Articles | Volume 1, issue 1
https://doi.org/10.5194/gchron-1-85-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-1-85-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis of microfractured Hadean zircon
Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
Patrick Boehnke
Eta Vision, Chicago, IL 60611, USA
Blair Schoene
Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
T. Mark Harrison
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095, USA
Related authors
Kalin T. McDannell and C. Brenhin Keller
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-3, https://doi.org/10.5194/gchron-2024-3, 2024
Preprint under review for GChron
Short summary
Short summary
We introduce a new statistical method for determining the time of "peak cooling" in thermochronological inversions. Specifically, we focus on the time-temperature paths that intersect the half-maximum cooling isotherm, signifying the zenith or most rapid cooling within a defined interval. The resultant interpolated time distribution provides a systematic metric, particularly applicable for evaluating model cooling characterized by relatively smooth histories featuring a single inflection point.
C. Brenhin Keller
Geochronology Discuss., https://doi.org/10.5194/gchron-2023-9, https://doi.org/10.5194/gchron-2023-9, 2023
Publication in GChron not foreseen
Short summary
Short summary
As a result of increasing precision and accuracy in geochronology, interpreting complicated age spectra has become increasingly important, since individual mineral ages often do not directly date the actual geologic process of interest. Here we propose a method for estimating the age of eruption or deposition of a set of minerals dated by the U-Pb system which, in contrast to previous approaches, remains accurate even when the dated minerals have experienced loss of the daughter product Pb.
Blair Schoene, Michael P. Eddy, C. Brenhin Keller, and Kyle M. Samperton
Geochronology, 3, 181–198, https://doi.org/10.5194/gchron-3-181-2021, https://doi.org/10.5194/gchron-3-181-2021, 2021
Short summary
Short summary
We compare two published U–Pb and 40Ar / 39Ar geochronologic datasets to produce eruption rate models for the Deccan Traps large igneous province. Applying the same approach to each dataset, the resulting models agree well, but the higher-precision U–Pb dataset results in a more detailed eruption model than the lower-precision 40Ar / 39Ar data. We explore sources of geologic uncertainty and reiterate the importance of systematic uncertainties in comparing U–Pb and 40Ar / 39Ar datasets.
Kalin T. McDannell and C. Brenhin Keller
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-3, https://doi.org/10.5194/gchron-2024-3, 2024
Preprint under review for GChron
Short summary
Short summary
We introduce a new statistical method for determining the time of "peak cooling" in thermochronological inversions. Specifically, we focus on the time-temperature paths that intersect the half-maximum cooling isotherm, signifying the zenith or most rapid cooling within a defined interval. The resultant interpolated time distribution provides a systematic metric, particularly applicable for evaluating model cooling characterized by relatively smooth histories featuring a single inflection point.
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
C. Brenhin Keller
Geochronology Discuss., https://doi.org/10.5194/gchron-2023-9, https://doi.org/10.5194/gchron-2023-9, 2023
Publication in GChron not foreseen
Short summary
Short summary
As a result of increasing precision and accuracy in geochronology, interpreting complicated age spectra has become increasingly important, since individual mineral ages often do not directly date the actual geologic process of interest. Here we propose a method for estimating the age of eruption or deposition of a set of minerals dated by the U-Pb system which, in contrast to previous approaches, remains accurate even when the dated minerals have experienced loss of the daughter product Pb.
Alyssa J. McKanna, Isabel Koran, Blair Schoene, and Richard A. Ketcham
Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, https://doi.org/10.5194/gchron-5-127-2023, 2023
Short summary
Short summary
Acid leaching is commonly used to remove damaged portions of zircon crystals prior to U–Pb dating. However, a basic understanding of the microstructural processes that occur during leaching is lacking. We present the first 3D view of zircon dissolution based on X-ray computed tomography data acquired before and after acid leaching. These data are paired with images of etched grain surfaces and Raman spectral data. We also reveal exciting opportunities for imaging radiation damage zoning in 3D.
Blair Schoene, Michael P. Eddy, C. Brenhin Keller, and Kyle M. Samperton
Geochronology, 3, 181–198, https://doi.org/10.5194/gchron-3-181-2021, https://doi.org/10.5194/gchron-3-181-2021, 2021
Short summary
Short summary
We compare two published U–Pb and 40Ar / 39Ar geochronologic datasets to produce eruption rate models for the Deccan Traps large igneous province. Applying the same approach to each dataset, the resulting models agree well, but the higher-precision U–Pb dataset results in a more detailed eruption model than the lower-precision 40Ar / 39Ar data. We explore sources of geologic uncertainty and reiterate the importance of systematic uncertainties in comparing U–Pb and 40Ar / 39Ar datasets.
Related subject area
Longlived radio-isotope systems
µID-TIMS: Spatially-resolved high-precision U-Pb zircon geochronology
Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments
Chemical abrasion: the mechanics of zircon dissolution
High-precision ID-TIMS cassiterite U–Pb systematics using a low-contamination hydrothermal decomposition: implications for LA-ICP-MS and ore deposit geochronology
Multimethod U–Pb baddeleyite dating: insights from the Spread Eagle Intrusive Complex and Cape St. Mary's sills, Newfoundland, Canada
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
Sava Markovic, Jörn-Frederik Wotzlaw, Dawid Szymanowski, Joakim Reuteler, Peng Zeng, and Cyril Chelle-Michou
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-17, https://doi.org/10.5194/gchron-2024-17, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
We present a pioneering method for high-precision absolute dating of individual growth zones in mineral zircon. The micrometer-wide growth zones record key processes in Earth and Planetary sciences, such as conditions in magma reservoirs prior to supereruptions or planetary formation during the early stages of the Solar system. In our approach, we directly sample the growth zones with a focused ion beam and high pulse laser, allowing to tackle a number of long-standing research questions.
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
Alyssa J. McKanna, Isabel Koran, Blair Schoene, and Richard A. Ketcham
Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, https://doi.org/10.5194/gchron-5-127-2023, 2023
Short summary
Short summary
Acid leaching is commonly used to remove damaged portions of zircon crystals prior to U–Pb dating. However, a basic understanding of the microstructural processes that occur during leaching is lacking. We present the first 3D view of zircon dissolution based on X-ray computed tomography data acquired before and after acid leaching. These data are paired with images of etched grain surfaces and Raman spectral data. We also reveal exciting opportunities for imaging radiation damage zoning in 3D.
Simon Tapster and Joshua W. G. Bright
Geochronology, 2, 425–441, https://doi.org/10.5194/gchron-2-425-2020, https://doi.org/10.5194/gchron-2-425-2020, 2020
Short summary
Short summary
Cassiterite is the primary tin ore mineral and is associated with other elements needed for green technology. The mineral is deposited from hydrothermal fluids released from magmas. Because it is extremely acid resistant, there has been difficulty dissolving the mineral for isotopic analysis. To improve the understanding of the timing and models of formation processes, we use a novel method to dissolve and extract radiogenic isotopes of the uranium-to-lead decay scheme from cassiterite.
Johannes E. Pohlner, Axel K. Schmitt, Kevin R. Chamberlain, Joshua H. F. L. Davies, Anne Hildenbrand, and Gregor Austermann
Geochronology, 2, 187–208, https://doi.org/10.5194/gchron-2-187-2020, https://doi.org/10.5194/gchron-2-187-2020, 2020
Short summary
Short summary
Baddeleyite is commonly used for U–Pb dating, but textural complexities, alteration features and discordance often make age interpretation difficult. Based on this case study, we discuss strategies for obtaining more accurate baddeleyite ages by high-precision and high spatial resolution methods, including analytical challenges and discordance interpretation. An evaluation of microtextures allows us to distinguish among seven different types of baddeleyite–zircon intergrowths.
Lee F. White, Kimberly T. Tait, Sandra L. Kamo, Desmond E. Moser, and James R. Darling
Geochronology, 2, 177–186, https://doi.org/10.5194/gchron-2-177-2020, https://doi.org/10.5194/gchron-2-177-2020, 2020
Short summary
Short summary
The generation of highly precise and accurate ages requires crushing of the original sample so that individual mineral grains may be separated out for dating. Here, we use a focused ion beam to extract grains directly from a subset of a sample, effectively performing microsurgery to isolate individual crystals from the rock itself. This approach opens the door to high-precision dating for a variety of precious planetary materials that have previously been challenging to date.
Cited articles
Amelin, Y., Lee, D.-C., Halliday, A. N., and Pidgeon, R. T.: Nature of the
Earth's earliest crust from hafnium isotopes in single detrital zircons,
Nature, 399, 252–255, 1999. a
Amelin, Y. V.: Geochronology of the Jack hills detrital zircons by precise
U-Pb isotope dilution analysis of crystal fragments, Chem. Geol., 146,
25–38, 1998. a
Barboni, M., Boehnke, P., Keller, C. B., Kohl, I. E., Schoene, B., Young,
E. D., and McKeegan, K. D.: Early formation of the Moon 4.51 billion years
ago, Sci. Adv., 3, e1602365, https://doi.org/10.1126/sciadv.1602365, 2017. a
Bédard, J. H.: Stagnant lids and mantle overturns: Implications for
Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the
start of plate tectonics, Geosci. Front., 9, 19–49, 2018. a
Bell, E. A., Harrison, T. M., Kohl, I. E., and Young, E. D.: Eoarchean crustal
evolution of the Jack Hills zircon source and loss of Hadean crust,
Geochim. Cosmochim. Acta, 146, 27–42, 2014. a
Bell, E. A., Boehnke, P., Hopkins-Wielicki, M. D., and Harrison, T. M.:
Distinguishing primary and secondary inclusion assemblages in Jack Hills
zircons, Lithos, 234–235, 15–26, 2015. a
Boehnke, P., Watson, E. B., Trail, D., Harrison, T. M., and Schmitt, A. K.:
Zircon saturation re-revisited, Chem. Geol., 351, 324–334, 2013. a
Bowring, J. F. and McLean, N. M.: Engineering cyber infrastructure for U-Pb
geochronology: Tripoli and U-Pb Redux, Geochem. Geophys. Geosyst.,
12, 1–19, 2011. a
Bowring, S. A. and Williams, I. S.: Priscoan (4.00–4.03 Ga) orthogneisses from
northwestern Canada, Contrib. Mineral. Petrol., 134, 3–16,
1999. a
Byerly, B. L., Lowe, D. R., Drabon, N., Coble, M. A., Burns, D. H., and Byerly,
G. R.: Hadean zircon from a 3.3 Ga sandstone, Barberton Greenstone Belt,
South Africa, Geology, 46, 967–970, 2018. a
Cavosie, A. J., Valley, J. W., Wilde, S. A., and E. I. M. F.: Magmatic
δ18O in 4400–3900 Ma detrital zircons: A record of the
alteration and recycling of crust in the Early Archean, Earth Planet.
Sci. Lett., 235, 663–681, 2005. a
Cavosie, A. J., Valley, J. W., and Wilde, S. A.: The oldest terrestrial
mineral record: A review of 4400 to 4000 Ma detrital zircons from Jack Hills,
Western Australia, in: Earths Oldest Rocks, 91–111, Elsevier, 2007. a
Cherniak, D. J., Hanchar, J. M., and Watson, E. B.: Diffusion of tetravalent
cations in zircon, Contrib. Mineral. Petrol., 127, 383–390,
1997. a
Condie, K. C.: A planet in transition: The onset of plate tectonics on Earth
between 3 and 2 Ga?, Geosci. Front., 9, 51–60, 2018. a
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., and Parrish, R. R.:
Metrology and traceability of U-Pb isotope dilution
geochronology (EARTHTIME Tracer Calibration Part I), Geochim.
Cosmochim. Acta, 164, 464–480, 2015. a
Crow, C. A., Moser, D. E., and McKeegan, K. D.: Shock metamorphic history of
>4 Ga Apollo 14 and 15 zircons, Meteor. Planet. Sci., 54, 181–201, https://doi.org/10.1111/maps.13184 if needed, 2018. a
Davis, D. W. and Krogh, T. E.: Preferential dissolution of 234U and
radiogenic Pb from α-recoil-damaged lattice sites in zircon:
implications for thermal histories and Pb isotopic fractionation in the near
surface environment, Chem. Geol., 172, 41–58, 2001. a
Didier, A., Bosse, V., Boulvais, P., Bouloton, J., Paquette, J.-L., Montel,
J. M., and Devidal, J. L.: Disturbance versus preservation of
U-Th-Pb ages in monazite during
fluid-rock interaction: textural, chemical and isotopic in situ
study in microgranites (Velay Dome, France), Contrib. Mineral.
Petrol., 165, 1051–1072, 2013. a
Duo, J., Wen, C., Guo, J., Fan, X., and Li, X.: 4.1 Ga old detrital zircon in
western Tibet of China, Chi. Sci. Bull., 52, 23–26, 2007. a
Fougerouse, D., Reddy, S. M., Saxey, D. W., Erickson, T. M., Kirkland, C. L.,
Rickard, W. D. A., Seydoux-Guillaume, A. M., Clark, C., and Buick, I. S.:
Nanoscale distribution of Pb in monazite revealed by atom probe microscopy,
Chem. Geol., 479, 251–258, 2018. a
Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R. T., and van Bronswijk,
W.: Leaching and differential recrystallization of metamict zircon under
experimental hydrothermal conditions, Contrib. Mineral.
Petrol., 141, 53–65, 2001. a
Geisler, T., Pidgeon, R. T., Kurtz, R., van Bronswijk, W., and Schleicher, H.:
Experimental hydrothermal alteration of partially metamict zircon, Am.
Mineral., 88, 1496–1513, 2003a. a
Gerstenberger, H. and Haase, G.: A highly effective emitter substance for mass
spectrometric Pb isotope ratio determinations, Chem. Geol., 136,
309–312, 1997. a
Guitreau, M. and Blichert-Toft, J.: Implications of discordant
U-Pb ages on Hf isotope studies of detrital zircons, Chem.
Geol., 385, 17–25, 2014. a
Gysi, A. P., Harlov, D., and Miron, G. D.: The solubility of monazite
(CePO4), SmPO4, and GdPO4 in aqueous solutions from 100 to 250 C,
Geochim. Cosmochim. Acta, 242, 143–164, 2018. a
Hansen, B. T. and Friderichsen, J. D.: The influence of recent lead loss on
the interpretation of disturbed U-Pb systems in zircons from igneous rocks in
East Greenland, Lithos, 23, 209–223, 1989. a
Harlov, D. E., Wirth, R., and Hetherington, C. J.: Fluid-mediated partial
alteration in monazite: the role of coupled
dissolution-reprecipitation in element redistribution and mass
transfer, Contrib. Mineral. Petrol., 162, 329–348, 2010. a
Harrison, T. M., Bell, E. A., and Boehnke, P.: Hadean Zircon Petrochronology,
Rev. Mineral. Geochem., 83, 329–363, 2017. a
Hay, D. C., Dempster, T. J., Lee, M. R., and Brown, D. J.: Anatomy of a low
temperature zircon outgrowth, Contrib. Mineral. Petrol.,
159, 81–92, 2009. a
Hiess, J., Condon, D. J., McLean, N. M., and Noble, S. R.: 238U∕235U
Systematics in terrestrial uranium-bearing minerals, Science, 335,
1610–1614, 2012. a
Holland, H. D. and Gottfried, D.: The effect of nuclear radiation on the
structure of zircon, Acta Crystall., 8, 291–300, 1955. a
Hopkins, M. D., Harrison, T. M., and Manning, C. E.: Constraints on Hadean
geodynamics from mineral inclusions in >4 Ga zircons, Earth Planet. Sci. Lett., 298, 367–376, 2010. a
Hoskin, P. W. O. and Schaltegger, U.: The composition of zircon and igneous
and metamorphic petrogenesis, Rev. Mineral. Geochem., 53,
27–62, 2003. a
Iizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H., and
Windley, B. F.: 4.2 Ga zircon xenocryst in an Acasta gneiss from
northwestern Canada: Evidence for early continental crust, Geology, 34,
245–248, 2006. a
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., and Bentley, W. C.: Precision
Measurement of Half-Lives and Specific Activities of 235U and
238U, Phys. Rev. C, 4, 1889–1906, 1971. a
Keller, C. B. and Schoene, B.: Plate tectonics and continental basaltic
geochemistry throughout Earth history, Earth Planet. Sci. Lett., 481, 290–304, 2018. a
Keller, C. B., Boehnke, P., Schoene, B., and Harrison, T. M.: Stepwise chemical abrasion ID-TIMS-TEA of microfractured Hadean zircon, OSF Home, https://doi.org/10.17605/OSF.IO/AVDQH, 2019. a
Kelly, N. M. and Harley, S. L.: An integrated microtextural and chemical
approach to zircon geochronology: refining the Archaean history of the Napier
Complex, east Antarctica, Contrib. Mineral. Petrol., 149,
57–84, 2005. a
Kober, B.: Whole-grain evaporation for
207Pb∕206Pb-age-investigations on single zircons using a
double-filament thermal ion source, Contrib. Mineral.
Petrol., 93, 482–490, 1986. a
Krogh, T. E.: A low-contamination method for hydrothermal decomposition of
zircon and extraction of U and Pb for isotopic age determinations,
Geochim. Cosmochim. Acta, 37, 485–494, 1973. a
Kusiak, M. A., Whitehouse, M. J., Wilde, S. A., Dunkley, D. J., Menneken, M.,
Nemchin, A. A., and Clark, C.: Changes in zircon chemistry during Archean
UHT metamorphism in the Napier Complex, Antarctica, Am. J.
Sci., 313, 933–967, 2013. a
Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O., and Compston, W.: The
Earth's oldest known crust: A geochronological and geochemical study of
3900–4200 Ma old detrital zircons from Mt. Narryer and Jack
Hills, Western Australia, Geochim. Cosmochim. Acta, 56, 1281–1300,
1992. a
Mattinson, J. M.: A study of complex discordance in zircons using step-wise
dissolution techniques, Contrib. Mineral. Petrol., 116,
117–129, 1994. a
McLean, N. M., Bowring, J. F., and Bowring, S. A.: An algorithm for U-Pb
isotope dilution data reduction and uncertainty propagation, Geochem.
Geophys. Geosyst., 12, 1–12, 2011. a
McLean, N. M., Condon, D. J., Schoene, B., and Bowring, S. A.: Evaluating
uncertainties in the calibration of isotopic reference materials and
multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II),
Geochim. Cosmochim. Acta, 164, 481–501, 2015. a
Miller, S. R., Mueller, P. A., Meert, J. G., Kamenov, G. D., Pivarunas, A. F.,
Sinha, A. K., and Pandit, M. K.: Detrital zircons reveal evidence of Hadean
crust in the Singhbhum Craton, India, The J. Geol., 126, 541–552,
2018. a
Mojzsis, S. J. and Harrison, T. M.: Establishment of a 3.83-Ga magmatic age
for the Akilia tonalite (southern West Greenland), Earth Planet. Sci. Lett., 202, 563–576, 2002. a
Mojzsis, S. J., Harrison, T. M., and Pidgeon, R. T.: Oxygen-isotope evidence
from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago,
Nature, 409, 178–181, 2001. a
Myers, J. S.: Early Archaean Narryer Gneiss Complex, Yilgarn Craton, Western
Australia, Precamb. Res., 38, 297–307, 1988. a
Nadeau, S., Chen, W., Reece, J., Lachhman, D., Ault, R., Faraco, M. T. L.,
Fraga, L. M., Reis, N. J., and Betiollo, L. M.: Guyana: the lost Hadean
crust of South America?, Braz. J. Geol., 43, 601–606, 2013. a
Nasdala, L., Lengauer, C. L., Hanchar, J. M., Kronz, A., Wirth, R., Blanc, P.,
Kennedy, A. K., and Seydoux-Guillaume, A.-M.: Annealing radiation damage and
the recovery of cathodoluminescence, Chem. Geol., 191, 121–140, 2002. a
Paquette, J.-L., Barbosa, J. S. F., Rohais, S., Cruz, S. C. P., Goncalves, P.,
Peucat, J. J., Leal, A. B. M., Santos-Pinto, M., and Martin, H.: The
geological roots of South America: 4.1 Ga and 3.7 Ga zircon crystals
discovered in N.E. Brazil and N.W. Argentina, Precamb. Res., 271,
49–55, 2015. a
Pidgeon, R. T., O'Neil, J. R., and Silver, L. T.: Uranium and
lead isotopic stability in a metamict zircon under experimental hydrothermal
conditions, Science, 154, 1538–1540, 1966. a
Reischmann, T.: Precise U/Pb age determination with baddeleyite (ZrO2), a
case study from the Phalaborwa igneous complex, South Africa, South Afr.
J. Geol., 98, 1–4, 1995. a
Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., and Bowring, S. A.:
Reassessing the uranium decay constants for geochronology using ID-TIMS
U-Pb data, Geochim. Cosmochim. Acta, 70, 426–445, 2006. a
Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring,
S. A., Khadri, S. F. R., and Gertsch, B.: U-Pb geochronology of the Deccan
Traps and relation to the end-Cretaceous mass extinction, Science, 347,
182–184, 2015. a
Seydoux-Guillaume, A.-M., Goncalves, P., Wirth, R., and Deutsch, A.:
Transmission electron microscope study of polyphase and discordant
monazites: Site-specific specimen preparation using the focused ion beam
technique, Geology, 31, 973, 2003. a
Seydoux-Guillaume, A.-M., Montel, J.-M., Bingen, B., Bosse, V., de Parseval,
P., Paquette, J.-L., Janots, E., and Wirth, R.: Low-temperature alteration
of monazite: Fluid mediated coupled dissolution–precipitation,
irradiation damage, and disturbance of the U-Pb and
Th-Pb chronometers, Chem. Geol., 330–331, 140–158, 2012. a
Seydoux-Guillaume, A.-M., Deschanels, X., Baumier, C., Neumeier, S., Weber,
W. J., and Peuget, S.: Why natural monazite never becomes amorphous:
Experimental evidence for alpha self-healing, Am. Mineral., 103,
824–827, 2018. a
Söderlund, U., Patchett, P. J., Vervoort, J. D., and Isachsen, C. E.: The
176Lu decay constant determined by Lu-Hf and
U-Pb isotope systematics of Precambrian mafic intrusions, Earth
Planet. Sci. Lett., 219, 311–324, 2004. a
Stepanov, A. S., Hermann, J., Rubatto, D., and Rapp, R. P.: Experimental study
of monazite/melt partitioning with implications for the REE, Th and U
geochemistry of crustal rocks, Chem. Geol., 300–301, 200–220, 2012. a
Tiepolo, M., Oberti, R., and Vannucci, R.: Trace-element incorporation in
titanite: constraints from experimentally determined solid/liquid partition
coefficients, Chem. Geol., 191, 105–119, 2002. a
Trail, D., Mojzsis, S. J., Harrison, T. M., Schmitt, A. K., Watson, E. B., and
Young, E. D.: Constraints on Hadean zircon protoliths from oxygen isotopes,
Ti-thermometry, and rare earth elements, Geochem. Geophys. Geosyst.,
8, 1–22, 2007. a
Trail, D., Watson, E. B., and Tailby, N. D.: The oxidation state of Hadean
magmas and implications for early Earth's atmosphere,
Nature, 480, 79–82, 2011. a
Tromans, D.: Solubility of crystalline and metamict zircon: A thermodynamic
analysis, J. Nuclear Mater., 357, 221–233, 2006. a
Utsunomiya, S., Palenik, C. S., Valley, J. W., Cavosie, A. J., Wilde, S. A.,
and Ewing, R. C.: Nanoscale occurrence of Pb in an Archean zircon,
Geochim. Cosmochim. Acta, 68, 4679–4686, 2004. a
Váczi, T., Nasdala, L., Wirth, R., Mehofer, M., Libowitzky, E., and
Häger, T.: On the breakdown of zircon upon
“dry” thermal annealing, Mineral.
Petrol., 97, 129–138, 2009. a
Wang, H., Chen, L., Sun, Y., Liu, X., Xu, X., Chen, J., Zhang, H., and Diwu,
C.: 4.1 Ga xenocrystal zircon from Ordovician volcanic rocks in western part
of North Qinling Orogenic Belt, Chi. Sci. Bull., 52, 3002–3010,
2007. a
Watson, E. B.: Zircon Thermometer Reveals Minimum Melting Conditions on
Earliest Earth, Science, 308, 841–844, 2005. a
Watson, E. B., Chemiak, D. J., Hanchar, J. M., Harrison, T. M., and Wark,
D. A.: The incorporation of Pb into zircon, Chem. Geol., 141, 19–31,
1997. a
Whitehouse, M. J., Nemchin, A. A., and Pidgeon, R. T.: What can Hadean
detrital zircon really tell us? A critical evaluation of their geochronology
with implications for the interpretation of oxygen and hafnium isotopes,
Gondwana Res., 51, 78–91, 2017. a
Wilde, S. A., Valley, J. W., Peck, W. H., and Graham, C. M.: Evidence from
detrital zircons for the existence of continental crust and oceans on the
Earth 4.4 Gyr ago, Nature, 409, 175–178, 2001. a
Xing, G.-F., Wang, X.-L., Wan, Y., Chen, Z.-H., Jiang, Y., Kitajima, K.,
Ushikubo, T., and Gopon, P.: Diversity in early crustal evolution: 4100 Ma
zircons in the Cathaysia Block of southern China, Sci. Rep., 4,
5143, 2014. a
Xu, Y., Du, Y., Huang, H., Huang, Z., Hu, L., Zhu, Y., and Yu, W.: Detrital
zircon of 4.1 Ga in South China, Chi. Sci. Bull., 57, 4356–4362,
2012. a
Short summary
The oldest known minerals on Earth are Hadean (> 4.0 Ga) zircons from the Jack Hills, Australia. We present the first application to such Hadean zircons of stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis (stepwise CA-ID-TIMS-TEA). We examine the evolution in the U–Pb age and trace element chemistry of zircon domains accessed by successive chemical abrasion steps in the context of the geologic history of the Jack Hills zircons.
The oldest known minerals on Earth are Hadean ( 4.0 Ga) zircons from the Jack Hills, Australia....