doi.org/10.1017/RDC.2020.41, 2020.
Rethemeyer, J., Gierga, M., Heinze, S., Stolz, A., Wotte, A.,
Wischhöfer, P., Berg, S., Melchert, J. O., and Dewald, A.: Current
Sample Preparation and Analytical Capabilities of the Radiocarbon Laboratory
at CologneAMS, Radiocarbon, 61, 1449–1460, https://doi.org/10.1017/RDC.2019.16, 2019.
Roberts, A. P., Tauxe, L., and Heslop, D.: Magnetic paleointensity
stratigraphy and high-resolution Quaternary geochronology: successes and
future challenges, Quaternary Sci. Rev., 61, 1–16, 2013.
Scheidt, S., Hambach, U., and Rolf, C.: A consistent magnetic polarity
stratigraphy of late Neogene to Quaternary fluvial sediments from the
Heidelberg Basin (Germany): A new time frame for the Plio–Pleistocene
palaeoclimatic evolution of the Rhine Basin, Global Planet. Change, 27, 103–116, https://doi.org/10.1016/j.gloplacha.2015.01.004, 2015.
Scheidt, S., Egli, R., Lenz, M., Rolf, C., Fabian, K., and Melles, M.:
Mineral Magnetic Characterization of high-latitude Sediments from Lake
Levinson-Lessing, Siberia, Geophys. Res. Lett., 48, e2021GL093026,
https://doi.org/10.1029/2021GL093026, 2021a.
Scheidt, S., Egli, R., Rolf, C., and Melles, M.: Magnetic characterization
and paleomagnetic analyses of lacustrine sediments from Levinson-Lessing
Lake, Siberia, fighshare [data set], https://doi.org/10.6084/m9.figshare.c.5369129.v1, 2021b.
Siegert, C. and Bolshiyanov, D.: Russian-German cooperation: the expedition
TAYMYR 1994, Berichte zur Polarforschung (Reports on Polar Research), 175,
1995.
Simon, Q., Thouveny, N., Bourlès, D. L., Valet, J.-P., and Bassinot, F.:
Cosmogenic 10Be production records reveal dynamics of geomagnetic dipole
moment (GDM) over the Laschamp excursion (20–60 ka), Earth Planet.
Sc. Lett., 550, 116547, https://doi.org/10.1016/j.epsl.2020.116547, 2020.
Snowball, I., Zillén, L., Ojala, A., Saarinen, T., and Sandgren, P.:
FENNOSTACK and FENNORPIS: Varve dated Holocene palaeomagnetic secular
variation and relative palaeointensity stacks for Fennoscandia, Earth
Planet. Sc. Lett., 255, 106–116, https://doi.org/10.1016/j.epsl.2006.12.009, 2007.
Snowball, I., Mellström, A., Ahlstrand, E., Haltia, E., Nilsson, A.,
Ning, W., Muscheler, R., and Brauer, A.: An estimate of post-depositional
remanent magnetization lock-in depth in organic rich varved lake sediments,
Global Planet. Change, 110, 264–277,
https://doi.org/10.1016/j.gloplacha.2013.10.005, 2013.
Snowball, I. F.: Geochemical control of magnetite dissolution in subarctic
lake sediments and the implications for environmental magnetism, J.
Quaternary Sci., 8, 339–346, 1993.
Stoner, J. S. and St-Onge, G.: Chapter Three Magnetic Stratigraphy in
Paleoceanography: Reversals, Excursions, Paleointensity, and Secular
Variation, in: Proxies in Late Cenozoic Paleoceanography, Dev.
Mar. Geol., 99–138, 2007.
St-Onge, G. and Stoner, J.: Paleomagnetism Near the North Magnetic Pole: A
Unique Vantage Point for Understanding the Dynamics of the Geomagnetic Field
and Its Secular Variations, Oceanography, 24, 42–50,
https://doi.org/10.5670/oceanog.2011.53, 2011.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Stoner, J. S., Channell, J. E., and Hillaire-Marcel, C.: Late Pleistocene
relative geomagnetic paleointensity from the deep Labrador Sea; regional and
global correlations, Earth Planet. Sc. Lett., 134, 252–237,
1995.
Stoner, J. S., Channell, J. E. T., and Hillaire-Marcel, C.: A 200 ka
geomagnetic chronostratigraphy for the Labrador Sea: Indirect correlation of
the sediment record to SPECMAP, Earth Planet. Sc. Lett., 159,
165–181, https://doi.org/10.1016/S0012-821X(98)00069-7, 1998.
Tauxe, L.: Sedimentary records of relative paleointensity of the geomagnetic
field: theory and practice, Rev. Geophys., 31, 319–354,
https://doi.org/10.1029/93RG01771, 1993.
Tauxe, L. and Wu, G.: Normalized remanence in sediments of the Western
Equatorial Pacific: Relative paleointensity of the geomagnetic field?,
J. Geophys. Res., 95, 12337–12350, 1990.
Tauxe, L., Pick, T., and Kok, Y. S.: Relative paleointensity in sediments: A
Pseudo-Thellier Approach, Geophys. Res. Lett., 22, 2885–2888,
https://doi.org/10.1029/95GL03166, 1995.
Tauxe, L., Steindorf, J. L., and Harris, A.: Depositional remanent
magnetization: Toward an improved theoretical and experimental foundation,
Earth and Planetary Science Letters, 244, 515-529,
https://doi.org/10.1016/j.epsl.2006.02.003, 2006.
Torsvik, T. H. and Andersen, T. B.:
The Taimyr fold belt, Arctic Siberia: timing of prefold remagnetisation and
regional tectonics, Tectonophysics, 352, 335–348,
https://doi.org/10.1016/S0040-1951(02)00274-3, 2002.
Valet, J.-P., Tanty, C., and Carlut, J.: Detrital magnetization of
laboratory-redeposited sediments, Geophys. J. Int., 210,
34–41, https://doi.org/10.1093/gji/ggx139, 2017.
van der Bilt, W. G. M., Bakke, J., Vasskog, K., D'Andrea, W. J., Bradley, R.
S., and Ólafsdóttir, S.: Reconstruction of glacier variability from
lake sediments reveals dynamic Holocene climate in Svalbard, Quaternary
Sci. Rev., 126, 201–218, https://doi.org/10.1016/j.quascirev.2015.09.003, 2015.
Vereş, D.: A comparative study between loss on ignition and total carbon
analysis on mineralogenic sediments, Studia UBB Geologia, 47, 171–182,
https://doi.org/10.5038/1937-8602.47.1.13 2002.
Vernon, F. L., Fletcher, J., Carroll, L., Chave, A., and Sembera, E.: Coherence of seismic body waves from local events as measured by a small-aperture array, J. Geophys. Res.-Sol. Ea., 96, 11981–11996, https://doi.org/10.1029/91JB00193, 1991.
Walderhaug, H. J., Eide, E. A., Scott, R. A., Inger, S., and Golionko, E.
G.: Palaeomagnetism and 40Ar/39Ar geochronology from the South Taimyr
igneous complex, Arctic Russia: a Middle-Late Triassic magmatic pulse after
Siberian flood-basalt volcanism, Geophys. J. Int., 163,
501–517, https://doi.org/10.1111/j.1365-246X.2005.02741.x, 2005.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H.
F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem.
Geophy. Geosy., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Wiers, S., Snowball, I., O'Regan, M., and Almqvist, B.: Late Pleistocene
Chronology of Sediments From the Yermak Plateau and Uncertainty in Dating
Based on Geomagnetic Excursions, Geochem. Geophy. Geosy., 20,
3289–3310, https://doi.org/10.1029/2018GC007920, 2019.
Wiers, S., Snowball, I., O'Regan, M., Pearce, C., and Almqvist, B.: The
Arctic Ocean Manganese Cycle, an Overlooked Mechanism in the Anomalous
Palaeomagnetic Sedimentary Record, Front. Earth Sci., 8, 78,
https://doi.org/10.3389/feart.2020.00075, 2020.
Xuan, C. and Channell, J. E. T.: Origin of apparent magnetic excursions in
deep-sea sediments from Mendeleev-Alpha Ridge, Arctic Ocean, Geochem.
Geophy. Geosy., 11, Q02003, https://doi.org/10.1029/2009GC002879, 2010.
Zander, A. and Hilgers, A.: Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia, Clim. Past, 9, 719–733, https://doi.org/10.5194/cp-9-719-2013, 2013.
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study...