Articles | Volume 6, issue 2
https://doi.org/10.5194/gchron-6-175-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-175-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new method for amino acid geochronology of the shell of the bivalve mollusc Arctica islandica
Martina L. G. Conti
CORRESPONDING AUTHOR
Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
Paul G. Butler
Centre For Geography and Environmental Science, University of Exeter, Penryn, United Kingdom
David J. Reynolds
Centre For Geography and Environmental Science, University of Exeter, Penryn, United Kingdom
Tamara Trofimova
Centre For Geography and Environmental Science, University of Exeter, Penryn, United Kingdom
James D. Scourse
Centre For Geography and Environmental Science, University of Exeter, Penryn, United Kingdom
Kirsty E. H. Penkman
Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
Related authors
No articles found.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Related subject area
Amino acid racemization
Amino acid racemization in Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean and its implications for age models
Amino acid racemization in Quaternary foraminifera from the Yermak Plateau, Arctic Ocean
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Gabriel West, Darrell S. Kaufman, Francesco Muschitiello, Matthias Forwick, Jens Matthiessen, Jutta Wollenburg, and Matt O'Regan
Geochronology, 1, 53–67, https://doi.org/10.5194/gchron-1-53-2019, https://doi.org/10.5194/gchron-1-53-2019, 2019
Short summary
Short summary
We report amino acid racemization analyses of foraminifera from well-dated sediment cores from the Yermak Plateau, Arctic Ocean. Sample ages are compared with model predictions, revealing that the rates of racemization generally conform to a global compilation of racemization rates at deep-sea sites. These results highlight the need for further studies to test and explain the origin of the purportedly high rate of racemization indicated by previous analyses of central Arctic sediments.
Cited articles
Abelson, P. H.: Organic constituents of fossils, Carnegie Inst. Wash. YRB, 54, 97–101, 1955.
Agbaje, O. B. A., Shir, I. B., Zax, D. B., Schidt, A., and Jacob, D. E.: Biomacromolecules within bivalve shells: Is chitin abundant?, Acta Biomater., 80, 176–187, https://doi.org/10.1016/j.actbio.2018.09.009, 2018.
Ahronson, K.: Seljaland: archaeology, palaeoecology and tephrochronology, in: Holocene Tephrochronology. Applications in South Iceland. Field Guide, edited by: Larsen, G. and Eiríksson, J., Quaternary Research Association, London, 61–66, 2012.
Alves, E. Q., Macario, K., Ascough, P., and Bronk Ramsey, C.: The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms, and prospects, Rev. Geophys., 56, 278–305, https://doi.org/10.1002/2017RG000588, 2018.
Andersen, S. H.: “Køkkenmøddinger” (shell middens) in Denmark: A survey, P. Prehist. Soc., 66, 361–84, 2000.
Bada, J. L., Shou, M. Y., Man, E. H., and Schroeder, R. A.: Decomposition of hydroxy amino acids in foraminiferal tests; kinetics, mechanism and geochronological implications, Earth Planet. Sc. Lett., 41, 67–76, https://doi.org/10.1016/0012-821X(78)90042-0, 1978.
Baldreki, C., Burnham, A., Conti, M., Wheeler, L., Simms, M. J., Barham, L., White, T. S., and Penkman, K.: Investigating the potential of African land snail shells (Gastropoda: Achatininae) for amino acid geochronology, Quat. Geochronol., 79, 101473, https://doi.org/10.1016/j.quageo.2023.101473, 2024.
Baleka, S., Herridge, V. L., Catalano, G., Lister, A. M., Dickinson, M. R., di Patti, C., Barlow, A., Penkman, K. E. H., Hofreiter, M., and Paijmans, J. L. A.: Estimating the dwarfing rate of an extinct Sicilian elephant, Curr. Biol., 31, 3606–3612.e7, https://doi.org/10.1016/j.cub.2021.05.037, 2021.
Brand, U. and Morrison, J. O.: Paleoscene #6. Biogeochemistry of fossil marine invertebrates, Geosci. Can., 14, 85–107, 1987.
Bridgland, D. R., Harding, P., Allen, P., Candy, I., Cherry, C., George, W., Horne, D. J., Keen, D. H., Penkman, K. E. H., Preece, R. C., Rhodes, E. J., Scaife, R., Schreve, D. C., Schwenninger, J.-L., Slipper, I., Ward, G. R., White, M. J., White, T. S., and Whittaker, J. E.: An enhanced record of MIS 9 environments, geochronology and geoarchaeology: data from construction of the High Speed 1 (London–Channel Tunnel) rail-link and other recent investigations at Purfleet, Essex, UK, Proc. Geol. Assoc., 124, 417–476, https://doi.org/10.1016/j.pgeola.2012.03.006, 2013.
Bright, J. and Kaufman, D. S.: Amino acids in lacustrine ostracodes, part III: Effects of pH and taxonomy on racemization and leaching, Quat. Geochronol., 6, 574–597, https://doi.org/10.1016/j.quageo.2011.08.002, 2011.
BGS – British Geological Survey, Red Crag Formation, https://data.bgs.ac.uk/id/Lexicon/NamedRockUnit/RCG, last access: 16 February 2024.
Brooks, A. S., Hare, P. E., Kokis, J. E., Miller, G. H., Ernst, R. D., and Wendorf, F.: Dating Pleistocene archeological sites by protein diagenesis in ostrich eggshell, Science, 248, 60–64, 1990.
Brosset, C., Höche, N., Shirai, K., Nishida, K., Mertz-Kraus, R., and Schöne, B. R.: Strong coupling between biomineral morphology and Sr/Ca of Arctica islandica (Bivalvia) – Implications for shell Sr/Ca-based temperature estimates, Minerals, 12, 500, https://doi.org/10.3390/min12050500, 2022.
Butler, P. G., Richardson, C. A., Scourse, J. D., Witbaard, R., Schöne, B. R., Fraser, N. M., Wanamaker, A. D., Bryant, C. L., Harris, I., and Robertson, I.: Accurate increment identification and the spatial extent of the common signal in five Arctica islandica chronologies from the Fladen Ground, northern North Sea, Paleoceanography, 24, PA2210, https://doi.org/10.1029/2008PA001715, 2009.
Butler, P. G., Wanamaker, A. D., Scourse, J. D., Richardson, C. A., and Reynolds, D. J.: Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica, Palaeogeogr. Palaeocl., 373, 141–151, https://doi.org/10.1016/j.palaeo.2012.01.016, 2013.
Checa, A.: A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca), Tissue Cell, 32, 405–406, https://doi.org/10.1054/tice.2000.0129, 2000.
Crippa, G., Azzarone, M., Bottini, C., Crespi, S., Felletti, F., Marini, M., Petrizzo, M. R., Scarponi, D., Raffi, S., and Raineri, G.: Bio-and lithostratigraphy of lower Pleistocene marine successions in western Emilia (Italy) and their implications for the first occurrence of Arctica islandica in the Mediterranean Sea, Quaternary Res., 92, 549–569, https://doi.org/10.1017/qua.2019.20, 2019.
Crisp, M. K.: Amino acid racemization dating: Method development using African ostrich (Struthio camelus) eggshell, PhD thesis, University of York, 2013.
Crisp, M., Demarchi, B., Collins, M., Morgan-Williams, M., Pilgrim, E., and Penkman, K.: Isolation of the intra-crystalline proteins and kinetic studies in Struthio camelus (ostrich) eggshell for amino acid geochronology, Quat. Geochronol., 16, 110–128, https://doi.org/10.1016/j.quageo.2012.09.002, 2013.
Davies, B. J., Bridgland, D. R., Roberts, D. H., Cofaigh, C. Ó., Pawley, S. M., Candy, I., Demarchi, B.: The age and stratigraphic context of the Easington Raised Beach, County Durham, UK, Proc. Geol. Assoc., 120, 183–198, 2009.
Demarchi, B.: Geochronology of coastal prehistoric environments: a new closed system approach using amino acid racemisation, PhD thesis, University of York, 2009.
Demarchi, B., Williams, M. G., Milner N., Russell, N., Bailey, G., and Penkman, K.: Amino acid racemization dating of marine shells: A mound of possibilities, Quaternary Int., 239, 114–124, https://doi.org/10.1016/j.quaint.2010.05.029, 2011.
Demarchi, B., Collins, M. J., Tomiak, P. J., Davies, B. J., and Penkman, K. E. H.: Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part II: Breakdown and temperature sensitivity, Quat. Geochronol., 16, 158–172, https://doi.org/10.1016/j.quageo.2012.08.001, 2013a.
Demarchi, B., Rogers, K., Fa, D. A., Finlayson, C. J., Milner, N., and Penkman, K. E. H.: Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system, Quat. Geochronol., 16, 144–157, https://doi.org/10.1016/j.quageo.2012.03.016, 2013b.
Demarchi, B., Clements, E., Coltorti, M., van de Locht, R., Kröger, R., Penkman, K., and Rose, J.: Testing the effect of bleaching on the bivalve Glycymeris: A case study of amino acid geochronology on key Mediterranean raised beach deposits, Quat. Geochronol., 25, 49–65, https://doi.org/10.1016/j.quageo.2014.09.003, 2015.
Dickinson, M. R., Lister, A. M., and Penkman, K. E. H.: A new method for enamel amino acid racemization dating: A closed system approach, Quat. Geochronol., 50, 29–46, https://doi.org/10.1016/j.quageo.2018.11.005, 2019.
Dominguez, J. G., Kosnik, M. A., Allen, A. P., Hua, Q., Jacob, D. E., Kaufman, D. S., and Whitacre, K.: Time-averaging and stratigraphic resolution in death assemblages and Holocene deposits, PALAIOS, 31, 564–575, https://doi.org/10.2110/palo.2015.087, 2016.
Dunca, E., Mutvei, H., Göransson, P., Mörth, C. M., Schöne, B. R., Whitehouse, M. J., Elfman, M., and Baden, S. P.: Using ocean quahog (Arctica islandica) shells to reconstruct palaeoenvironment in Öresund, Kattegat and Skagerrak, Sweden. Int. J. Earth Sci., 98, 3–17, https://doi.org/10.1007/s00531-008-0348-6, 2009.
Estrella-Martínez, J.: Holocene climate variability in UK waters based on Arctica islandica sclerochronology, PhD thesis, Bangor University, 2019.
Estrella-Martínez, J., Ascough, P. L., Schöne, B. R., Scourse, J. D., and Butler, P. G.: 8.2 ka event North Sea hydrography determined by bivalve shell stable isotope geochemistry, Sci. Rep., 9, 1–9, https://doi.org/10.1038/s41598-019-43219-1, 2019.
Eyles, N., McCabe, A. M., and Bowen, D. Q.: The stratigraphic and sedimentological significance of Late Devensian ice sheet surging in Holderness, Yorkshire, Quaternary Sci. Rev., 13, 727–759, https://doi.org/10.1016/0277-3791(94)90102-3, 1994.
Goodfriend, G. A., Hare, P. E., and Druffel, E. R. M.: Aspartic acid racemization and protein diagenesis in corals over the last 350 years Geochim. Cosmochim. Ac., 56, 3847–3850, https://doi.org/10.1016/0016-7037(94)00324-F, 1992.
Goodfriend, G. A. and Weidman, C. R.: Ontogenetic trends in aspartic acid racemization and amino acid composition within modern and fossil shells of the bivalve Arctica, Geochim. Cosmochim. Ac., 65, 1921–1932, https://doi.org/10.1016/S0016-7037(01)00564-6, 2001.
Goodfriend, G. A., Kashgarian, M., and Harasewych, M. G.: Use of aspartic acid racemization and post-bomb 14C to reconstruct growth rate and longevity of the deep-water slit shell Entemnotrochus adansonianus, Geochim. Cosmochim. Ac., 59, 1125–1129, https://doi.org/10.1016/0016-7037(95)00029-Y, 1995.
Goodfriend, G. A., Flessa, K. W., and Hare, P. E.: Variation in amino acid epimerization rates and amino acid composition among shell layers in the bivalve Chione from the Gulf of California, Geochim. Cosmochim. Ac., 61, 1487–1493, 1997.
Gries, K., Kröger, R., Kübel, C., Fritz, M., and Rosenauer, A.: Investigations of voids in the aragonite platelets of nacre, Acta Biomater., 5, 3038–3044, https://doi.org/10.1016/j.actbio.2009.04.017, 2009.
Hajdas, I., Ascough, P., Garnett, M. H., Fallon, S. J., Pearson, C. L., Quarta, G., Spalding, K. L., Yamaguchi, H., and Yoneda, M.: Radiocarbon dating, Nat. Rev. Methods Primers, 1, 62, https://doi.org/10.1038/s43586-021-00058-7, 2021.
Hamblin, R. J. O., Moorlock, B. S. P., Booth, S. J., Jeffery, D. H., and Morigi, A. N.: The Red Crag and Norwich Crag formations in eastern Suffolk, Proc. Geol. Assoc., 108, 11–23, https://doi.org/10.1016/S0016-7878(97)80002-8, 1997.
Hare, P. E. and Mitterer, R. M.: Laboratory simulation of amino acid diagenesis in fossils, Carnegie Inst. Wash. YRB, 67, 205–208, 1969.
Haugen, J.-E. and Sejrup, H. P.: Amino acid composition of aragonitic concholin in the shell of Arctica islandica, Lethaia, 23, 133–141, https://doi.org/10.1111/j.1502-3931.1990.tb01354.x, 1990.
Haugen, J. E. and Sejrup, H. P.: Isoleucine epimerization kinetics in the shell of Arctica islandica, Norsk Geologisk Tidsskrift, 72, 171–180, 1992.
Hendy, E. J., Tomiak, P. J., Collins, M. J., Hellstrom, J., Tudhope, A. W., Lough, J. M., and Penkman, K. E. H.: Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications, Geochim. Cosmochim. Ac., 86, 338–353, https://doi.org/10.1016/j.gca.2012.02.020, 2012.
Huang, Q., Agbaje, O. B. A., Conti, M., and Schöne, B. R.: Organic phases in bivalve (Arctica islandica) shells: Their bulk and amino acid nitrogen stable isotope compositions, Geochem. Geophys. Geosyst., 24, e2023GC011147, https://doi.org/10.1029/2023GC011147, 2023.
IUGS: International Chronostratigraphic Chart, v 2023/09, https://stratigraphy.org/chart (last access: 24 February 2024), 2023.
Kaufman, D. S., Cooper, K., Behl, R., Billups, K., Bright, J., Gardner, K., Hearty, P., Jakobsson, M., Mendes, I., O'Leary, M., Polyak, L., Rasmussen T., Rosa, F., and Schmidt, M.: Amino acid racemization in mono-specific foraminifera from Quaternary deep-sea sediments, Quat. Geochronol., 16, 50–61, https://doi.org/10.1016/j.quageo.2012.07.006, 2013.
Kosnik, M. A. and Kaufman, D. S.: Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: II. Data screening, Quat. Geochronol., 3, 328–341, https://doi.org/10.1016/j.quageo.2008.04.001, 2008.
Kriausakul, N. and Mitterer, R. M.: Isoleucine epimerization in peptides and proteins: kinetic factors and application to fossil proteins, Science, 201, 1011–1014, https://doi.org/10.1126/science.201.4360.1011, 1978.
Malatesta, A. and Zarlenga, F.: Northern guests in the Pleistocene Mediterranean Sea, Geologica Romana, 25, 91–154, 1986.
Marchitto, T. M., Jones, G. A., Goodfriend, G. A., and Weidman, C. R.: Precise temporal correlation of Holocene mollusk shells using sclerochronology, Quaternary Res., 53, 236–246, https://doi.org/10.1006/qres.1999.2107, 2000.
Mayhew, D. F.: West European arvicolid evidence of intercontinental connections during the Early Pleistocene, Quaternary Int., 284, 62–73, https://doi.org/10.1016/j.quaint.2011.08.005, 2013.
Milano, S., Nehrke, G., Wanamaker Jr., A. D., Ballesta-Artero, I., Brey, T., and Schöne, B. R.: The effects of environment on Arctica islandica shell formation and architecture, Biogeosciences, 14, 1577–1591, https://doi.org/10.5194/bg-14-1577-2017, 2017.
Millman, E., Wheeler, L., Billups, K., Kaufman, D., and Penkman, K. E. H.: Testing the effect of oxidizing pre-treatments on amino acids in benthic and planktic foraminifera tests, Quat. Geochronol., 73, 101401, https://doi.org/10.1016/j.quageo.2022.101401, 2022.
NOAA: Index of /pub/data/paleo/aar, NOAA [data set], https://www.ncei.noaa.gov/pub/data/paleo/aar/, last access: 9 May 2024.
Orem, C. A. and Kaufman, D. S.: Effects of basic pH on amino acid racemization and leaching in freshwater mollusk shell, Quat. Geochronol., 6, 233–245, https://doi.org/10.1016/j.quageo.2010.11.005, 2011.
Ortiz, J. E., Torres, T., González-Morales, M. R., Abad, J., Arribas, I., Fortea, F. J., Garcia-Belenguer, F., and Gutiérrez-Zugasti, I.: The aminochronology of man-induced shell middens in caves in Northern Spain, Archaeometry, 51, 123–139, https://doi.org/10.1111/j.1475-4754.2008.00383.x, 2009.
Ortiz, J. E., Torres, T., and Pérez-González, A.: Amino acid racemization in four species of ostracodes: Taxonomic, environmental, and microstructural controls, Quat. Geochronol., 16, 129–143, https://doi.org/10.1016/j.quageo.2012.11.004, 2013.
Ortiz, J. E., Gutiérrez-Zugasti, I., Torres, T., González-Morales, M., and Sánchez-Palencia, Y.: Protein diagenesis in Patella shells: Implications for amino acid racemisation dating, Quat. Geochronol., 27, 105–118, https://doi.org/10.1016/j.quageo.2015.02.008, 2015.
Ortiz, J. E., Sánchez-Palencia, Y., Gutiérrez-Zugasti, I., Torres, T., and González-Morales, M.: Protein diagenesis in archaeological gastropod shells and the suitability of this material for amino acid racemisation dating: Phorcus lineatus (da Costa, 1778), Quat. Geochronol., 46, 16–27, https://doi.org/10.1016/j.quageo.2018.02.002, 2018.
Penkman, K.: Amino acid geochronology: Its impact on our understanding of the Quaternary stratigraphy of the British Isles, J. Quat. Sci., 25, 501–514, https://doi.org/10.1002/jqs.1346, 2010.
Penkman, K. E. H. and Wenban-Smith, F.: Amino acid dating, in: The Ebbsfleet elephant: Excavations at Southfleet Road, Swanscombe in advance of High Speed 1, 2003-4, edited by: Wenban-Smith, F., Oxford Archaeology, 20, 307–318, 2013.
Penkman, K. E. H., Preece, R. C., Keen, D. H., Maddy, D., Schreve, D. C., and Collins, M. J.: Testing the aminostratigraphy of fluvial archives: the evidence from intra-crystalline proteins within freshwater shells, Quat. Sci. Rev., 26, 2958–2969, https://doi.org/10.1016/j.quascirev.2007.06.034, 2007.
Penkman, K. E. H., Kaufman, D. S., Maddy, D., and Collins, M. J.: Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells, Quat. Geochronol., 3, 2–25, https://doi.org/10.1016/j.quageo.2007.07.001, 2008.
Poulsen, B.: Dutch Herring – An Environmental History, c. 1600–1860, Amsterdam University, 2008.
Preece, R. C. and Penkman, K. E. H.: New faunal analyses and amino acid dating of the Lower Palaeolithic site at East Farm, Barnham, Suffolk. Proc. Geol. Assoc., 116, 363–377, https://doi.org/10.1016/S0016-7878(05)80053-7, 2005.
Preece, R. C., Meijer, T., Penkman, K. E. H., Demarchi, B., Mayhew, D. F., and Parfitt, S. A.: The palaeontology and dating of the `Weybourne Crag', an important marker horizon in the Early Pleistocene of the southern North Sea basin, Quat. Sci. Rev., 236, 106177, https://doi.org/10.1016/j.quascirev.2020.106177, 2020.
Reichert, K. L., Licciardi, J. M., and Kaufman, D. S.: Amino acid racemization in lacustrine ostracodes, part II: Paleothermometry in Pleistocene sediments at Summer Lake, Oregon, Quat. Geochronol., 6, 174–182, https://doi.org/10.1016/j.quageo.2010.11.007, 2011.
Reynolds, D. J., Scourse, J. D., Halloran, P. R., Nederbragt, A. J., Wanamaker, A. D., Butler, P. G., Richardson, C. A., Heinemeier, J., Eiríksson, J., Knudsen, K. L., and Hall, I. R.: Annually resolved North Atlantic marine climate over the last millennium, Nat. Commun., 7, 201–217, https://doi.org/10.1038/ncomms13502, 2016.
Ryan, D. D., Lachlan T. J., Murray-Wallace, C. V., and Price, D. M.: The utility of single foraminifera amino acid racemization analysis for the relative dating of Quaternary beach barriers and identification of reworked sediment, Quat. Geochronol., 60, 101103, https://doi.org/10.1016/j.quageo.2020.101103, 2020.
Schöne, B. R.: Arctica islandica (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic Ocean, Global Planet. Change, 111, 199–225, https://doi.org/10.1016/j.gloplacha.2013.09.013, 2013.
Schöne, B. R. and Fiebig, J.: Seasonality in the North Sea during the Allerød and Late Medieval Climate Optimum using bivalve sclerochronology, Int. J. Earth Sci., 98, 83–98, https://doi.org/10.1007/s00531-008-0363-7, 2009.
Schöne, B. R. and Huang, Q.: Ontogenetic δ15N Trends and Multidecadal Variability in Shells of the Bivalve Mollusk, Arctica islandica, Front. Mar. Sci., 8, 1–15, https://doi.org/10.3389/fmars.2021.748593, 2021.
Schöne, B. R., Freyre Castro, A. D., Fiebig, J., Houk, S. D., Oschmann, W., and Kröncke, I.: Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea), Palaeogeogr. Palaeocl., 212, 215–232, https://doi.org/10.1016/j.palaeo.2004.05.024, 2004.
Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J., Johnson, A. L. A., Dreyer, W., and Oschmann, W.: Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeogr. Palaeocl., 228, 130–148, https://doi.org/10.1016/j.palaeo.2005.03.049, 2005.
Scourse, J. D., Afrifa, K., Byrne, L., Crowley, D., Earland, J. L., Ehmen, T., Frøslev, T. G., Greenall, C., Harland, J., Heard, Z., Höche, N., Holman, L. E., Huang, Q., Langkjær, E. M. R., Mason, M., Nelson, E., Nemeth, Z., Reynolds, D., Robson, H. K., Roman-Gonzalez, A., Scherer, P., Scolding, J., Short, J., Wilkin, J. T. R., and Wilson, D. R.: DY150 Cruise report, https://seachange-erc.eu/research/north-west-european-research-cruise (last access: 20 February 2024), 2022.
Sejrup, H. P. and Haugen, J. E.: Amino acid diagenesis in the marine bivalve Arctica islandica Linné from northwest European sites: Only time and temperature?, J. Quat. Sci., 9, 301–309, https://doi.org/10.1002/jqs.3390090402, 1994.
Sykes, G. A., Collins, M. J., and Walton, D. I.: The significance of a geochemically isolated intracrystalline organic fraction within biominerals, Org. Geochem., 23, 1059–1065, https://doi.org/10.1016/0146-6380(95)00086-0, 1995.
Tomiak, P. J., Penkman, K. E. H., Hendy, E. J., Demarchi, B., Murrells, S., Davis, S. A., McCullagh, P., and Collins, M. J.: Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons, Quat. Geochronol., 16, 87–109, https://doi.org/10.1016/j.quageo.2012.07.001, 2013.
Tomiak, P. J., Andersen, M. B., Hendy, E. J., Potter, E. K., Johnson, K. G., and Penkman, K. E. H.: The role of skeletal micro-architecture in diagenesis and dating of Acropora palmata, Geochim. Cosmochim. Ac., 183, 153–175, https://doi.org/10.1016/j.gca.2016.03.030, 2016.
Torres, T., Ortiz, J. E., and Arribas, I.: Variations in racemization/epimerization ratios and amino acid content of Glycymeris shells in raised marine deposits in the Mediterranean, Quat. Geochronol., 16, 35–49, https://doi.org/10.1016/j.quageo.2012.11.002, 2013.
Towe, K. M. and Thompson, G. R.: The structure of some bivalve shell carbonates prepared by ion-beam thinning – A comparison study, Calcif. Tissue Res., 10, 38–48, 1972.
Trofimova, T., Milano, S., Andersson, C., Bonitz, F. G. W., and Schöne, B. R.: Oxygen isotope composition of Arctica islandica aragonite in the context of shell architectural organization: Implications for paleoclimate reconstructions, Geochem. Geophys. Geosyst., 19, 453–470, https://doi.org/10.1002/2017GC007239, 2018.
Vallentyne, J. R.: Biogeochemistry of organic matter II: Thermal reaction kinetics and transformation products of amino compounds, Geochim. Cosmochim. Ac., 28, 157–188, 1964.
Walker, M., Head, M. J., Lowe, J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L. C., Fisher, D., Gkinis, V., Long, A., Newnham, R., Rasmussen, S. O., and Weiss, H.: Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes, J. Quat. Sci., 34, 173–186, https://doi.org/10.1002/jqs.3097, 2019.
Walton, D.: Degradation of intracrystalline proteins and amino acids in fossil brachiopods, Org. Geochem., 28, 389–410, 1998.
Wanamaker Jr., A. D., Butler, P. G., Scourse, J. D., Heinemeier, J., Eiríksson, J., Knudsen, K. L., and Richardson, C. A.: Surface changes in the North Atlantic meridional overturning circulation during the last millennium, Nat. Commun., 3, 1–7, https://doi.org/10.1038/ncomms1901, 2012.
Wheeler, L. J., Penkman, K. E. H., and Sejrup, H. P.: Assessing the intra-crystalline approach to amino acid geochronology of Neogloboquadrina pachyderma (sinistral), Quat. Geochronol., 61, 101131, https://doi.org/10.1016/j.quageo.2020.101131, 2021.
Witbaard, R., Duineveld, G. C. A., and de Wilde, P. A. W. J.: A long-term growth record derived from Arctica islandica (Mollusca, Bivalvia) from the Fladen ground (northern North Sea), J. Mar. Biol. Assoc. UK, 77, 801–816, https://doi.org/10.1017/s0025315400036201, 1997.
Short summary
The mollusc Arctica islandica can survive for hundreds of years, and its annual growth captures environmental conditions, each shell providing a detailed climatic record. Dating is essential for sample selection, but radiocarbon and cross-dating are laborious and costly. Alternatively, amino acid geochronology was investigated in the three aragonitic layers of the shells. This study confirms the value of AAG in the iOSL layer as a method for range-finder dating Quaternary A. islandica shells.
The mollusc Arctica islandica can survive for hundreds of years, and its annual growth captures...