Articles | Volume 5, issue 2
https://doi.org/10.5194/gchron-5-451-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-451-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The marine reservoir age of Greenland coastal waters
Christof Pearce
CORRESPONDING AUTHOR
Department of Geoscience, Arctic Research Centre and iClimate, Aarhus University, Høegh Guldbergs Gade 2, 8000 Aarhus C, Denmark
Karen Søby Özdemir
Department of Geoscience, Arctic Research Centre and iClimate, Aarhus University, Høegh Guldbergs Gade 2, 8000 Aarhus C, Denmark
Ronja Forchhammer Mathiasen
Department of Geoscience, Arctic Research Centre and iClimate, Aarhus University, Høegh Guldbergs Gade 2, 8000 Aarhus C, Denmark
Henrieka Detlef
Department of Geoscience, Arctic Research Centre and iClimate, Aarhus University, Høegh Guldbergs Gade 2, 8000 Aarhus C, Denmark
Jesper Olsen
Aarhus AMS Centre, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
Related authors
Lasse Z. Jensen, Julie K. Simonsen, Ada Pastor, Christof Pearce, Per Nørnberg, Lars Chresten Lund-Hansen, Kai Finster, and Tina Šantl-Temkiv
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-18, https://doi.org/10.5194/ar-2024-18, 2024
Preprint under review for AR
Short summary
Short summary
Our study explores particles in Arctic soils and streams that influence ice formation in clouds. By analysing these environments, we identified specific microorganisms producing these particles. This research, which measured these particles in Arctic streams for the first time, provides new insights into their ecological role and transfer from soil to water. Our findings help us understand their production, sources, and potential impact on climate.
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024, https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
Short summary
Here, we evaluate the use of biomarkers for reconstructing sea ice between 1880 and 2017 from three sediment cores located in a transect across the Northeast Greenland continental shelf. We find that key changes, specifically the decline in sea-ice cover identified in observational records between 1971 and 1984, align with our biomarker reconstructions. This outcome supports the use of biomarkers for longer reconstructions of sea-ice cover in this region.
Alistair J. Monteath, Matthew S. M. Bolton, Jordan Harvey, Marit-Solveig Seidenkrantz, Christof Pearce, and Britta Jensen
Geochronology, 5, 229–240, https://doi.org/10.5194/gchron-5-229-2023, https://doi.org/10.5194/gchron-5-229-2023, 2023
Short summary
Short summary
Accurately dating ocean cores is challenging because the radiocarbon age of water masses varies substantially. We identify ash fragments from eruptions more than 4000 km from their source and use these time markers to develop a new age–depth model for an ocean core in Placentia Bay, North Atlantic. Our results show that the radiocarbon age of waters masses in the bay varied considerably during the last 10 000 years and highlight the potential of using ultra-distal ash deposits in this region.
Teodora Pados-Dibattista, Christof Pearce, Henrieka Detlef, Jørgen Bendtsen, and Marit-Solveig Seidenkrantz
Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, https://doi.org/10.5194/cp-18-103-2022, 2022
Short summary
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Kirsi Keskitalo, Tommaso Tesi, Lisa Bröder, August Andersson, Christof Pearce, Martin Sköld, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Clim. Past, 13, 1213–1226, https://doi.org/10.5194/cp-13-1213-2017, https://doi.org/10.5194/cp-13-1213-2017, 2017
Short summary
Short summary
In this study we investigate land-to-ocean transfer and the fate of permafrost carbon in the East Siberian Sea from the early Holocene until the present day. Our results suggest that there was a high input of terrestrial organic carbon to the East Siberian Sea during the last glacial–interglacial period caused by permafrost destabilisation. This material was mainly characterised as relict Pleistocene permafrost deposited via coastal erosion as a result of the sea level rise.
Tommaso Tesi, Marc C. Geibel, Christof Pearce, Elena Panova, Jorien E. Vonk, Emma Karlsson, Joan A. Salvado, Martin Kruså, Lisa Bröder, Christoph Humborg, Igor Semiletov, and Örjan Gustafsson
Ocean Sci., 13, 735–748, https://doi.org/10.5194/os-13-735-2017, https://doi.org/10.5194/os-13-735-2017, 2017
Short summary
Short summary
Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect the phytoplankton in the Arctic Ocean. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we show that the carbon composition of plankton might change as a function of the enhanced terrestrial organic carbon supply and progressive sea-ice thawing.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Lasse Z. Jensen, Julie K. Simonsen, Ada Pastor, Christof Pearce, Per Nørnberg, Lars Chresten Lund-Hansen, Kai Finster, and Tina Šantl-Temkiv
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-18, https://doi.org/10.5194/ar-2024-18, 2024
Preprint under review for AR
Short summary
Short summary
Our study explores particles in Arctic soils and streams that influence ice formation in clouds. By analysing these environments, we identified specific microorganisms producing these particles. This research, which measured these particles in Arctic streams for the first time, provides new insights into their ecological role and transfer from soil to water. Our findings help us understand their production, sources, and potential impact on climate.
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024, https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
Short summary
Here, we evaluate the use of biomarkers for reconstructing sea ice between 1880 and 2017 from three sediment cores located in a transect across the Northeast Greenland continental shelf. We find that key changes, specifically the decline in sea-ice cover identified in observational records between 1971 and 1984, align with our biomarker reconstructions. This outcome supports the use of biomarkers for longer reconstructions of sea-ice cover in this region.
Alistair J. Monteath, Matthew S. M. Bolton, Jordan Harvey, Marit-Solveig Seidenkrantz, Christof Pearce, and Britta Jensen
Geochronology, 5, 229–240, https://doi.org/10.5194/gchron-5-229-2023, https://doi.org/10.5194/gchron-5-229-2023, 2023
Short summary
Short summary
Accurately dating ocean cores is challenging because the radiocarbon age of water masses varies substantially. We identify ash fragments from eruptions more than 4000 km from their source and use these time markers to develop a new age–depth model for an ocean core in Placentia Bay, North Atlantic. Our results show that the radiocarbon age of waters masses in the bay varied considerably during the last 10 000 years and highlight the potential of using ultra-distal ash deposits in this region.
Teodora Pados-Dibattista, Christof Pearce, Henrieka Detlef, Jørgen Bendtsen, and Marit-Solveig Seidenkrantz
Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, https://doi.org/10.5194/cp-18-103-2022, 2022
Short summary
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Anne Sofie Søndergaard, Nicolaj Krog Larsen, Olivia Steinemann, Jesper Olsen, Svend Funder, David Lundbek Egholm, and Kurt Henrik Kjær
Clim. Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, https://doi.org/10.5194/cp-16-1999-2020, 2020
Short summary
Short summary
We present new results that show how the north Greenland Ice Sheet responded to climate changes over the last 11 700 years. We find that the ice sheet was very sensitive to past climate changes. Combining our findings with recently published studies reveals distinct differences in sensitivity to past climate changes between northwest and north Greenland. This highlights the sensitivity to past and possible future climate changes of two of the most vulnerable areas of the Greenland Ice Sheet.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Kirsi Keskitalo, Tommaso Tesi, Lisa Bröder, August Andersson, Christof Pearce, Martin Sköld, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Clim. Past, 13, 1213–1226, https://doi.org/10.5194/cp-13-1213-2017, https://doi.org/10.5194/cp-13-1213-2017, 2017
Short summary
Short summary
In this study we investigate land-to-ocean transfer and the fate of permafrost carbon in the East Siberian Sea from the early Holocene until the present day. Our results suggest that there was a high input of terrestrial organic carbon to the East Siberian Sea during the last glacial–interglacial period caused by permafrost destabilisation. This material was mainly characterised as relict Pleistocene permafrost deposited via coastal erosion as a result of the sea level rise.
Tommaso Tesi, Marc C. Geibel, Christof Pearce, Elena Panova, Jorien E. Vonk, Emma Karlsson, Joan A. Salvado, Martin Kruså, Lisa Bröder, Christoph Humborg, Igor Semiletov, and Örjan Gustafsson
Ocean Sci., 13, 735–748, https://doi.org/10.5194/os-13-735-2017, https://doi.org/10.5194/os-13-735-2017, 2017
Short summary
Short summary
Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect the phytoplankton in the Arctic Ocean. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we show that the carbon composition of plankton might change as a function of the enhanced terrestrial organic carbon supply and progressive sea-ice thawing.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Related subject area
Radiocarbon dating
Towards the construction of regional marine radiocarbon calibration curves: an unsupervised machine learning approach
New age constraints reveal moraine stabilization thousands of years after deposition during the last deglaciation of western New York, USA
Marine reservoir ages for coastal West Africa
Spatial variability of the modern radiocarbon reservoir effect in the high-altitude lake Laguna del Peinado (southern Puna Plateau, Argentina)
Short communication: Driftwood provides reliable chronological markers in Arctic coastal deposits
A new 30 000-year chronology for rapidly deposited sediments on the Lomonosov Ridge using bulk radiocarbon dating and probabilistic stratigraphic alignment
Miniature radiocarbon measurements ( < 150 µg C) from sediments of Lake Żabińskie, Poland: effect of precision and dating density on age–depth models
Re-evaluating 14C dating accuracy in deep-sea sediment archives
Ana-Cristina Mârza, Laurie Menviel, and Luke C. Skinner
Geochronology, 6, 503–519, https://doi.org/10.5194/gchron-6-503-2024, https://doi.org/10.5194/gchron-6-503-2024, 2024
Short summary
Short summary
Radiocarbon serves as a powerful dating tool, but the calibration of marine radiocarbon dates presents significant challenges because the whole surface ocean cannot be represented by a single calibration curve. Here we use climate model outputs and data to assess a novel method for developing regional marine calibration curves. Our results are encouraging and point to a way forward for solving the marine radiocarbon age calibration problem without relying on model simulations of the past.
Karlee K. Prince, Jason P. Briner, Caleb K. Walcott, Brooke M. Chase, Andrew L. Kozlowski, Tammy M. Rittenour, and Erica P. Yang
Geochronology, 6, 409–427, https://doi.org/10.5194/gchron-6-409-2024, https://doi.org/10.5194/gchron-6-409-2024, 2024
Short summary
Short summary
We fill a spatial data gap in the ice sheet retreat history of the Laurentide Ice Sheet after the Last Glacial Maximum and investigate a hypothesis that the ice sheet re-advanced into western New York, USA, at ~13 ka. With radiocarbon and optically stimulated luminescence (OSL) dating, we find that ice began retreating from its maximum extent after 20 ka, but glacial ice persisted in glacial landforms until ~15–14 ka when they finally stabilized. We find no evidence of a re-advance at ~13 ka.
Guillaume Soulet, Philippe Maestrati, Serge Gofas, Germain Bayon, Fabien Dewilde, Maylis Labonne, Bernard Dennielou, Franck Ferraton, and Giuseppe Siani
Geochronology, 5, 345–359, https://doi.org/10.5194/gchron-5-345-2023, https://doi.org/10.5194/gchron-5-345-2023, 2023
Short summary
Short summary
The marine reservoir age (MRA) is the difference between the 14C age of the ocean and that of the atmosphere at a given time. In geochronology, knowing the local MRA is important to derive accurate calibrated ages for 14C-dated marine material. However, MRA values for coastal West Africa are scarce. From the 14C dating of known-age bivalves from museum collections, we calculated MRA values and populated the MRA dataset for coastal West Africa over a latitudinal transect from 33°N to 15°S.
Paula A. Vignoni, Francisco E. Córdoba, Rik Tjallingii, Carla Santamans, Liliana C. Lupo, and Achim Brauer
Geochronology, 5, 333–344, https://doi.org/10.5194/gchron-5-333-2023, https://doi.org/10.5194/gchron-5-333-2023, 2023
Short summary
Short summary
Radiocarbon dating is a widely used tool to establish chronologies for sediment records. We show that modern aquatic plants in the Laguna del Peinado lake system (Altiplano–Puna Plateau) give overestimated ages due to reservoir effects from the input of old groundwater and volcanic CO2. Our results reveal a spatial variability in the modern reservoir effect within the lake basin, which has implications for radiocarbon-based chronologies in paleoclimate studies in this (and similar) regions.
Lasse Sander, Alexander Kirdyanov, Alan Crivellaro, and Ulf Büntgen
Geochronology, 3, 171–180, https://doi.org/10.5194/gchron-3-171-2021, https://doi.org/10.5194/gchron-3-171-2021, 2021
Short summary
Short summary
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of past landscape evolution. In this study, we show that consistent ages for Holocene beach shorelines can be obtained by dating driftwood deposits. This finding is surprising, as the wood travels long distances through river systems before reaching the Arctic Ocean. The possibility to establish precise age control is a prerequisite to further investigate the regional drivers of long-term coastal change.
Francesco Muschitiello, Matt O'Regan, Jannik Martens, Gabriel West, Örjan Gustafsson, and Martin Jakobsson
Geochronology, 2, 81–91, https://doi.org/10.5194/gchron-2-81-2020, https://doi.org/10.5194/gchron-2-81-2020, 2020
Short summary
Short summary
In this study we present a new marine chronology of the last ~30 000 years for a sediment core retrieved from the central Arctic Ocean. Our new chronology reveals substantially faster sedimentation rates during the end of the last glacial cycle, the Last Glacial Maximum, and deglaciation than previously reported, thus implying a substantial re-interpretation of paleoceanographic reconstructions from this sector of the Arctic Ocean.
Paul D. Zander, Sönke Szidat, Darrell S. Kaufman, Maurycy Żarczyński, Anna I. Poraj-Górska, Petra Boltshauser-Kaltenrieder, and Martin Grosjean
Geochronology, 2, 63–79, https://doi.org/10.5194/gchron-2-63-2020, https://doi.org/10.5194/gchron-2-63-2020, 2020
Short summary
Short summary
Recent technological advances allow researchers to obtain radiocarbon ages from smaller samples than previously possible. We investigate the reliability and precision of radiocarbon ages obtained from miniature (11–150 μg C) samples of terrestrial plant fragments taken from sediment cores from Lake Żabińskie, Poland. We further investigate how sampling density (the number of ages per 1000 years) and sample mass (which is related to age precision) influence the performance of age–depth models.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Cited articles
Allaart, L., Schomacker, A., Larsen, N. K., Nørmark, E., Rydningen, T. A., Farnsworth, W. R., Retelle, M., Brynjólfsson, S., Forwick, M., and Kjellman, S. E.: Glacial history of the Åsgardfonna Ice Cap, NE Spitsbergen, since the last glaciation, Quaternary Sci. Rev., 251, 106717, https://doi.org/10.1016/j.quascirev.2020.106717, 2021.
Alves, E. Q., Macario, K., Ascough, P., and Bronk Ramsey, C.: The Worldwide Marine Radiocarbon Reservoir Effect: Definitions, Mechanisms, and Prospects, Rev. Geophys., 56, 278–305, https://doi.org/10.1002/2017RG000588, 2018.
Andresen, C. S., McCarthy, D. J., Dylmer, C. V., Seidenkrantz, M.-S., Kuijpers, A., and Lloyd, J. M.: Interaction between subsurface ocean waters and calving of the Jakobshavn Isbræ during the late Holocene, Holocene, 21, 211–224, https://doi.org/10.1177/0959683610378877, 2011.
Andresen, C. S., Hansen, M. J., Seidenkrantz, M.-S., Jennings, A. E., Knudsen, M. F., Nørgaard-Pedersen, N., Larsen, N. K., Kuijpers, A., and Pearce, C.: Mid- to late-Holocene oceanographic variability on the Southeast Greenland shelf, Holocene, 23, 167–178, https://doi.org/10.1177/0959683612460789, 2013.
Andrews, J. T. and Jennings, A. E.: Multidecadal to millennial marine climate oscillations across the Denmark Strait (∼ 66∘ N) over the last 2000 cal yr BP, Clim. Past, 10, 325–343, https://doi.org/10.5194/cp-10-325-2014, 2014.
Ascough, P., Cook, G., and Dugmore, A.: Methodological approaches to determining the marine radiocarbon reservoir effect, Prog. Phys. Geogr., 29, 532–547, https://doi.org/10.1191/0309133305pp461ra, 2005.
Audi, G., Bersillon, O., Blachot, J., and Wapstra, A. H.: The Nubase evaluation of nuclear and decay properties, Nucl. Phys. A, 729, 3–128, https://doi.org/10.1016/j.nuclphysa.2003.11.001, 2003.
Austin, W. E. N., Bard, E., Hunt, J. B., Kroon, D., and Peacock, J. D.: The 14C Age of the Icelandic Vedde Ash: Implications for Younger Dryas Marine Reservoir Age Corrections, Radiocarbon, 37, 53–62, https://doi.org/10.1017/S0033822200014788, 1995.
Bard, E., Arnold, M., Mangerud, J., Paterne, M., Labeyrie, L., Duprat, J., Mélières, M.-A., Sønstegaard, E., and Duplessy, J.-C.: The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event, Earth Planet. Sc. Lett., 126, 275–287, https://doi.org/10.1016/0012-821X(94)90112-0, 1994.
Bevington, P. R. and Robinson, D. K.: Data Reduction and Error Analysis for the Physical Sciences, 3rd edn., McGraw-Hill, 320 pp., ISBN 978-0071199261, 2002.
Broecker, W.: The Great Ocean Conveyor, Oceanography, 4, 79–89, https://doi.org/10.5670/oceanog.1991.07, 1991.
Broecker, W. S., Gerard, R., Ewing, M., and Heezen, B. C.: Natural radiocarbon in the Atlantic Ocean, J. Geophys. Res., 65, 2903–2931, https://doi.org/10.1029/JZ065i009p02903, 1960.
Brouard, E., Roy, M., Godbout, P.-M., and Veillette, J. J.: A framework for the timing of the final meltwater outbursts from glacial Lake Agassiz-Ojibway, Quaternary Sci. Rev., 274, 107269, https://doi.org/10.1016/j.quascirev.2021.107269, 2021.
Butzin, M., Köhler, P., and Lohmann, G.: Marine radiocarbon reservoir age simulations for the past 50,000 years, Geophys. Res. Lett., 44, 8473–8480, https://doi.org/10.1002/2017GL074688, 2017.
Coulthard, R. D., Furze, M. F. A., Pieńkowski, A. J., Chantel Nixon, F., and England, J. H.: New marine ΔR values for Arctic Canada, Quat. Geochronol., 5, 419–434, https://doi.org/10.1016/j.quageo.2010.03.002, 2010.
Davies, J., Mathiasen, A. M., Kristiansen, K., Hansen, K. E., Wacker, L., Alstrup, A. K. O., Munk, O. L., Pearce, C., and Seidenkrantz, M.-S.: Linkages between ocean circulation and the Northeast Greenland Ice Stream in the Early Holocene, Quaternary Sci. Rev., 286, 107530, https://doi.org/10.1016/j.quascirev.2022.107530, 2022.
Devendra, D., Łącka, M., Telesiński, M. M., Rasmussen, T. L., Sztybor, K., and Zajączkowski, M.: Paleoceanography of the Northwestern Greenland Sea and Return Atlantic Current evolution, 35–4 kyr BP, Global Planet. Change, 217, 103947, https://doi.org/10.1016/j.gloplacha.2022.103947, 2022.
El bani Altuna, N., Ezat, M. M., Greaves, M., and Rasmussen, T. L.: Millennial-Scale Changes in Bottom Water Temperature and Water Mass Exchange Through the Fram Strait 79∘ N, 63–13 ka, Paleoceanogr. Paleocl., 36, e2020PA004061, https://doi.org/10.1029/2020PA004061, 2021.
England, J., Dyke, A. S., Coulthard, R. D., Mcneely, R., and Aitken, A.: The exaggerated radiocarbon age of deposit-feeding molluscs in calcareous environments, Boreas, 42, 362–373, https://doi.org/10.1111/j.1502-3885.2012.00256.x, 2013.
Erbs-Hansen, D. R., Knudsen, K. L., Olsen, J., Lykke-Andersen, H., Underbjerg, J. A., and Sha, L.: Paleoceanographical development off Sisimiut, West Greenland, during the mid- and late Holocene: A multiproxy study, Mar. Micropaleontol., 102, 79–97, https://doi.org/10.1016/j.marmicro.2013.06.003, 2013.
Forman, S. L. and Polyak, L.: Radiocarbon content of pre-bomb marine mollusks and variations in the 14C Reservoir age for coastal areas of the Barents and Kara Seas, Russia, Geophys. Res. Lett., 24, 885–888, https://doi.org/10.1029/97GL00761, 1997.
GEBCO Bathymetric Compilation Group: GEBCO_2022 Grid, British Oceanographic Data Centre, National Oceanography Centre, NERC, UK, https://doi.org/10.5285/e0f0bb80-ab44-2739-e053-6c86abc0289c, 2022.
Glueder, A., Mix, A. C., Milne, G. A., Reilly, B. T., Clark, J., Jakobsson, M., Mayer, L., Fallon, S. J., Southon, J., Padman, J., Ross, A., Cronin, T., and McKay, J. L.: Calibrated relative sea levels constrain isostatic adjustment and ice history in northwest Greenland, Quaternary Sci. Rev., 293, 107700, https://doi.org/10.1016/j.quascirev.2022.107700, 2022.
Hansen, K. E., Giraudeau, J., Wacker, L., Pearce, C., and Seidenkrantz, M.-S.: Reconstruction of Holocene oceanographic conditions in eastern Baffin Bay, Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, 2020.
Hansen, K. E., Lorenzen, J., Davies, J., Wacker, L., Pearce, C., and Seidenkrantz, M.-S.: Deglacial to Mid Holocene environmental conditions on the northeastern Greenland shelf, western Fram Strait, Quaternary Sci. Rev., 293, 107704, https://doi.org/10.1016/j.quascirev.2022.107704, 2022.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Heaton, T. J., Bard, E., Bronk Ramsey, C., Butzin, M., Köhler, P., Muscheler, R., Reimer, P. J., and Wacker, L.: Radiocarbon: A key tracer for studying Earth's dynamo, climate system, carbon cycle, and Sun, Science, 374, eabd7096, https://doi.org/10.1126/science.abd7096, 2021.
Heaton, T. J., Bard, E., Ramsey, C. B., Butzin, M., Hatté, C., Hughen, K. A., Köhler, P., and Reimer, P. J.: A RESPONSE TO COMMUNITY QUESTIONS ON THE MARINE20 RADIOCARBON AGE CALIBRATION CURVE: MARINE RESERVOIR AGES AND THE CALIBRATION OF 14C SAMPLES FROM THE OCEANS, Radiocarbon, 65, 247–273, https://doi.org/10.1017/RDC.2022.66, 2023.
Hesshaimer, V., Heimann, M., and Levin, I.: Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed, Nature, 370, 201–203, https://doi.org/10.1038/370201a0, 1994.
Hjort, C.: A sea correction for East Greenland, Geologiska Fören. Stock. F., 95, 132–134, https://doi.org/10.1080/11035897309455434, 1973.
Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S., Southon, J., Bayliss, A., Blackwell, P. G., Boswijk, G., Ramsey, C. B., Pearson, C., Petchey, F., Reimer, P., Reimer, R., and Wacker, L.: SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP, Radiocarbon, 62, 759–778, https://doi.org/10.1017/RDC.2020.59, 2020.
Hua, Q., Webb, G. E., Zhao, J., Nothdurft, L. D., Lybolt, M., Price, G. J., and Opdyke, B. N.: Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes, Earth Planet. Sc. Lett., 422, 33–44, https://doi.org/10.1016/j.epsl.2015.03.049, 2015.
Jackson, R., Andreasen, N., Oksman, M., Andersen, T. J., Pearce, C., Seidenkrantz, M.-S., and Ribeiro, S.: Marine conditions and development of the Sirius Water polynya on the North-East Greenland shelf during the Younger Dryas-Holocene, Quaternary Sci. Rev., 291, 107647, https://doi.org/10.1016/j.quascirev.2022.107647, 2022.
Jennings, A., Andrews, J., and Wilson, L.: Holocene environmental evolution of the SE Greenland Shelf North and South of the Denmark Strait: Irminger and East Greenland current interactions, Quaternary Sci. Rev., 30, 980–998, https://doi.org/10.1016/j.quascirev.2011.01.016, 2011.
Jensen, K. G., Kuijpers, A., Koc, N., and Heinemeier, J.: Diatom evidence of hydrographic changes and ice conditions in Igaliku Fjord, South Greenland, during the past 1500 years, Holocene, 14, 152–164, https://doi.org/10.1191/0959683604hl698rp, 2004.
Jones, E. P., Swift, J. H., Anderson, L. G., Lipizer, M., Civitarese, G., Falkner, K. K., Kattner, G., and McLaughlin, F.: Tracing Pacific water in the North Atlantic Ocean, J. Geophys. Res.-Oceans, 108, 3116, https://doi.org/10.1029/2001JC001141, 2003.
Kimoto, K.: Planktic Foraminifera, in: Marine Protists: Diversity and Dynamics, edited by: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., and Not, F., Springer Japan, Tokyo, 129–178, https://doi.org/10.1007/978-4-431-55130-0_7, 2015.
Knudsen, K. L., Stabell, B., Seidenkrantz, M.-S., Eiríksson, J., and Blake, W.: Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes, Boreas, 37, 346–376, https://doi.org/10.1111/j.1502-3885.2008.00035.x, 2008.
Krawczyk, D. W., Witkowski, A., Moros, M., Lloyd, J. M., Høyer, J. L., Miettinen, A., and Kuijpers, A.: Quantitative reconstruction of Holocene sea ice and sea surface temperature off West Greenland from the first regional diatom data set: Holocene Paleoceanography in West Greenland, Paleoceanography, 32, 18–40, https://doi.org/10.1002/2016PA003003, 2017.
Lassen, S. J., Kuijpers, A., Kunzendorf, H., Hoffmann-Wieck, G., Mikkelsen, N., and Konradi, P.: Late-Holocene Atlantic bottom-water variability in Igaliku Fjord, South Greenland, reconstructed from foraminifera faunas, Holocene, 14, 165–171, https://doi.org/10.1191/0959683604hl699rp, 2004.
Levac, E., Vernal, A. D., and Blake Jr., W.: Sea-surface conditions in northernmost Baffin Bay during the Holocene: palynological evidence, J. Quaternary Sci., 16, 353–363, https://doi.org/10.1002/jqs.614, 2001.
Li, D., Sha, L., Li, J., Jiang, H., Liu, Y., and Wu, Y.: Summer Sea-Surface Temperatures and Climatic Events in Vaigat Strait, West Greenland, during the Last 5000 Years, Sustainability, 9, 704, https://doi.org/10.3390/su9050704, 2017.
Liljequist, G. H.: High latitudes: A history of Swedish Polar travels and research, Swedish Polar Research Secretariat in collaboration with Streiffert, Stockholm, 607 pp., ISBN 91-7886-102-0, 1993.
Lloyd, J., Moros, M., Perner, K., Telford, R. J., Kuijpers, A., Jansen, E., and McCarthy, D.: A 100 yr record of ocean temperature control on the stability of Jakobshavn Isbrae, West Greenland, Geology, 39, 867–870, https://doi.org/10.1130/G32076.1, 2011.
Lloyd, J. M.: Late Holocene environmental change in Disko Bugt, west Greenland: interaction between climate, ocean circulation and Jakobshavn Isbrae, Boreas, 35, 35–49, https://doi.org/10.1111/j.1502-3885.2006.tb01111.x, 2006.
Lougheed, B. C., Filipsson, H. L., and Snowball, I.: Large spatial variations in coastal 14C reservoir age – a case study from the Baltic Sea, Clim. Past, 9, 1015–1028, https://doi.org/10.5194/cp-9-1015-2013, 2013.
Mangerud, J.: Radiocarbon dating of marine shells, including a discussion of apparent age of Recent shells from Norway, Boreas, 1, 143–172, https://doi.org/10.1111/j.1502-3885.1972.tb00147.x, 1972.
Mangerud, J., Bondevik, S., Gulliksen, S., Karin Hufthammer, A., and Høisæter, T.: Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic, Quaternary Sci. Rev., 25, 3228–3245, https://doi.org/10.1016/j.quascirev.2006.03.010, 2006.
Matsumoto, K.: Radiocarbon-based circulation age of the world oceans, J. Geophys. Res.-Oceans, 112, C09004, https://doi.org/10.1029/2007JC004095, 2007.
McNeely, R., Dyke, A. S., and Southon, J. R.: Canadian marine reservoir ages, preliminary data assessment, Geological Survey of Canada, Open File 5049, 2006, 3 pp., 1 CD-ROM, https://doi.org/10.4095/221564, 2006.
Millan, R., Rignot, E., Mouginot, J., Wood, M., Bjørk, A. A., and Morlighem, M.: Vulnerability of Southeast Greenland Glaciers to Warm Atlantic Water From Operation IceBridge and Ocean Melting Greenland Data, Geophys. Res. Lett., 45, 2688–2696, https://doi.org/10.1002/2017GL076561, 2018.
Møller, H. S., Jensen, K. G., Kuijpers, A., Aagaard-Sørensen, S., Seidenkrantz, M.-S., Prins, M., Endler, R., and Mikkelsen, N.: Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record, Holocene, 16, 685–695, https://doi.org/10.1191/0959683606hl963rp, 2006.
Moros, M., Jensen, K. G., and Kuijpers, A.: Mid-to late-Holocene hydrological and climatic variability in Disko Bugt, central West Greenland, Holocene, 16, 357–367, https://doi.org/10.1191/0959683606hl933rp, 2006.
Moros, M., Lloyd, J. M., Perner, K., Krawczyk, D., Blanz, T., de Vernal, A., Ouellet-Bernier, M.-M., Kuijpers, A., Jennings, A. E., Witkowski, A., Schneider, R., and Jansen, E.: Surface and sub-surface multi-proxy reconstruction of middle to late Holocene palaeoceanographic changes in Disko Bugt, West Greenland, Quaternary Sci. Rev., 132, 146–160, https://doi.org/10.1016/j.quascirev.2015.11.017, 2016.
Nathorst, A. G.: Två somrar I Norra Ishafvet: Kung Karls Land, Spetsbergens kringsegling, spanande efter Andrée, i nordöstra Grönland, Beijers Bokförlagsaktiebolag, Stockholm, 1900.
Nørgaard-Pedersen, N. and Mikkelsen, N.: 8000 year marine record of climate variability and fjord dynamics from Southern Greenland, Mar. Geol., 264, 177–189, https://doi.org/10.1016/j.margeo.2009.05.004, 2009.
O'Connor, S., Ulm, S., Fallon, S. J., Barham, A., and Loch, I.: Pre-Bomb Marine Reservoir Variability in the Kimberley Region, Western Australia, Radiocarbon, 52, 1158–1165, https://doi.org/10.1017/S0033822200046233, 2010.
Olsen, I. L., Laberg, J. S., Forwick, M., Rydningen, T. A., and Husum, K.: Late Weichselian and Holocene behavior of the Greenland Ice Sheet in the Kejser Franz Josef Fjord system, NE Greenland, Quaternary Sci. Rev., 284, 107504, https://doi.org/10.1016/j.quascirev.2022.107504, 2022.
Olsen, J., Rasmussen, T. L., and Reimer, P. J.: North Atlantic marine radiocarbon reservoir ages through Heinrich event H4: a new method for marine age model construction, Geol. Soc. Lond. Spec. Publ., 398, SP398.2, https://doi.org/10.1144/SP398.2, 2014.
Olsen, J., Tikhomirov, D., Grosen, C., Heinemeier, J., and Klein, M.: Radiocarbon Analysis on the New AARAMS 1MV Tandetron, Radiocarbon, 59, 905–913, https://doi.org/10.1017/RDC.2016.85, 2017.
Olsson, I. U.: Content of C-14 in marine mammals from northern Europe, Radiocarbon, 22, 662–675, https://doi.org/10.1017/S0033822200010031, 1980.
Ouellet-Bernier, M.-M., Vernal, A. de, Hillaire-Marcel, C., and Moros, M.: Paleoceanographic changes in the Disko Bugt area, West Greenland, during the Holocene, Holocene, 24, 1573–1583, https://doi.org/10.1177/0959683614544060, 2014.
Pados-Dibattista, T., Pearce, C., Detlef, H., Bendtsen, J., and Seidenkrantz, M.-S.: Holocene palaeoceanography of the Northeast Greenland shelf, Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, 2022.
Pearce, C., Varhelyi, A., Wastegård, S., Muschitiello, F., Barrientos, N., O'Regan, M., Cronin, T. M., Gemery, L., Semiletov, I., Backman, J., and Jakobsson, M.: The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea, Climate of the Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, 2017.
Peral, M., Austin, W. E. N., and Noormets, R.: Identification of Atlantic water inflow on the north Svalbard shelf during the Holocene, J. Quaternary Sci., 37, 86–99, https://doi.org/10.1002/jqs.3374, 2022.
Perner, K., Moros, M., Snowball, I., Lloyd, J. M., Kuijpers, A., and Richter, T.: Establishment of modern circulation pattern at c. 6000 cal a BP in Disko Bugt, central West Greenland: opening of the Vaigat Strait, J. Quaternary Sci., 28, 480–489, https://doi.org/10.1002/jqs.2638, 2013.
Pieńkowski, A. J., Coulthard, R. D., and Furze, M. F. A.: Revised marine reservoir offset (ΔR) values for molluscs and marine mammals from Arctic North America, Boreas, 52, 145–167, https://doi.org/10.1111/bor.12606, 2022.
Reimer, P. J. and Reimer, R. W.: A marine reservoir correction database and on-line interface, Radiocarbon, 43, 461–463, https://doi.org/10.1017/S0033822200038339, 2001.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Plicht, J. van der, Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Reimer, R. W. and Reimer, P. J.: An Online Application for ΔR Calculation, Radiocarbon, 59, 1623–1627, https://doi.org/10.1017/RDC.2016.117, 2017.
Riis-Carstensen, E.: Nogle Bemærkninger vedrørende Godthaab ekspeditionen 1928, Geografisk Tidsskrift, 1929.
Schaffer, J., Kanzow, T., von Appen, W.-J., von Albedyll, L., Arndt, J. E., and Roberts, D. H.: Bathymetry constrains ocean heat supply to Greenland's largest glacier tongue, Nat. Geosci., 13, 227–231, https://doi.org/10.1038/s41561-019-0529-x, 2020.
Seidenkrantz, M. S., Roncaglia, L., Fischel, A., Heilmann-Clausen, C., Kuijpers, A., and Moros, M.: Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland, Mar. Micropaleontol., 68, 66–83, https://doi.org/10.1016/j.marmicro.2008.01.006, 2008.
Selin, N. I.: The growth and life span of bivalve mollusks at the northeastern coast of Sakhalin Island, Russ. J. Mar. Biol., 36, 258–269, https://doi.org/10.1134/S1063074010040048, 2010.
Sha, L., Knudsen, K. L., Eiríksson, J., Björck, S., Jiang, H., Yang, X., Yu, X., and Li, D.: Diatom-reconstructed summer sea-surface temperatures and climatic events off North Iceland during the last deglaciation and Holocene, Palaeogeogr. Palaeocl., 602, 111154, https://doi.org/10.1016/j.palaeo.2022.111154, 2022.
Skinner, L. C., Muschitiello, F., and Scrivner, A. E.: Marine Reservoir Age Variability Over the Last Deglaciation: Implications for Marine CarbonCycling and Prospects for Regional Radiocarbon Calibrations, Paleoceanogr. Paleocl., 34, 1807–1815, https://doi.org/10.1029/2019PA003667, 2019.
Smethie Jr., W. M., Fine, R. A., Putzka, A., and Jones, E. P.: Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons, J. Geophys. Res.-Oceans, 105, 14297–14323, https://doi.org/10.1029/1999JC900274, 2000.
Stevenard, N., Montero-Serrano, J.-C., Eynaud, F., St-Onge, G., Zaragosi, S., and Copland, L.: Lateglacial and Holocene sedimentary dynamics in northwestern Baffin Bay as recorded in sediment cores from Cape Norton Shaw Inlet (Nunavut, Canada), Boreas, 51, 532–552, https://doi.org/10.1111/bor.12575, 2022.
Stuiver, M. and Braziunas, T. F.: Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships, Holocene, 3, 289–305, https://doi.org/10.1177/095968369300300401, 1993.
Stuiver, M. and Polach, H. A.: Discussion: reporting of 14C data, Radiocarbon, 19, 355–363, 1977.
Stuiver, M., Pearson, G. W., and Braziunas, T.: Radiocarbon Age Calibration of Marine Samples Back to 9000 Cal Yr BP, Radiocarbon, 28, 980–1021, https://doi.org/10.1017/S0033822200060264, 1986.
Sutherland, D. A., Straneo, F., Stenson, G. B., Davidson, F. J. M., Hammill, M. O., and Rosing-Asvid, A.: Atlantic water variability on the SE Greenland continental shelf and its relationship to SST and bathymetry, J. Geophys. Res.-Oceans, 118, 847–855, https://doi.org/10.1029/2012JC008354, 2013.
Tauber, H. and Funder, S.: C14 content of recent molluscs from Scoresby Sund, central East Greenland, Geological Survey of Greenland, 75, 95–99, 1975.
Telesiński, M. M., Ezat, M. M., Muschitiello, F., Bauch, H. A., and Spielhagen, R. F.: Ventilation History of the Nordic Seas Deduced From Pelagic-Benthic Radiocarbon Age Offsets, Geochem. Geophy. Geosy., 22, e2020GC009132, https://doi.org/10.1029/2020GC009132, 2021.
Walsh, J. E., Fetterer, F., Scott Stewart, J., and Chapman, W. L.: A database for depicting Arctic sea ice variations back to 1850, Geogr. Rev., 107, 89–107, https://doi.org/10.1111/j.1931-0846.2016.12195.x, 2017.
Wanamaker, A. D., Heinemeier, J., Scourse, J. D., Richardson, C. A., Butler, P. G., Eiríksson, J., and Knudsen, K. L.: Very Long-Lived Mollusks Confirm 17th Century AD Tephra-Based Radiocarbon Reservoir Ages for North Icelandic Shelf Waters, Radiocarbon, 50, 399–412, https://doi.org/10.1017/S0033822200053510, 2008.
West, G., Nilsson, A., Geels, A., Jakobsson, M., Moros, M., Muschitiello, F., Pearce, C., Snowball, I., and O'Regan, M.: Late Holocene Paleomagnetic Secular Variation in the Chukchi Sea, Arctic Ocean, Geochem. Geophy. Geosy., 23, e2021GC010187, https://doi.org/10.1029/2021GC010187, 2022.
WoRMS Editorial Board: World Register of Marine Species, VLIZ, https://www.marinespecies.org (last access: 4 April 2023), 2023.
Short summary
Reliable chronologies lie at the base of paleoclimatological reconstructions. When working with marine sediment cores, the most common dating tool for recent sediments is radiocarbon, but this requires calibration to convert it to calendar ages. This calibration requires knowledge of the marine radiocarbon reservoir age, and this is known to vary in space and time. In this study we provide 92 new radiocarbon measurements to improve our knowledge of the reservoir age around Greenland.
Reliable chronologies lie at the base of paleoclimatological reconstructions. When working with...