Green, P. F.: The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration, Earth Planet. Sc. Lett., 89, 335–352, https://doi.org/10.1016/0012-821X(88)90121-5, 1988.
Harayama, S., Takahashi, Y., Nakano, S., Kariya, Y., and Komazawa, M.: Geology of the Tateyama District, Geol. Surv. of Jpn., Tsukuba, 218 pp., 2000.
Hasebe, N., Tagami, T., and Nishimura, S.: Towards zircon fission-track thermochronology: Reference framework for confined track length measurements, Chem. Geol., 112, 169–178, https://doi.org/10.1016/0009-2541(94)90112-0, 1994.
Hasebe, N., Barbarand, J., Jarvis, K., Carter, A., and Hurford, A. J.: Apatite fission-track chronometry using laser ablation ICP-MS, Chem. Geol., 207, 135–145, https://doi.org/10.1016/j.chemgeo.2004.01.007, 2004.
Ishizaka, K.: A geochronological study of the Ryoke metamorphic terrain in the Kinki district, Japan, in: Memoirs Coll. Sci. Univ. Kyoto, 69–102, https://doi.org/10.14989/doctor.k532, 1966.
Ito, H., Yamada, R., Tamura, A., Arai, S., Horie, K., and Hokada, T.: Earth's youngest exposed granite and its tectonic implications: The 10–0.8 Ma Kurobegawa Granite, Sci. Rep., 3, 1–5, https://doi.org/10.1038/srep01306, 2013.
Ito, H.: Zircon U-Th-Pb dating using LA-ICP-MS: Simultaneous U-Pb and U-Th dating on the 0.1 Ma Toya Tephra, Japan, J. Volcanol. Geotherm. Res., 289, 210–223, https://doi.org/10.1016/j.jvolgeores.2014.11.002, 2014.
Ito, H., Spencer, C. J., Danišík, M., and Hoiland, C. W.: Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology, Sci. Rep., 7, 4–9, https://doi.org/10.1038/s41598-017-12790-w, 2017.
Iwano, H., Danhara, T., Hoshi, H., Kawakami, Y., Sumii, T., Shinjoe, H., and Wada, Y.: Simultaneity and similarity of the Muro Pyroclastic Flow Deposit and the Kumano Acidic Rocks in Kii Peninsula, southwest Japan, based on fission track ages and morphological characteristics of zircon, J. Geol. Soc. Jpn., 113, 326–339, https://doi.org/10.5575/geosoc.113.326, 2007.
Iwano, H., Danhara, T., and Hoshi, H.: Fission track ages on apatite from Miocene igneous rocks in the Kii Peninsula, Japan, J. Geol. Soc. Jpn., 115, 427–432, https://doi.org/10.5575/geosoc.115.427, 2009.
Jones, S., Gleadow, A., Kohn, B., and Reddy, S. M.: Etching of fission tracks in monazite: An experimental study, Terra Nova, 2018, 179–188, https://doi.org/10.1111/ter.12382, 2019.
Jones, S., Gleadow, A., and Kohn, B.: Thermal annealing of implanted
252Cf fission tracks in monazite, Geochronology, 3, 89–102, https://doi.org/10.5194/gchron-3-89-2021, 2021.
Jones, S., Kohn, B., and Gleadow, A.: Etching of fission tracks in monazite: Further evidence from optical and focused ion beam scanning electron microscopy, Am. Mineral., 107, 1065–1073, https://doi.org/10.2138/am-2022-8002, 2022.
Jones, S., Kohn, B., Gleadow, A., Skrzypek, E., and Tagami, T.: Low-temperature thermochronology of Ryoke belt granitoids, SW Japan: New insights into the recent cooling history from monazite fission-track dating, Tectonophysics, 864, 229998, https://doi.org/10.1016/j.tecto.2023.229998, 2023.
Ketcham, R. A., Carter, A., and Hurford, A. J.: Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite, Am. Mineral., 100, 1452–1468, https://doi.org/10.2138/am-2015-5167, 2015.
King, G. E., Ahadi, F., Sueoka, S., Herman, F., Anderson, L., Gautheron, C., Tsukamoto, S., Stalder, N., Biswas, R., Fox, M., Delpech, G., Schwartz, S., and Tagami, T.: Eustatic change modulates exhumation in the Japanese Alps, Geology, 51, 131–135, https://doi.org/10.1130/G50599.1, 2022.
Krishnaswami, S., Lal, D., Prabhu, N., and Macdougall, D.: Characteristics of fission tracks in zircon: Applications to Geochronology and Cosmology, Earth Planet. Sc. Lett., 22, 51–59, https://doi.org/10.1016/0012-821X(74)90063-6, 1974.
Laslett, G. M., Kendall, W. S., Gleadow, A. J. W., and Duddy, I. R.: Bias in measurement of fission-track length distributions, Nucl. Tracks Radiat. Meas., 6, 79–85, https://doi.org/10.1016/0735-245X(82)90031-X, 1982.
Laslett, G. M., Gleadow, A. J. W., and Duddy, I. R.: The relationship between fission track length and track density in apatite, Nucl. Tracks Radiat. Meas., 9, 29–38, https://doi.org/10.1016/0735-245X(84)90019-X, 1984.
Meldrum, A., Wang, L. M., and Ewing, R. C.: Ion beam induced amorphization of monazite, Nucl. Instrum. Meth. B, 116, 220–224, https://doi.org/10.1016/0168-583X(96)00037-7, 1996.
Nasdala, L., Akhmadaliev, S., Burakov, B. E., and N, C. C.: The absence of metamictisation in natural monazite, Sci. Rep., 10, 14676, https://doi.org/10.1038/s41598-020-71451-7, 2020.
Niki, S., Kosugi, S., Iwano, H., Danhara, T., and Hirata, T.: Development of an In Situ U-Th Disequilibrium Dating Method Utilising Multiple-Spot Femtosecond Laser Ablation-CRC-ICP-MS, Geostand. Geoanal. Res., 46, 589–602, https://doi.org/10.1111/ggr.12458, 2022.
Paul, T. and Fitzgerald, P.: Transmission electron microscopic investigation of fission tracks in fluorapatite, Am. Mineral., 77, 336–344, 1992.
Ravenhurst, C. E., Roden-Tice, M. K., and Miller, D. S.: Thermal annealing of fission tracks in fluorapatite, chlorapatite, manganoanapatite, and Durango apatite: Experimental results, Can. J. Earth Sci., 40, 995–1007, https://doi.org/10.1139/e03-032, 2003.
Ruschel, K., Nasdala, L., Kronz, A., Hanchar, J. M., Többens, D. M., Škoda, R., Finger, F., and Möller, A.: A Raman spectroscopic study on the structural disorder of monazite-(Ce), Miner. Petrol., 105, 41–55, https://doi.org/10.1007/s00710-012-0197-7, 2012.
Seydoux-Guillaume, A. M., Wirth, R., Nasdala, L., Gottschalk, M., Montel, J. M., and Heinrich, W.: An XRD, TEM and Raman study of experimentally annealed natural monazite, Phys. Chem. Miner., 29, 240–253, https://doi.org/10.1007/s00269-001-0232-4, 2002.
Skrzypek, E., Kawakami, T., Hirajima, T., Sakata, S., Hirata, T., and Ikeda, T.: Revisiting the high temperature metamorphic field gradient of the Ryoke Belt (SW Japan): New constraints from the Iwakuni-Yanai area, Lithos, 260, 9–27, https://doi.org/10.1016/j.lithos.2016.04.025, 2016.
Suzuki, K., Kawakami, T., Sueoka, S., Yamazaki, A., Kagami, S., Yokoyama, T., and Tagami, T.: Solidification pressures and ages recorded in mafic microgranular enclaves and their host granite: An example of the world's youngest Kurobegawa granite, Isl. Arc, 31, e12462, https://doi.org/10.1111/IAR.12462, 2022.
Tamer, M. T. and Ketcham, R. A.: The along-track etching structure of fission tracks in apatite: Observations and implications, Chem. Geol., 553, 119809, https://doi.org/10.1016/j.chemgeo.2020.119809, 2020.
Tamer, M. T., Chung, L., Ketcham, R. A., and Gleadow, A. J.W.: Analyst and etching protocol effects on the reproducibility of apatite confined fission-track length measurement, and ambient-temperature annealing at decadal timescales, Am. Mineral., 104, 1421–1435, https://doi.org/10.2138/am-2019-7046, 2019.
Váczi T.: A new, simple approximation for the deconvolution of instrumental broadening in spectroscopic band profiles, Appl. Spectrosc., 68, 1274–1278, https://doi.org/10.1366/13-07275, 2014.
Warr, L. N.: IMA–CNMNC approved mineral symbols, Mineral. Mag., 85, 291–320, https://doi.org/10.1180/mgm.2021.43, 2021.
Weise, C., van den Boogaart, K. G., Jonckheere, R., and Ratschbacher, L.: Annealing kinetics of Kr-tracks in monazite: Implications for fission-track modelling, Chem. Geol., 260, 129–137, https://doi.org/10.1016/j.chemgeo.2008.12.014, 2009.
Yamada, R.: Cooling history analysis of granitic rock in the northern Alps, central Japan, Earth Mon. (Gekkan Chikyu), 21, 803–810, 1999.
Yamada, R., Tagami, T., and Nishimura, S.: Assessment of overetching factor for confined fission-track length measurement in zircon, Chem. Geol., 104, 251–259, https://doi.org/10.1016/0009-2541(93)90154-B, 1993.
Yamada, R., Tagami, T., and Nishimura, S.: Confined fission-track length measurement of zircon: assessment of factors affecting the paleotemperature estimate, Chem. Geol., 119, 293–306, https://doi.org/10.1016/0009-2541(94)00108-K, 1995.
Yamagata, K.: Tephrochronological Study on the Shikotsu and Kuttara Volcanoes in Southwestern Hokkaido, Japan, J. Geogr. (Chigaku Zasshi), 103, 268–285, https://doi.org/10.5026/jgeography.103.268, 1994.