Articles | Volume 5, issue 2
https://doi.org/10.5194/gchron-5-345-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-345-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Marine reservoir ages for coastal West Africa
Ifremer, Univ Brest, CNRS, Geo-Ocean UMR6538, 29280, Plouzané,
France
Philippe Maestrati
Muséum National d'Histoire Naturelle, Paris, DGD-Collections, France
Serge Gofas
Muséum National d'Histoire Naturelle, Paris, DGD-Collections, France
Departamento de Biología Animal, Facultad de Ciencias, Universidad de
Málaga, Málaga, Spain
Germain Bayon
Ifremer, Univ Brest, CNRS, Geo-Ocean UMR6538, 29280, Plouzané,
France
Fabien Dewilde
Ifremer, Univ Brest, CNRS, Geo-Ocean UMR6538, 29280, Plouzané,
France
Maylis Labonne
MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
Bernard Dennielou
Ifremer, Univ Brest, CNRS, Geo-Ocean UMR6538, 29280, Plouzané,
France
Franck Ferraton
MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
Giuseppe Siani
GEOPS, UMR 8148 Université Paris-Saclay, Orsay, France
Related authors
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
Claire Waelbroeck, Jerry Tjiputra, Chuncheng Guo, Kerim H. Nisancioglu, Eystein Jansen, Natalia Vázquez Riveiros, Samuel Toucanne, Frédérique Eynaud, Linda Rossignol, Fabien Dewilde, Elodie Marchès, Susana Lebreiro, and Silvia Nave
Clim. Past, 19, 901–913, https://doi.org/10.5194/cp-19-901-2023, https://doi.org/10.5194/cp-19-901-2023, 2023
Short summary
Short summary
The precise geometry and extent of Atlantic circulation changes that accompanied rapid climate changes of the last glacial period are still unknown. Here, we combine carbon isotopic records from 18 Atlantic sediment cores with numerical simulations and decompose the carbon isotopic change across a cold-to-warm transition into remineralization and circulation components. Our results show that the replacement of southern-sourced by northern-sourced water plays a dominant role below ~ 3000 m depth.
William Hardy, Aurélie Penaud, Fabienne Marret, Germain Bayon, Tania Marsset, and Laurence Droz
Biogeosciences, 13, 4823–4841, https://doi.org/10.5194/bg-13-4823-2016, https://doi.org/10.5194/bg-13-4823-2016, 2016
Short summary
Short summary
Our approach is based on a multi-proxy study from a core collected off the Congo River and discusses surface oceanic conditions (upwelling cells, river-induced upwelling), land–sea interactions and terrestrial erosion and in particular enables us to spatially constrain the migration of atmospheric systems. This paper thus presents new data highlighting, with the highest resolution ever reached in this region, the great correlation between phytoplanktonic organisms and monsoonal mechanisms.
Maria-Angela Bassetti, Serge Berné, Marie-Alexandrine Sicre, Bernard Dennielou, Yoann Alonso, Roselyne Buscail, Bassem Jalali, Bertil Hebert, and Christophe Menniti
Clim. Past, 12, 1539–1553, https://doi.org/10.5194/cp-12-1539-2016, https://doi.org/10.5194/cp-12-1539-2016, 2016
Short summary
Short summary
This work represents the first attempt to decipher the linkages between rapid climate changes and continental Holocene paleohydrology in the NW Mediterranean shallow marine setting. Between 11 and 4 ka cal BP, terrigenous input increased and reached a maximum at 7 ka cal BP, probably as a result of a humid phase. From ca. 4 ka cal BP to the present, enhanced variability in the land-derived material is possibly due to large-scale atmospheric circulation and rainfall patterns in western Europe.
M. Stabholz, X. Durrieu de Madron, M. Canals, A. Khripounoff, I. Taupier-Letage, P. Testor, S. Heussner, P. Kerhervé, N. Delsaut, L. Houpert, G. Lastras, and B. Dennielou
Biogeosciences, 10, 1097–1116, https://doi.org/10.5194/bg-10-1097-2013, https://doi.org/10.5194/bg-10-1097-2013, 2013
Related subject area
Radiocarbon dating
Towards the construction of regional marine radiocarbon calibration curves: an unsupervised machine learning approach
New age constraints reveal moraine stabilization thousands of years after deposition during the last deglaciation of western New York, USA
The marine reservoir age of Greenland coastal waters
Spatial variability of the modern radiocarbon reservoir effect in the high-altitude lake Laguna del Peinado (southern Puna Plateau, Argentina)
Short communication: Driftwood provides reliable chronological markers in Arctic coastal deposits
A new 30 000-year chronology for rapidly deposited sediments on the Lomonosov Ridge using bulk radiocarbon dating and probabilistic stratigraphic alignment
Miniature radiocarbon measurements ( < 150 µg C) from sediments of Lake Żabińskie, Poland: effect of precision and dating density on age–depth models
Re-evaluating 14C dating accuracy in deep-sea sediment archives
Ana-Cristina Mârza, Laurie Menviel, and Luke C. Skinner
Geochronology, 6, 503–519, https://doi.org/10.5194/gchron-6-503-2024, https://doi.org/10.5194/gchron-6-503-2024, 2024
Short summary
Short summary
Radiocarbon serves as a powerful dating tool, but the calibration of marine radiocarbon dates presents significant challenges because the whole surface ocean cannot be represented by a single calibration curve. Here we use climate model outputs and data to assess a novel method for developing regional marine calibration curves. Our results are encouraging and point to a way forward for solving the marine radiocarbon age calibration problem without relying on model simulations of the past.
Karlee K. Prince, Jason P. Briner, Caleb K. Walcott, Brooke M. Chase, Andrew L. Kozlowski, Tammy M. Rittenour, and Erica P. Yang
Geochronology, 6, 409–427, https://doi.org/10.5194/gchron-6-409-2024, https://doi.org/10.5194/gchron-6-409-2024, 2024
Short summary
Short summary
We fill a spatial data gap in the ice sheet retreat history of the Laurentide Ice Sheet after the Last Glacial Maximum and investigate a hypothesis that the ice sheet re-advanced into western New York, USA, at ~13 ka. With radiocarbon and optically stimulated luminescence (OSL) dating, we find that ice began retreating from its maximum extent after 20 ka, but glacial ice persisted in glacial landforms until ~15–14 ka when they finally stabilized. We find no evidence of a re-advance at ~13 ka.
Christof Pearce, Karen Søby Özdemir, Ronja Forchhammer Mathiasen, Henrieka Detlef, and Jesper Olsen
Geochronology, 5, 451–465, https://doi.org/10.5194/gchron-5-451-2023, https://doi.org/10.5194/gchron-5-451-2023, 2023
Short summary
Short summary
Reliable chronologies lie at the base of paleoclimatological reconstructions. When working with marine sediment cores, the most common dating tool for recent sediments is radiocarbon, but this requires calibration to convert it to calendar ages. This calibration requires knowledge of the marine radiocarbon reservoir age, and this is known to vary in space and time. In this study we provide 92 new radiocarbon measurements to improve our knowledge of the reservoir age around Greenland.
Paula A. Vignoni, Francisco E. Córdoba, Rik Tjallingii, Carla Santamans, Liliana C. Lupo, and Achim Brauer
Geochronology, 5, 333–344, https://doi.org/10.5194/gchron-5-333-2023, https://doi.org/10.5194/gchron-5-333-2023, 2023
Short summary
Short summary
Radiocarbon dating is a widely used tool to establish chronologies for sediment records. We show that modern aquatic plants in the Laguna del Peinado lake system (Altiplano–Puna Plateau) give overestimated ages due to reservoir effects from the input of old groundwater and volcanic CO2. Our results reveal a spatial variability in the modern reservoir effect within the lake basin, which has implications for radiocarbon-based chronologies in paleoclimate studies in this (and similar) regions.
Lasse Sander, Alexander Kirdyanov, Alan Crivellaro, and Ulf Büntgen
Geochronology, 3, 171–180, https://doi.org/10.5194/gchron-3-171-2021, https://doi.org/10.5194/gchron-3-171-2021, 2021
Short summary
Short summary
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of past landscape evolution. In this study, we show that consistent ages for Holocene beach shorelines can be obtained by dating driftwood deposits. This finding is surprising, as the wood travels long distances through river systems before reaching the Arctic Ocean. The possibility to establish precise age control is a prerequisite to further investigate the regional drivers of long-term coastal change.
Francesco Muschitiello, Matt O'Regan, Jannik Martens, Gabriel West, Örjan Gustafsson, and Martin Jakobsson
Geochronology, 2, 81–91, https://doi.org/10.5194/gchron-2-81-2020, https://doi.org/10.5194/gchron-2-81-2020, 2020
Short summary
Short summary
In this study we present a new marine chronology of the last ~30 000 years for a sediment core retrieved from the central Arctic Ocean. Our new chronology reveals substantially faster sedimentation rates during the end of the last glacial cycle, the Last Glacial Maximum, and deglaciation than previously reported, thus implying a substantial re-interpretation of paleoceanographic reconstructions from this sector of the Arctic Ocean.
Paul D. Zander, Sönke Szidat, Darrell S. Kaufman, Maurycy Żarczyński, Anna I. Poraj-Górska, Petra Boltshauser-Kaltenrieder, and Martin Grosjean
Geochronology, 2, 63–79, https://doi.org/10.5194/gchron-2-63-2020, https://doi.org/10.5194/gchron-2-63-2020, 2020
Short summary
Short summary
Recent technological advances allow researchers to obtain radiocarbon ages from smaller samples than previously possible. We investigate the reliability and precision of radiocarbon ages obtained from miniature (11–150 μg C) samples of terrestrial plant fragments taken from sediment cores from Lake Żabińskie, Poland. We further investigate how sampling density (the number of ages per 1000 years) and sample mass (which is related to age precision) influence the performance of age–depth models.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Cited articles
Alves, E. Q., Macario, K., Ascough, P., and Bronk Ramsey, C.: The worldwide
marine radiocarbon reservoir effect: Definitions, mechanisms, and prospects,
Rev. Geophys., 56, 278–305, https://doi.org/10.1002/2017RG000588, 2018.
Alves, E. Q., Macario, K. D., Urrutia, F. P., Cardoso, R. P., and Bronk
Ramsey, C.: Accounting for the marine reservoir effect in radiocarbon
calibration, Quaternary Sci. Rev., 209, 129–138,
https://doi.org/10.1016/j.quascirev.2019.02.013, 2019.
Arnold, J. R. and Anderson, E. C.: The distribution of Carbon-14 in nature,
Tellus, 9, 28–32, https://doi.org/10.1111/j.2153-3490.1957.tb01850.x, 1957.
Ascough, P., Cook, G., and Dugmore, A.: Methodological approaches to
determining the marine radiocarbon reservoir effect, Prog. Phys. Geogr.
Earth Environ., 29, 532–547, https://doi.org/10.1191/0309133305pp461ra,
2005.
Bard, E.: Correction of accelerator mass spectrometry 14C ages measured in
planktonic foraminifera: Paleoceanographic implications, Paleoceanography,
3, 635–645, https://doi.org/10.1029/PA003i006p00635, 1988.
Bard, E., Arnold, M., Mangerud, J., Paterne, M., Labeyrie, L., Duprat, J.,
Mélières, M.-A., Sønstegaard, E., and Duplessy, J.-C.: The North
Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas
climatic event, Earth Planet. Sc. Lett., 126, 275–287,
https://doi.org/10.1016/0012-821X(94)90112-0, 1994.
Barton, E. D., Arıìstegui, J., Tett, P., Cantón, M., Garcıìa-Braun,
J., Hernández-León, S., Nykjaer, L., Almeida, C., Almunia, J.,
Ballesteros, S., Basterretxea, G., Escánez, J., Garcıìa-Weill, L.,
Hernández-Guerra, A., López-Laatzen, F., Molina, R., Montero, M. F.,
Navarro-Pérez, E., Rodrıìguez, J. M., van Lenning, K., Vélez, H.,
and Wild, K.: The transition zone of the Canary Current upwelling region,
Prog. Oceanogr., 41, 455–504,
https://doi.org/10.1016/S0079-6611(98)00023-8, 1998.
Boettger, C. R.: Zur Molluskenfauna des Kongogebiets, Ann. la
Société R. Zool. Malacol. Bel., 47, 89–117, 1912.
Boettger, O.: Katalog der Reptilien-Sammlung im Museum der Senckenbergischen
Naturforschenden Gesellschaft in Frankfurt am Main, II Teil (Schlangen),
Gebrüder Knauer, Frankfurt am Main, 1898.
Butzin, M., Köhler, P., and Lohmann, G.: Marine radiocarbon reservoir
age simulations for the past 50,000 years, Geophys. Res. Lett., 44,
8473–8480, https://doi.org/10.1002/2017GL074688, 2017.
Carré, M., Bentaleb, I., Blamart, D., Ogle, N., Cardenas, F., Zevallos,
S., Kalin, R. M., Ortlieb, L., and Fontugne, M.: Stable isotopes and
sclerochronology of the bivalve Mesodesma donacium: Potential application to
Peruvian paleoceanographic reconstructions, Palaeogeogr. Palaeocl., 228, 4–25, https://doi.org/10.1016/j.palaeo.2005.03.045, 2005.
Catry, T., Figueira, P., Carvalho, L., Monteiro, R., Coelho, P.,
Lourenço, P. M., Catry, P., Tchantchalam, Q., Catry, I., Botelho, M. J.,
Pereira, E., Granadeiro, J. P., and Vale, C.: Evidence for contrasting
accumulation pattern of cadmium in relation to other elements in Senilia
senilis and Tagelus adansoni from the Bijagós archipelago,
Guinea-Bissau, Environ. Sci. Pollut. Res., 24, 24896–24906,
https://doi.org/10.1007/s11356-017-9902-8, 2017.
Cheggour, M., Chafik, A., Langston, W., Burt, G., Benbrahim, S., and
Texier, H.: Metals in sediments and the edible cockle Cerastoderma edule
from two Moroccan Atlantic lagoons: Moulay Bou Selham and Sidi Moussa,
Environ. Pollut., 115, 149–160,
https://doi.org/10.1016/S0269-7491(01)00117-8, 2001.
Cottereau, E., Arnold, M., Moreau, C., Baqué, D., Bavay, D., Caffy, I.,
Comby, C., Dumoulin, J.-P., Hain, S., Perron, M., Salomon, J., and Setti,
V.: Artemis, the new 14C AMS at LMC14 in Saclay, France, Radiocarbon, 49,
291–299, https://doi.org/10.1017/S0033822200042211, 2007.
Coynel, A., Seyler, P., Etcheber, H., Meybeck, M., and Orange, D.: Spatial
and seasonal dynamics of total suspended sediment and organic carbon species
in the Congo River, Global Biogeochem. Cy., 19, GB4019,
https://doi.org/10.1029/2004GB002335, 2005.
Craig, H.: The natural distribution of radiocarbon and the exchange time of
carbon dioxide between atmosphere and sea, Tellus, 9, 1–17,
https://doi.org/10.1111/j.2153-3490.1957.tb01848.x, 1957.
Cropper, T. E., Hanna, E., and Bigg, G. R.: Spatial and temporal seasonal
trends in coastal upwelling off Northwest Africa, 1981–2012, Deep-Sea Res.
Pt. I, 86, 94–111,
https://doi.org/10.1016/j.dsr.2014.01.007, 2014.
Dautzenberg, P.: Mission Gruvel sur la côte occidentale d'Afrique
(1909–1910): Mollusques marins. Annales de l'Institut Océanographique,
Paris (Nouvelle Série), 5, 1–111, 1912.
Dewar, G., Reimer, P. J., Sealy, J., and Woodborne, S.: Late-Holocene marine
radiocarbon reservoir correction (ΔR) for the west coast of South
Africa, Holocene, 22, 1481–1489,
https://doi.org/10.1177/0959683612449755, 2012.
Dumoulin, J.-P., Comby-Zerbino, C., Delqué-Količ, E., Moreau, C.,
Caffy, I., Hain, S., Perron, M., Thellier, B., Setti, V., Berthier, B., and
Beck, L.: Status report on sample preparation protocols developed at the
LMC14 laboratory, Saclay, France: From Sample Collection to 14C AMS
Measurement, Radiocarbon, 59, 713–726,
https://doi.org/10.1017/RDC.2016.116, 2017.
Fontugne, M., Carré, M., Bentaleb, I., Julien, M., and Lavallée, D.:
Radiocarbon reservoir age variations in the south Peruvian upwelling during
the Holocene, Radiocarbon, 46, 531–537,
https://doi.org/10.1017/S003382220003558X, 2004.
Forman, S.: A review of postglacial emergence on Svalbard, Franz Josef Land
and Novaya Zemlya, northern Eurasia, Quaternary Sci. Rev., 23, 1391–1434,
https://doi.org/10.1016/j.quascirev.2003.12.007, 2004.
Freudenthal, T., Neuer, S., Meggers, H., Davenport, R., and Wefer, G.:
Influence of lateral particle advection and organic matter degradation on
sediment accumulation and stable nitrogen isotope ratios along a
productivity gradient in the Canary Islands region, Mar. Geol., 177,
93–109, https://doi.org/10.1016/S0025-3227(01)00126-8, 2001.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin,
W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B.,
Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner,
L. C.: Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55 000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68,
2020.
Heaton, T. J., Bard, E., Bronk Ramsey, C., Butzin, M., Köhler, P.,
Muscheler, R., Reimer, P. J., and Wacker, L.: Radiocarbon: A key tracer for
studying Earth's dynamo, climate system, carbon cycle, and Sun, Science, 374, 6568, eabd7096, https://doi.org/10.1126/science.abd7096, 2021.
Heaton, T. J., Bard, E., Bronk Ramsey, C., Butzin, M., Hatté, C.,
Hughen, K. A., Köhler, P., and Reimer, P. J.: A response to community
questions on the Marine20 radiocarbon age calibration curve: Marine
reservoir ages and the calibration of 14C samples from the oceans,
Radiocarbon, 65, 247–273, https://doi.org/10.1017/RDC.2022.66, 2023.
Herrera, N. D., ter Poorten, J. J., Bieler, R., Mikkelsen, P. M., Strong, E.
E., Jablonski, D., and Steppan, S. J.: Molecular phylogenetics and
historical biogeography amid shifting continents in the cockles and giant
clams (Bivalvia: Cardiidae), Mol. Phylogenet. Evol., 93, 94–106,
https://doi.org/10.1016/j.ympev.2015.07.013, 2015.
Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S., Southon,
J., Bayliss, A., Blackwell, P. G., Boswijk, G., Bronk Ramsey, C., Pearson,
C., Petchey, F., Reimer, P., Reimer, R., and Wacker, L.: SHCal20 Southern
Hemisphere Calibration, 0–55,000 Years cal BP, Radiocarbon, 62, 759–778,
https://doi.org/10.1017/RDC.2020.59, 2020.
Huntley, J. W., De Baets, K., Scarponi, D., Linehan, L. C., Epa, Y. R.,
Jacobs, G. S., and Todd, J. A.: Bivalve mollusks as hosts in the fossil
record, in: The Evolution and Fossil Record of Parasitism, edited by: De
Baets, K. and Huntley, J. W., Springer International Publishing, 251–287,
https://doi.org/10.1007/978-3-030-52233-9_8, 2021.
Jones, K. B., Hodgins, G. W., Dettman, D. L., Andrus, C. F. T., Nelson, A., and Etayo-Cadavid, M. F.: Seasonal variations in Peruvian marine reservoir age from pre-bomb Argopecten purpuratus shell carbonate, Radiocarbon, 49, 877–888,
https://doi.org/10.1017/S0033822200042740, 2007.
Jones, K. B., Hodgins, G. W., Etayo-Cadavid, M. F., Andrus, C. F. T., and Sandweiss, D. H.: Centuries of marine radiocarbon reservoir age variation within archaeological Mesodesma donacium shells from southern Peru, Radiocarbon, 52, 1207–1214,
https://doi.org/10.1017/S0033822200046282, 2010.
Kennett, D. J., Ingram, B. L., Erlandson, J. M., and Walker, P.: Evidence
for Temporal Fluctuations in Marine Radiocarbon Reservoir Ages in the Santa
Barbara Channel, Southern California, J. Archaeol. Sci., 24, 1051–1059,
https://doi.org/10.1006/jasc.1996.0184, 1997.
Kennett, D. J., Lynn Ingram, B., Southon, J. R., and Wise, K.: Differences
in 14C age between stratigraphically associated charcoal and marine shell
from the Archaic Period Site of Kilometer 4, Southern Peru: Old wood or old
water?, Radiocarbon, 44, 53–58, https://doi.org/10.1017/S0033822200064663,
2002.
Köhler, P. and Fischer, H.: Simulating changes in the terrestrial
biosphere during the last glacial/interglacial transition, Glob. Planet.
Change, 43, 33–55, https://doi.org/10.1016/j.gloplacha.2004.02.005, 2004.
Köhler, P. and Fischer, H.: Simulating low frequency changes in
atmospheric CO2 during the last 740 000 years, Clim. Past, 2, 57–78,
https://doi.org/10.5194/cp-2-57-2006, 2006.
Köhler, P., Fischer, H., Munhoven, G., and Zeebe, R. E.: Quantitative
interpretation of atmospheric carbon records over the last glacial
termination, Global Biogeochem. Cy., 19, GB4020,
https://doi.org/10.1029/2004GB002345, 2005.
Köhler, P., Muscheler, R., and Fischer, H.: A model-based interpretation
of low-frequency changes in the carbon cycle during the last 120 000 years
and its implications for the reconstruction of atmospheric Δ14C,
Geochem. Geophy. Geosy., 7, Q11N06,
https://doi.org/10.1029/2005GC001228, 2006.
Lambert, T., Darchambeau, F., Bouillon, S., Alhou, B., Mbega, J.-D.,
Teodoru, C. R., Nyoni, F. C., Massicotte, P., and Borges, A. V.: Landscape
control on the spatial and temporal variability of chromophoric dissolved
organic matter and dissolved organic carbon in large African Rivers,
Ecosystems, 18, 1224–1239, https://doi.org/10.1007/s10021-015-9894-5, 2015.
Lindsay, C. M., Lehman, S. J., Marchitto, T. M., Carriquiry, J. D., and
Ortiz, J. D.: New constraints on deglacial marine radiocarbon anomalies from
a depth transect near Baja California, Paleoceanography, 31, 1103–1116,
https://doi.org/10.1002/2015PA002878, 2016.
Lougheed, B. C., Filipsson, H. L., and Snowball, I.: Large spatial
variations in coastal 14C reservoir age – a case study from the Baltic Sea,
Clim. Past, 9, 1015–1028, https://doi.org/10.5194/cp-9-1015-2013, 2013.
Lourenço, C. R., Nicastro, K. R., McQuaid, C. D., Krug, L. A., and
Zardi, G. I.: Strong upwelling conditions drive differences in species
abundance and community composition along the Atlantic coasts of Morocco and
Western Sahara, Mar. Biodivers., 50, 15,
https://doi.org/10.1007/s12526-019-01032-z, 2020.
Manaan, M.: Étude sédimentologique du remplissage de la lagune de
Sidi Moussa, Maroc, PhD thesis, Université Chouaib Doukkali, El Jadida,
https://theses.hal.science/tel-00124571 (last access: 8 August 2023), 2003.
Martins, M. S. and Stammer, D.: Interannual variability of the Congo River
plume-induced sea surface salinity, Remote Sens., 14, 1013,
https://doi.org/10.3390/rs14041013, 2022.
Marwick, T. R., Tamooh, F., Teodoru, C. R., Borges, A. V., Darchambeau, F.,
and Bouillon, S.: The age of river-transported carbon: A global perspective,
Global Biogeochem. Cy., 29, 122–137,
https://doi.org/10.1002/2014GB004911, 2015.
Milliman, J. D. and Farnsworth, K. L.: River discharge to the coastal ocean,
Cambridge University Press, https://doi.org/10.1017/CBO9780511781247, 2011.
Monge Soares, A.: The 14C content of marine shells: Evidence for variability
in coastal upwelling off Portugal during the Holocene, in: Isotope
techniques in the study of past and current environmental changes in the
hydrosphere and the atmosphere proceedings, edited by: IAEA, Vienna,
471–485, ISBN 92-0-103293-5, 1993.
Monge Soares, A. M. and Alveirinho Dias, J. M.: Coastal upwelling and
radiocarbon-evidence for temporal fluctuations in ocean reservoir effect off
portugal during the holocene, Radiocarbon, 48, 45–60,
https://doi.org/10.1017/S0033822200035384, 2006.
Mook, W. G. and van der Plicht, J.: Reporting 14C activities and
concentrations, Radiocarbon, 41, 227–239,
https://doi.org/10.1017/S0033822200057106, 1999.
Moreau, C., Caffy, I., Comby, C., Delqué-Količ, E., Dumoulin, J.-P.,
Hain, S., Quiles, A., Setti, V., Souprayen, C., Thellier, B., and Vincent,
J.: Research and development of the Artemis 14C AMS facility: Status report,
Radiocarbon, 55, 331–337, https://doi.org/10.1017/S0033822200057441, 2013.
Ndeye, M.: Marine reservoir ages in Northern Senegal and Mauritania coastal
waters, Radiocarbon, 50, 281–288,
https://doi.org/10.1017/S0033822200033580, 2008.
Okera, W.: Observations on some population parameters of exploited stocks of
Senilia senilis (= Arca senilis) in Sierra Leone, Mar. Biol., 38, 217–229,
https://doi.org/10.1007/BF00388935, 1976.
Oliver, P. G. and von Cosel, R.: Taxonomy of tropical west African Bivalves.
IV. Arcidae., Bull. Muséum Natl. d'Histoire Nat., 14, 293–381, 1992.
Reimer, P. J. and McCormac, F. G.: Marine radiocarbon reservoir corrections
for the Mediterranean and Aegean Seas, Radiocarbon, 44, 159–166,
https://doi.org/10.1017/S0033822200064766, 2002.
Reimer, P. J. and Reimer, R. W.: A marine reservoir correction database and
on-line interface, Radiocarbon, 43, 461–463,
https://doi.org/10.1017/S0033822200038339, 2001.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and
calibration of post-bomb 14C data, Radiocarbon, 46, 1299–1304,
https://doi.org/10.1017/S0033822200033154, 2004.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 northern hemisphere radiocarbon
age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Reimer, R. W. and Reimer, P. J.: An online application for ΔR
calculation, Radiocarbon, 59, 1623–1627,
https://doi.org/10.1017/RDC.2016.117, 2017.
Revelle, R. and Suess, H. E.: Carbon dioxide exchange between atmosphere and
ocean and the question of an increase of atmospheric CO2 during the past
decades, Tellus, 9, 18–27,
https://doi.org/10.1111/j.2153-3490.1957.tb01849.x, 1957.
Richey, J. E., Spencer, R. G. M., Drake, T. W., and Ward, N. D.: Fluvial carbon dynamics across the land to ocean continuum of great tropical rivers, in: Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future, edited by Raphael M. Tshimanga, Guy D. Moukandi N'kaya, Douglas Alsdorf, Wiley, 391–412, https://doi.org/10.1002/9781119657002.ch20, 2022.
Roux, C.: Compte rendu sommaire d'une mission en Afrique Équatoriale
Française, Bull. du Muséum Natl. d'Histoire Nat., 21, 500–503,
1949.
Santos, G. M., Southon, J. R., Griffin, S., Beaupre, S. R., and Druffel, E.
R. M.: Ultra small-mass AMS 14C sample preparation and analyses at
KCCAMS/UCI Facility, Nucl. Instrum. Method. Phys. Res. Sect. B, 259, 293–302,
https://doi.org/10.1016/j.nimb.2007.01.172, 2007.
Schefuß, E., Eglinton, T. I., Spencer-Jones, C. L., Rullkötter, J.,
De Pol-Holz, R., Talbot, H. M., Grootes, P. M., and Schneider, R. R.:
Hydrologic control of carbon cycling and aged carbon discharge in the Congo
River basin, Nat. Geosci., 9, 687–690, https://doi.org/10.1038/ngeo2778,
2016.
Sessa, J. A., Callapez, P. M., Dinis, P. A., and Hendy, A. J. W.:
Paleoenvironmental and paleobiogeographical implications of a middle
Pleistocene mollusc assemblage from the marine terraces of Baía Das
Pipas, southwest Angola, J. Paleontol., 87, 1016–1040,
https://doi.org/10.1666/12-119, 2013.
Siani, G., Paterne, M., Arnold, M., Bard, E., Métivier, B., Tisnerat,
N., and Bassinot, F.: Radiocarbon reservoir ages in the Mediterranean Sea
and Black Sea, Radiocarbon, 42, 271–280,
https://doi.org/10.1017/S0033822200059075, 2000.
Siani, G., Paterne, M., Michel, E., Sulpizio, R., Sbrana, A., Arnold, M.,
and Haddad, G.: Mediterranean Sea surface radiocarbon reservoir age changes
since the Last Glacial Maximum, Science, 294, 1917–1920,
https://doi.org/10.1126/science.1063649, 2001.
Siegenthaler, U.: Uptake of excess CO2 by an outcrop-diffusion model of the
ocean, J. Geophys. Res., 88, 3599, https://doi.org/10.1029/JC088iC06p03599,
1983.
Skinner, L., McCave, I. N., Carter, L., Fallon, S., Scrivner, A. E., and
Primeau, F.: Reduced ventilation and enhanced magnitude of the deep Pacific
carbon pool during the last glacial period, Earth Planet. Sc. Lett., 411,
45–52, https://doi.org/10.1016/j.epsl.2014.11.024, 2015.
Skinner, L. C. and Bard, E.: Radiocarbon as a dating tool and tracer in
paleoceanography, Rev. Geophys., 60, 1–64,
https://doi.org/10.1029/2020RG000720, 2022.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.:
Ventilation of the deep Southern Ocean and deglacial CO2 rise, Science, 328, 1147–1151, https://doi.org/10.1126/science.1183627, 2010.
Smith, D. A. S.: Polymorphism and population density in Donax rugosus
(Lamellibranchiata: Donacidae), J. Zool., 164, 429–441,
https://doi.org/10.1111/j.1469-7998.1971.tb01327.x, 1971.
Soulet, G.: Methods and codes for reservoir–atmosphere 14C age offset
calculations, Quat. Geochronol., 29, 97–103,
https://doi.org/10.1016/j.quageo.2015.05.023, 2015.
Soulet, G., Ménot, G., Garreta, V., Rostek, F., Zaragosi, S.,
Lericolais, G., and Bard, E.: Black Sea “Lake” reservoir age evolution
since the Last Glacial – Hydrologic and climatic implications, Earth
Planet. Sc. Lett., 308, 245–258,
https://doi.org/10.1016/j.epsl.2011.06.002, 2011.
Soulet, G., Skinner, L. C., Beaupré, S. R., and Galy, V.: A note on
reporting of reservoir 14C disequilibria and age offsets, Radiocarbon, 58,
205–211, https://doi.org/10.1017/RDC.2015.22, 2016.
Soulet, G., Giosan, L., Flaux, C., and Galy, V.: Using stable carbon
isotopes to quantify radiocarbon reservoir age offsets in the coastal black
sea, Radiocarbon, 61, 309–318, https://doi.org/10.1017/RDC.2018.61, 2019.
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., and Yim, W. W. S.:
Marine reservoir corrections for the Indian Ocean and Southeast Asia,
Radiocarbon, 44, 167–180, https://doi.org/10.1017/S0033822200064778, 2002.
Spencer, R. G. M., Stubbins, A., Hernes, P. J., Baker, A., Mopper, K.,
Aufdenkampe, A. K., Dyda, R. Y., Mwamba, V. L., Mangangu, A. M.,
Wabakanghanzi, J. N., and Six, J.: Photochemical degradation of dissolved
organic matter and dissolved lignin phenols from the Congo River, J.
Geophys. Res., 114, G03010, https://doi.org/10.1029/2009JG000968, 2009.
Spencer, R. G. M., Hernes, P. J., Aufdenkampe, A. K., Baker, A., Gulliver,
P., Stubbins, A., Aiken, G. R., Dyda, R. Y., Butler, K. D., Mwamba, V. L.,
Mangangu, A. M., Wabakanghanzi, J. N., and Six, J.: An initial investigation
into the organic matter biogeochemistry of the Congo River, Geochim.
Cosmochim. Ac., 84, 614–627, https://doi.org/10.1016/j.gca.2012.01.013,
2012.
Spencer, R. G. M., Hernes, P. J., Dinga, B., Wabakanghanzi, J. N., Drake, T.
W., and Six, J.: Origins, seasonality, and fluxes of organic matter in the
Congo River, Global Biogeochem. Cy., 30, 1105–1121,
https://doi.org/10.1002/2016GB005427, 2016.
Stuiver, M. and Braziunas, T. F.: Modeling atmospheric 14C influences and
14C ages of marine samples to 10 000 BC, Radiocarbon, 35, 137–189,
https://doi.org/10.1017/S0033822200013874, 1993.
Stuiver, M. and Polach, H. A.: Discussion: Reporting of 14C Data,
Radiocarbon, 19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Stuiver, M., Pearson, G. W., and Braziunas, T.: Radiocarbon age calibration
of marine samples back to 9000 cal yr BP, Radiocarbon, 28, 980–1021,
https://doi.org/10.1017/S0033822200060264, 1986.
Suess, H. E.: Radiocarbon concentration in modern wood, Science, 122,
415–417, https://doi.org/10.1126/science.122.3166.415.b, 1955.
Tans, P. P., De Jong, A. F. M., and Mook, W. G.: Natural atmospheric 14C
variation and the Suess effect, Nature, 280, 826–828,
https://doi.org/10.1038/280826a0, 1979.
Tisnérat-Laborde, N., Poupeau, J. J., Tannau, J. F., and Paterne, M.:
Development of a semi-automated system for routine preparation of carbonate
samples, Radiocarbon, 43, 299–304,
https://doi.org/10.1017/S0033822200038145, 2001.
Türkmen, A., Türkmen, M., and Tepe, Y.: Biomonitoring of heavy
metals from Iskenderun Bay using two bivalve species Chama pacifica
Broderip, 1834 and Ostrea stentina Payraudeau, 1826, Turkish J. Fish. Aquat.
Sci., 5, 107–111, 2005.
von Cosel, R. and Gofas, S.: Marine Bivalves of Tropical West Africa: From
Rio de Oro to Southern Angola, edited by: MNHN and IRD, Faune et Flore
tropicales, 48, Paris, Marseille, 1104 pp., ISBN 978-2-85653-888-3, 2019.
Westhoff, F.: Die Fauna der Kongo-Mündung, Jahresbericht der Zool. Sekt.
Westfälischen Prov. Vereins für Wiss. und Kunst für das
Etatsjahr 1885–1886, 38–40, 1886.
Williams, R. G. and Follows, M. J.: Ocean dynamics and the carbon cycle:
Principles and mechanisms, Cambridge, Cambridge, 434 pp., https://doi.org/10.1017/CBO9780511977817, 2011.
Short summary
The marine reservoir age (MRA) is the difference between the 14C age of the ocean and that of the atmosphere at a given time. In geochronology, knowing the local MRA is important to derive accurate calibrated ages for 14C-dated marine material. However, MRA values for coastal West Africa are scarce. From the 14C dating of known-age bivalves from museum collections, we calculated MRA values and populated the MRA dataset for coastal West Africa over a latitudinal transect from 33°N to 15°S.
The marine reservoir age (MRA) is the difference between the 14C age of the ocean and that of...