Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-629-2022
https://doi.org/10.5194/gchron-4-629-2022
Research article
 | 
27 Oct 2022
Research article |  | 27 Oct 2022

A revised alpha-ejection correction calculation for (U–Th) ∕ He thermochronology dates of broken apatite crystals

John J. Y. He and Peter W. Reiners

Related subject area

Helium diffusion systems
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023,https://doi.org/10.5194/gchron-5-323-2023, 2023
Short summary
A practical method for assigning uncertainty and improving the accuracy of alpha-ejection corrections and eU concentrations in apatite (U–Th) ∕ He chronology
Spencer D. Zeigler, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 197–228, https://doi.org/10.5194/gchron-5-197-2023,https://doi.org/10.5194/gchron-5-197-2023, 2023
Short summary
Cosmogenic 3He paleothermometry on post-LGM glacial bedrock within the central European Alps
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022,https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary
Short communication: Mechanism and prevention of irreversible trapping of atmospheric He during mineral crushing
Stephen E. Cox, Hayden B. D. Miller, Florian Hofmann, and Kenneth A. Farley
Geochronology, 4, 551–560, https://doi.org/10.5194/gchron-4-551-2022,https://doi.org/10.5194/gchron-4-551-2022, 2022
Short summary
Short communication: Modeling competing effects of cooling rate, grain size, and radiation damage in low-temperature thermochronometers
David M. Whipp, Dawn A. Kellett, Isabelle Coutand, and Richard A. Ketcham
Geochronology, 4, 143–152, https://doi.org/10.5194/gchron-4-143-2022,https://doi.org/10.5194/gchron-4-143-2022, 2022
Short summary

Cited articles

Ault, A. K. and Flowers, R. M.: Is apatite UTh zonation information necessary for accurate interpretation of apatite (UTh)/He thermochronometry data?, Geochim. Cosmochim. Ac., 79, 60–78, https://doi.org/10.1016/j.gca.2011.11.037, 2012. 
Beucher, R., Brown, R. W., Roper, S., Stuart, F., and Persano, C.: Natural age dispersion arising from the analysis of broken crystals: Part II. Practical application to apatite (U-Th)/He thermochronometry, Geochim. Cosmochim. Ac., 120, 395–416, https://doi.org/10.1016/j.gca.2013.05.042, 2013. 
Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., and Fitzgerald, P.: Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U-Th)/He thermochronometer, Geochim. Cosmochim. Ac., 122, 478–497, https://doi.org/10.1016/j.gca.2013.05.041, 2013. 
Cooperdock, E. H. G., Ketcham, R. A., and Stockli, D. F.: Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th) / He age data and reproducibility, Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, 2019. 
Dana, E. S.: A Textbook on Mineralogy, John Wiley, New York, ISBN: 978-0471193050, 1963, 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Apatite helium thermochronology is a method that dates the time at which a rock (and the apatite crystals contained within) cooled below a certain temperature by measuring radioactive parent isotopes (uranium and thorium) and daughter isotopes (helium). This paper proposes a revision to a commonly used calculation that corrects raw data to account for instances when the analyzed apatite crystals are fragmented. It demonstrates the improved accuracy and precision of the proposed revision.