Articles | Volume 4, issue 2
Research article
27 Oct 2022
Research article |  | 27 Oct 2022

A revised alpha-ejection correction calculation for (U–Th) ∕ He thermochronology dates of broken apatite crystals

John J. Y. He and Peter W. Reiners

Related subject area

Helium diffusion systems
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332,,, 2023
Short summary
A practical method for assigning uncertainty and improving the accuracy of alpha-ejection corrections and eU concentrations in apatite (U–Th) ∕ He chronology
Spencer D. Zeigler, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 197–228,,, 2023
Short summary
Cosmogenic 3He paleothermometry on post-LGM glacial bedrock within the central European Alps
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663,,, 2022
Short summary
Short communication: Mechanism and prevention of irreversible trapping of atmospheric He during mineral crushing
Stephen E. Cox, Hayden B. D. Miller, Florian Hofmann, and Kenneth A. Farley
Geochronology, 4, 551–560,,, 2022
Short summary
Short communication: Modeling competing effects of cooling rate, grain size, and radiation damage in low-temperature thermochronometers
David M. Whipp, Dawn A. Kellett, Isabelle Coutand, and Richard A. Ketcham
Geochronology, 4, 143–152,,, 2022
Short summary

Cited articles

Ault, A. K. and Flowers, R. M.: Is apatite UTh zonation information necessary for accurate interpretation of apatite (UTh)/He thermochronometry data?, Geochim. Cosmochim. Ac., 79, 60–78,, 2012. 
Beucher, R., Brown, R. W., Roper, S., Stuart, F., and Persano, C.: Natural age dispersion arising from the analysis of broken crystals: Part II. Practical application to apatite (U-Th)/He thermochronometry, Geochim. Cosmochim. Ac., 120, 395–416,, 2013. 
Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., and Fitzgerald, P.: Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U-Th)/He thermochronometer, Geochim. Cosmochim. Ac., 122, 478–497,, 2013. 
Cooperdock, E. H. G., Ketcham, R. A., and Stockli, D. F.: Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th) / He age data and reproducibility, Geochronology, 1, 17–41,, 2019. 
Dana, E. S.: A Textbook on Mineralogy, John Wiley, New York, ISBN: 978-0471193050, 1963, 

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Apatite helium thermochronology is a method that dates the time at which a rock (and the apatite crystals contained within) cooled below a certain temperature by measuring radioactive parent isotopes (uranium and thorium) and daughter isotopes (helium). This paper proposes a revision to a commonly used calculation that corrects raw data to account for instances when the analyzed apatite crystals are fragmented. It demonstrates the improved accuracy and precision of the proposed revision.