Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-87-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-87-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 62 kyr geomagnetic palaeointensity record from the Taymyr Peninsula, Russian Arctic
Stephanie Scheidt
CORRESPONDING AUTHOR
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Matthias Lenz
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Ramon Egli
Central Institute for Meteorology and Geo-dynamics (ZAMG), Vienna,
1190, Austria
Dominik Brill
Institute of Geography, University of Cologne, Cologne, 50674, Germany
Martin Klug
Geological Survey of Norway (NGU), Trondheim, 7040, Norway
Karl Fabian
Geological Survey of Norway (NGU), Trondheim, 7040, Norway
Department of Geoscience and Petroleum, Norwegian University of
Science and Technology, Trondheim, 7040, Norway
Marlene M. Lenz
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Raphael Gromig
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Janet Rethemeyer
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Bernd Wagner
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Grigory Federov
Institute of Earth Sciences, St. Petersburg State University, St.
Petersburg, 199034, Russia
Arctic and Antarctic Research Institute, St. Petersburg, 199397,
Russia
Martin Melles
Institute of Geology and Mineralogy, University of Cologne, Cologne,
50674, Germany
Related authors
Volker Wennrich, Julia Diederich-Leicher, Bárbara Nataly Blanco-Arrué, Christoph Büttner, Stefan Buske, Eduardo Campos Sepulveda, Tibor Dunai, Jacob Feller, Emma Galego, Ascelina Hasberg, Niklas Leicher, Damián Alejandro López, Jorge Maldonado, Alicia Medialdea, Lukas Ninnemann, Russell Perryman, Juan Cristóbal Ríos-Contesse, Benedikt Ritter, Stephanie Scheidt, Barbara Vargas-Machuca, Pritam Yogeshwar, and Martin Melles
Sci. Dril., 34, 1–20, https://doi.org/10.5194/sd-34-1-2025, https://doi.org/10.5194/sd-34-1-2025, 2025
Short summary
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Niklas Leicher, Vincent Feldmar, Andrés Quezada Jara, Paulina Vásquez Illanes, Fernando Sepúlveda Vásquez, Frank Wombacher, Markus Lagos, Tanja Kramm, Gabriel González, Klaudia Kuiper, Christoph Breitkreuz, Alberto Sáez, Domingo Gimeno, Lluís Cabrera, Inés Rodríguez Araneda, Bernd Wagner, Georg Bareth, and Volker Wennrich
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-422, https://doi.org/10.5194/essd-2025-422, 2025
Preprint under review for ESSD
Short summary
Short summary
The TephATA database comprises morphological, geochemical, and chronological data of volcanic ash layers from the Atacama Desert. The dataset provides a basis for identifying the same volcanic ash layers in different sediment deposits and to determine their stratigraphic and chronological relationships. Known ages of volcanic eruptions can be transferred among equivalent ash layers, which allows dating of sediments. Also ash dispersal and the volcanic history of a region can be studied.
Volker Wennrich, Julia Diederich-Leicher, Bárbara Nataly Blanco-Arrué, Christoph Büttner, Stefan Buske, Eduardo Campos Sepulveda, Tibor Dunai, Jacob Feller, Emma Galego, Ascelina Hasberg, Niklas Leicher, Damián Alejandro López, Jorge Maldonado, Alicia Medialdea, Lukas Ninnemann, Russell Perryman, Juan Cristóbal Ríos-Contesse, Benedikt Ritter, Stephanie Scheidt, Barbara Vargas-Machuca, Pritam Yogeshwar, and Martin Melles
Sci. Dril., 34, 1–20, https://doi.org/10.5194/sd-34-1-2025, https://doi.org/10.5194/sd-34-1-2025, 2025
Short summary
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
Biagio Giaccio, Bernd Wagner, Giovanni Zanchetta, Adele Bertini, Gian Paolo Cavinato, Roberto de Franco, Fabio Florindo, David A. Hodell, Thomas A. Neubauer, Sebastien Nomade, Alison Pereira, Laura Sadori, Sara Satolli, Polychronis C. Tzedakis, Paul Albert, Paolo Boncio, Cindy De Jonge, Alexander Francke, Christine Heim, Alessia Masi, Marta Marchegiano, Helen M. Roberts, Anders Noren, and the MEME team
Sci. Dril., 33, 249–266, https://doi.org/10.5194/sd-33-249-2024, https://doi.org/10.5194/sd-33-249-2024, 2024
Short summary
Short summary
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to 27 October 2023 to explore the potential for deep drilling of the thick lake sediment sequence of the Fucino Basin. The aim was to reconstruct the history of climate, ecosystem, and biodiversity changes and of the explosive volcanism and tectonics in central Italy over the last 3.5 million years, constrained by a detailed radiometric chronology.
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Katharina Seeger, Philip S. J. Minderhoud, Andreas Peffeköver, Anissa Vogel, Helmut Brückner, Frauke Kraas, Nay Win Oo, and Dominik Brill
Hydrol. Earth Syst. Sci., 27, 2257–2281, https://doi.org/10.5194/hess-27-2257-2023, https://doi.org/10.5194/hess-27-2257-2023, 2023
Short summary
Short summary
Accurate elevation data is essential for flood risk assessment. We assess land elevation to local mean sea level of the Ayeyarwady Delta with a new, local DEM based on geodetic data and evaluate the performance of 10 global DEMs in an SLR impact assessment. Our study reveals major differences in performance between global DEMs and consequentially introduced uncertainty in SLR impact assessments, indicating potential similar uncertainties for other data-poor coastal lowlands around the world.
Stephan Pötter, Katharina Seeger, Christiane Richter, Dominik Brill, Mathias Knaak, Frank Lehmkuhl, and Philipp Schulte
E&G Quaternary Sci. J., 72, 77–94, https://doi.org/10.5194/egqsj-72-77-2023, https://doi.org/10.5194/egqsj-72-77-2023, 2023
Short summary
Short summary
We reconstructed a wetland environment for a late Middle to Upper Pleniglacial (approx. 30–20 ka) loess sequence in western Germany. Typically, these sequences reveal terrestrial conditions with soil formation processes during this time frame. The here-investigated section, however, was influenced by periodical flooding, leading to marshy conditions and a stressed ecosystem. Our results show that the landscape of the study area was much more fragmented during this time than previously thought.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Cited articles
Alexanderson, H., Backman, J., Cronin, T. M., Funder, S., Ingólfsson,
Ó., Jakobsson, M., Landvik, J. Y., Löwemark, L., Mangerud, J.,
März, C., Möller, P., O'Regan, M., and Spielhagen, R. F.: An Arctic
perspective on dating Mid-Late Pleistocene environmental history, Quaternary
Sci. Rev., 92, 9–31, https://doi.org/10.1016/j.quascirev.2013.09.023, 2014.
Andreev, A. A., Tarasov, P. E., Siegert, C., Ebel, T., Klimanov, V. A.,
Melles, M., Bobrov, A. A., Dereviagin, A. Y., Lubinski, D. J., and
Hubberten, H.-W.: Late Pleistocene and Holocene vegetation and climate on
the northern Taymyr Peninsula, Arctic Russia, Boreas, 32, 484–505,
https://doi.org/10.1111/j.1502-3885.2003.tb01230.x, 2003.
Anisimov, M., and Pospelov, I.: The landscape and geobotanical characteristics of the Levinson-Lessing Lake basin, Byrranga Mountains, central Taimyr, in: Land-Ocean Systems in the Siberian Arctic, edited by: Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L. A., Springer, 307–327, https://doi.org/10.1007/978-3-642-60134-7_27, 1999.
Banerjee, S. K. and Mellema, J. P.: A new method for the determination of
paleointensity from the A.R.M. properties of rocks, Earth Planet.
Sc. Lett., 23, 177–184, https://doi.org/10.1016/0012-821X(74)90190-3,
1974.
Bolshiyanov, D. Y. and Anisimov, M.: Investigations in the Levinson-Lessing
Lake area. Geomorphological studies and landscape mapping. Russian–German
cooperation: the expedition Taymyr 1994, Berichte zur Polarforschung, 175,
9–13, 1995.
Buylaert, J. P., Murray, A. S., Gebhardt, A. C., Sohbati, R., Ohlendorf, C.,
Thiel, C., Wastegård, S., and Zolitschka, B.: Luminescence dating of the
PASADO core 5022-1D from Laguna Potrok Aike (Argentina) using IRSL signals
from feldspar, Quaternary Sci. Rev., 71, 70–80,
https://doi.org/10.1016/j.quascirev.2013.03.018, 2013.
Caricchi, C., Lucchi, R. G., Sagnotti, L., Macrì, P., Di Roberto, A.,
Del Carlo, P., Husum, K., Laberg, J. S., and Morigi, C.: A High-Resolution
Geomagnetic Relative Paleointensity Record From the Arctic Ocean Deep-Water
Gateway Deposits During the Last 60 kyr, Geochem. Geophy.
Geosy., 20, 2355–2377, https://doi.org/10.1029/2018GC007955, 2019.
Caricchi, C., Sagnotti, L., Campuzano, S. A., Lucchi, R. G., Macrì, P.,
Rebesco, M., and Camerlenghi, A.: A refined age calibrated paleosecular
variation and relative paleointensity stack for the NW Barents Sea:
Implication for geomagnetic field behavior during the Holocene, Quaternary
Sci. Rev., 229, 106133, https://doi.org/10.1016/j.quascirev.2019.106133, 2020.
Chadima, M. and Hrouda, F.: Remasoft 3.0 a user-friendly paleomagnetic data
browser and analyzer, Travaux Géophysiques, 27, 20–21, 2006.
Channell, J. E.: Geomagnetic paleointensity and directional secular
variation at Ocean Drilling Program (ODP) site 984 (Bjorn Drift) since 500
ka: comparisons with ODP site 983 (Gardar drift), J. Geophys.
Res.-Sol. Ea., 104, 22937–922951, 1999.
Channell, J. E. T., Hodell, D. A., Xuan, C., Mazaud, A., and Stoner, J. S.:
Age calibrated relative paleointensity for the last 1.5 Myr at IODP Site
U1308 (North Atlantic), Earth Planet. Sc. Lett., 274, 59–71,
https://doi.org/10.1016/j.epsl.2008.07.005, 2008.
Chave, A. and Filloux, J. H.: Observation and interpretation of the
seafloor vertical electric field in the Eastern North Pacific, Geophys.
Res. Lett., 12, 793–796, 1985.
Christensen, J. H., Kanikicharla, K. K., Aldrian, E., An, S. I., Cavalcanti,
I. F. A., de Castro, M., Dong, W., Goswami, P., Hall, A., and Kanyanga, J.
K.: Climate phenomena and their relevance for future regional climate
change, in: Climate Change 2013 the Physical Science Basis: Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, 1217–1308, 2013.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The
Last Glacial Maximum, Science, 325, 710, https://doi.org/10.1126/science.1172873, 2009.
Durcan, J. A., King, G. E., and Duller, G. A.: DRAC: Dose Rate and Age
Calculator for trapped charge dating, Quat. Geochronol., 28, 54–61,
2015.
Ebel, T., Melles, M., and Niessen, F.: Laminated Sediments from
Levinson-Lessing Lake, Northern Central Siberia-A 30,000 Year Record of
Environmental History?, in: Land-Ocean Systems in the Siberian Arctic,
Springer, Berlin, Heidelberg, 425–435, 1999.
Egli, R. and Zhao, X.: Natural remanent magnetization acquisition in
bioturbated sediment: General theory and implications for relative
paleointensity reconstructions, Geochem. Geophy. Geosy., 16,
995–1016, 2015.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley,
J. M.: Optical Dating of single and multiple Grains of Quarth from Jinmium
Rock Shelter, Northern Australia: Part I, experimental Design and
statistical Models, Archaeometry, 41, 339–364,
https://doi.org/10.1111/j.1475-4754.1999.tb00987.x, 1999.
Gromov, P., Proskurinin, V., and Schneider, G.: Geological Map of the Taymyr Peninsula, available at: http://webmapget.vsegei.ru/index.html (last access: 1 December 2020), 2014.
Grootes, P. M. and Stuiver, M.: GISP2 Oxygen Isotope Data, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.56094, 1999.
Haflidason, H., Zweidorff, J. L., Baumer, M., Gyllencreutz, R., Svendsen, J.
I., Gladysh, V., and Logvina, E.: The Lastglacial and Holocene
seismostratigraphy and sediment distribution of Lake Bolshoye Shchuchye,
Polar Ural Mountains, Arctic Russia, Boreas, 48, 452–469,
https://doi.org/10.1111/bor.12387, 2019.
Hahne, J. and Melles, M.: Climate and Vegetation History of the Taymyr
Peninsula since Middle Weichselian Time – Palynological Evidence from Lake
Sediments, in: Land-Ocean Systems in the Siberian Arctic: Dynamics and
History, edited by: Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eicken, H.,
Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L. A., Springer
Berlin Heidelberg, Berlin, Heidelberg, 407–423, 1999.
Jiabo, L., Nowaczyk, N., Frank, U., and Arz, H.: Geomagnetic paleosecular
variation record spanning from 40 to 20 ka-implications for the Mono Lake
excursion from Black Sea sediments, Earth Planet. Sc. Lett.,
509, 114–124, 2019.
King, J. W., Banerjee, S. K., and Marvin, J.: A new rock-magnetic approach
to selecting sediments for geomagnetic paleointensity studies; application
to paleointensity for the last 4000 years, J. Geophys. Res.,
88, 5911–5921, 1983.
Kirschvink, J. L.: The least-squares line and plane and the analysis of
palaeomagnetic data, Geophys. J., 62,
699–718, 1980.
Korte, M., Brown, M. C., Panovska, S., and Wardinski, I.: Robust
Characteristics of the Laschamp and Mono Lake Geomagnetic Excursions:
Results From Global Field Models, Front. Earth Sci., 7, 68, https://doi.org/10.3389/feart.2019.00086, 2019.
Laj, C. and Kissel, C.: An impending geomagnetic transition? Hints from the
past, Front. Earth Sci., 3, 61, https://doi.org/10.3389/feart.2015.00061, 2015.
Laj, C., Kissel, C., Mazaud, A., Channell, J. E., and Beer, J.: North
Atlantic paaeointensity stack since 75 ka (NAPIS-75) and the duratin of the
Laschamp event, Philos. T. R. Soc. Lond. A., 358, 1009–1025, 2000.
Laj, C., Kissel, C., and Beer, J.: High resolution paleointensity stack
since 75 kyr (GLOPIS-75) calibrated to absolute values, Geophys.
Monogr. Ser., 145, 255–265, https://doi.org/10.1029/145GM19, 2004.
Laj, C., Guillou, H., and Kissel, C.: Dynamics of the earth magnetic field
in the 10–75 kyr period comprising the Laschamp and Mono Lake excursions:
New results from the French Chaîne des Puys in a global perspective,
Earth Planet. Sc. Lett., 387, 184–197,
https://doi.org/10.1016/j.epsl.2013.11.031, 2014.
Lang, A. and Zolitschka, B.: Optical dating of annually laminated lake
sediments A test case from Holzmaar/Germany, Quaternary Sci. Rev., 20,
737–742, https://doi.org/10.1016/S0277-3791(00)00067-6, 2001.
Lebas, E., Krastel, S., Wagner, B., Gromig, R., Fedorov, G., Baumer, M.,
Kostromina, N., and Haflidason, H.: Seismic stratigraphical record of Lake
Levinson-Lessing, Taymyr Peninsula: evidence for ice-sheet dynamics and
lake-level fluctuations since the Early Weichselian, Boreas, 48, 470–487,
https://doi.org/10.1111/bor.12381, 2019.
Lenz, M., Lenz, M. M., Andreev, A., Scheidt, S., Gromig, R., Lebas, E.,
Fedorov, G., Krastel, S., Melles, M., and Wagner, B.: Climate and
environmental history at Lake Levinson-Lessing, Taymyr Peninsula, during the
last 62 kyr, J. Quaternary Sci., https://doi.org/10.1002/jqs.3384, online first, 2022.
Levi, S. and Banerjee, S. K.: On the possibility of obtaining relative
paleointensities from lake sediments, Earth Planet. Sc. Lett.,
29, 219–226, 1976.
Lund, S., Keigwin, L., and Darby, D.: Character of Holocene paleomagnetic
secular variation in the tangent cylinder: Evidence from the Chukchi Sea,
Phys. Earth Pl. In., 256, 49–58,
https://doi.org/10.1016/j.pepi.2016.03.005, 2016.
Lund, S., Benson, L., Negrini, R., Liddicoat, J., and Mensing, S.: A
full-vector paleomagnetic secular variation record (PSV) from Pyramid Lake
(Nevada) from 47–17 ka: Evidence for the successive Mono Lake and Laschamp
Excursions, Earth Planet. Sc. Lett., 458, 120–129, 2017.
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C., and
Shackleton, N. J.: Age Dating and the Orbital Theory of the Ice Ages:
Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy,
Quaternary Res., 27, 1–29, https://doi.org/10.1016/0033-5894(87)90046-9, 1987.
Mellström, A., Nilsson, A., Stanton, T., Muscheler, R., Snowball, I.,
and Suttie, N.: Post-depositional remanent magnetization lock-in depth in
precisely dated varved sediments assessed by archaeomagnetic field models,
Earth Planet. Sc. Lett., 410, 186–196,
https://doi.org/10.1016/j.epsl.2014.11.016, 2015.
Minyuk, P. and Subbotnikova, T.: Rock magnetic properties of Grand Lake
sediments as evidence of environmental changes during the last 60 000 years
in North-East Russia, Boreas, 50, 1027–1042, https://doi.org/10.1111/bor.12546, 2021.
Moritz, H.: Least-squares collocation, Rev. Geophys. Space
Phys., 16, 421–430, 1978.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose
protocol: potential for improvements in reliability, Radiat. Meas.,
37, 377–381, https://doi.org/10.1016/S1350-4487(03)00053-2, 2003.
Niessen, F., Ebel, T., Kopsch, C., and Fedorov, G. B.: High-Resolution
Seismic Stratigraphy of Lake Sediments on the Taymyr Peninsula, Central
Siberia, in: Land-Ocean Systems in the Siberian Arctic: Dynamics and
History, edited by: Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eicken, H.,
Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L. A., Springer
Berlin Heidelberg, Berlin, Heidelberg, 437–456, 1999.
Nilsson, A., Suttie, N., and Hill, M. J.: Short-Term Magnetic Field
Variations From the Post-depositional Remanence of Lake Sediments, Front.
Earth Sci., 6, 39, https://doi.org/10.3389/feart.2018.00039, 2018.
NOAA: Magnetic Field Calculators:
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml, last access:
2 February 2021.
Nowaczyk, N. R. and Knies, J.: Magnetostratigraphic results from the
eastern Arctic Ocean: AMS 14C ages and relative palaeointensity data of
the Mono Lake and Laschamp geomagnetic reversal excursions, Geophys.
J. Int., 140, 185–197, 2000.
Nowaczyk, N. R., Antonow, M., Knies, J., and Spielhagen, R. F.: Further rock
magnetic and chronostratigraphic results on reversal excursions during the
last 50 ka as derived from northern high latitudes and discrepancies in
precise AMS 14C dating, Geophys. J. Int., 155,
1065–1080, 2003.
O'Regan, M., King, J., Backman, J., Jakobsson, M., Pälike, H., Moran,
K., Heil, C., Sakamoto, T., Cronin, T. M., and Jordan, R. W.: Constraints on
the Pleistocene chronology of sediments from the Lomonosov Ridge,
Paleoceanography, 23, PA1S19, https://doi.org/10.1029/2007PA001551, 2008.
Panovska, S., Constable, C. G., and Korte, M.: Extending Global Continuous
Geomagnetic Field Reconstructions on Timescales Beyond Human Civilization,
Geochem. Geophy. Geosy., 19, 4757–4772,
https://doi.org/10.1029/2018GC007966, 2018.
Park, J., Lindberg, C. R., and Vernon III, F. L.: Multitaper spectral analysis
of high-frequency seismograms, J. Geophys. Res., 92,
12675–12684, 1987.
Pavón-Carrasco, F. J., Osete, M. L., Torta, J. M., and De Santis, A.: A
geomagnetic field model for the Holocene based on archaeomagnetic and lava
flow data, Earth Planet. Sc. Lett., 388, 98–109,
https://doi.org/10.1016/j.epsl.2013.11.046, 2014.
Peck, J. A., King, J. W., Colman, S. M., and Kravchinsky, V. A.: An 84-kyr
paleomagnetic record from the sediments of Lake Baikal, Siberia, J.
Geophys. Res.-Sol. Ea., 101, 11365–11385, https://doi.org/10.1029/96JB00328,
1996.
Polyak, L., Bischof, J., Ortiz, J. D., Darby, D. A., Channell, J. E., Xuan,
C., Kaufman, D. S., Løvlie, R., Schneider, D. A., and Eberl, D. D.: Late
Quaternary stratigraphy and sedimentation patterns in the western Arctic
Ocean, Global Planet. Change, 68, 5–17,
https://doi.org/10.1016/j.gloplacha.2009.03.014, 2009.
Porter, C., Morin, P., Howat, I., Noh, M-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington Jr., M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker,
P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.:
“ArcticDEM”, V1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon
Age Calibration Curve (0–55 CAL kBP), Radiocarbon, 62, 1–33,
https://https://doi.org/10.1017/RDC.2020.41, 2020.
Rethemeyer, J., Gierga, M., Heinze, S., Stolz, A., Wotte, A.,
Wischhöfer, P., Berg, S., Melchert, J. O., and Dewald, A.: Current
Sample Preparation and Analytical Capabilities of the Radiocarbon Laboratory
at CologneAMS, Radiocarbon, 61, 1449–1460, https://doi.org/10.1017/RDC.2019.16, 2019.
Roberts, A. P., Tauxe, L., and Heslop, D.: Magnetic paleointensity
stratigraphy and high-resolution Quaternary geochronology: successes and
future challenges, Quaternary Sci. Rev., 61, 1–16, 2013.
Scheidt, S., Hambach, U., and Rolf, C.: A consistent magnetic polarity
stratigraphy of late Neogene to Quaternary fluvial sediments from the
Heidelberg Basin (Germany): A new time frame for the Plio–Pleistocene
palaeoclimatic evolution of the Rhine Basin, Global Planet. Change, 27, 103–116, https://doi.org/10.1016/j.gloplacha.2015.01.004, 2015.
Scheidt, S., Egli, R., Lenz, M., Rolf, C., Fabian, K., and Melles, M.:
Mineral Magnetic Characterization of high-latitude Sediments from Lake
Levinson-Lessing, Siberia, Geophys. Res. Lett., 48, e2021GL093026,
https://doi.org/10.1029/2021GL093026, 2021a.
Scheidt, S., Egli, R., Rolf, C., and Melles, M.: Magnetic characterization
and paleomagnetic analyses of lacustrine sediments from Levinson-Lessing
Lake, Siberia, fighshare [data set], https://doi.org/10.6084/m9.figshare.c.5369129.v1, 2021b.
Siegert, C. and Bolshiyanov, D.: Russian-German cooperation: the expedition
TAYMYR 1994, Berichte zur Polarforschung (Reports on Polar Research), 175,
1995.
Simon, Q., Thouveny, N., Bourlès, D. L., Valet, J.-P., and Bassinot, F.:
Cosmogenic 10Be production records reveal dynamics of geomagnetic dipole
moment (GDM) over the Laschamp excursion (20–60 ka), Earth Planet.
Sc. Lett., 550, 116547, https://doi.org/10.1016/j.epsl.2020.116547, 2020.
Snowball, I., Zillén, L., Ojala, A., Saarinen, T., and Sandgren, P.:
FENNOSTACK and FENNORPIS: Varve dated Holocene palaeomagnetic secular
variation and relative palaeointensity stacks for Fennoscandia, Earth
Planet. Sc. Lett., 255, 106–116, https://doi.org/10.1016/j.epsl.2006.12.009, 2007.
Snowball, I., Mellström, A., Ahlstrand, E., Haltia, E., Nilsson, A.,
Ning, W., Muscheler, R., and Brauer, A.: An estimate of post-depositional
remanent magnetization lock-in depth in organic rich varved lake sediments,
Global Planet. Change, 110, 264–277,
https://doi.org/10.1016/j.gloplacha.2013.10.005, 2013.
Snowball, I. F.: Geochemical control of magnetite dissolution in subarctic
lake sediments and the implications for environmental magnetism, J.
Quaternary Sci., 8, 339–346, 1993.
Stoner, J. S. and St-Onge, G.: Chapter Three Magnetic Stratigraphy in
Paleoceanography: Reversals, Excursions, Paleointensity, and Secular
Variation, in: Proxies in Late Cenozoic Paleoceanography, Dev.
Mar. Geol., 99–138, 2007.
St-Onge, G. and Stoner, J.: Paleomagnetism Near the North Magnetic Pole: A
Unique Vantage Point for Understanding the Dynamics of the Geomagnetic Field
and Its Secular Variations, Oceanography, 24, 42–50,
https://doi.org/10.5670/oceanog.2011.53, 2011.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Stoner, J. S., Channell, J. E., and Hillaire-Marcel, C.: Late Pleistocene
relative geomagnetic paleointensity from the deep Labrador Sea; regional and
global correlations, Earth Planet. Sc. Lett., 134, 252–237,
1995.
Stoner, J. S., Channell, J. E. T., and Hillaire-Marcel, C.: A 200 ka
geomagnetic chronostratigraphy for the Labrador Sea: Indirect correlation of
the sediment record to SPECMAP, Earth Planet. Sc. Lett., 159,
165–181, https://doi.org/10.1016/S0012-821X(98)00069-7, 1998.
Tauxe, L.: Sedimentary records of relative paleointensity of the geomagnetic
field: theory and practice, Rev. Geophys., 31, 319–354,
https://doi.org/10.1029/93RG01771, 1993.
Tauxe, L. and Wu, G.: Normalized remanence in sediments of the Western
Equatorial Pacific: Relative paleointensity of the geomagnetic field?,
J. Geophys. Res., 95, 12337–12350, 1990.
Tauxe, L., Pick, T., and Kok, Y. S.: Relative paleointensity in sediments: A
Pseudo-Thellier Approach, Geophys. Res. Lett., 22, 2885–2888,
https://doi.org/10.1029/95GL03166, 1995.
Tauxe, L., Steindorf, J. L., and Harris, A.: Depositional remanent
magnetization: Toward an improved theoretical and experimental foundation,
Earth and Planetary Science Letters, 244, 515-529,
https://doi.org/10.1016/j.epsl.2006.02.003, 2006.
Torsvik, T. H. and Andersen, T. B.:
The Taimyr fold belt, Arctic Siberia: timing of prefold remagnetisation and
regional tectonics, Tectonophysics, 352, 335–348,
https://doi.org/10.1016/S0040-1951(02)00274-3, 2002.
Valet, J.-P., Tanty, C., and Carlut, J.: Detrital magnetization of
laboratory-redeposited sediments, Geophys. J. Int., 210,
34–41, https://doi.org/10.1093/gji/ggx139, 2017.
van der Bilt, W. G. M., Bakke, J., Vasskog, K., D'Andrea, W. J., Bradley, R.
S., and Ólafsdóttir, S.: Reconstruction of glacier variability from
lake sediments reveals dynamic Holocene climate in Svalbard, Quaternary
Sci. Rev., 126, 201–218, https://doi.org/10.1016/j.quascirev.2015.09.003, 2015.
Vereş, D.: A comparative study between loss on ignition and total carbon
analysis on mineralogenic sediments, Studia UBB Geologia, 47, 171–182,
https://doi.org/10.5038/1937-8602.47.1.13 2002.
Vernon, F. L., Fletcher, J., Carroll, L., Chave, A., and Sembera, E.: Coherence of seismic body waves from local events as measured by a small-aperture array, J. Geophys. Res.-Sol. Ea., 96, 11981–11996, https://doi.org/10.1029/91JB00193, 1991.
Walderhaug, H. J., Eide, E. A., Scott, R. A., Inger, S., and Golionko, E.
G.: Palaeomagnetism and 40Ar/39Ar geochronology from the South Taimyr
igneous complex, Arctic Russia: a Middle-Late Triassic magmatic pulse after
Siberian flood-basalt volcanism, Geophys. J. Int., 163,
501–517, https://doi.org/10.1111/j.1365-246X.2005.02741.x, 2005.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H.
F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem.
Geophy. Geosy., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Wiers, S., Snowball, I., O'Regan, M., and Almqvist, B.: Late Pleistocene
Chronology of Sediments From the Yermak Plateau and Uncertainty in Dating
Based on Geomagnetic Excursions, Geochem. Geophy. Geosy., 20,
3289–3310, https://doi.org/10.1029/2018GC007920, 2019.
Wiers, S., Snowball, I., O'Regan, M., Pearce, C., and Almqvist, B.: The
Arctic Ocean Manganese Cycle, an Overlooked Mechanism in the Anomalous
Palaeomagnetic Sedimentary Record, Front. Earth Sci., 8, 78,
https://doi.org/10.3389/feart.2020.00075, 2020.
Xuan, C. and Channell, J. E. T.: Origin of apparent magnetic excursions in
deep-sea sediments from Mendeleev-Alpha Ridge, Arctic Ocean, Geochem.
Geophy. Geosy., 11, Q02003, https://doi.org/10.1029/2009GC002879, 2010.
Zander, A. and Hilgers, A.: Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia, Clim. Past, 9, 719–733, https://doi.org/10.5194/cp-9-719-2013, 2013.
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study...